Supporting Information for

Tuning Active Metal Atomic Spacing by Filling of Light

Atoms and Resulting Reversed Hydrogen Adsorption-

Distance Relationship for Efficient Catalysis

Ding Chen^{1, ‡}, Ruihu Lu^{1, ‡}, Ruohan Yu², Hongyu Zhao¹, Dulan Wu¹, Youtao Yao¹, Kesong Yu¹, Jiawei Zhu¹, Pengxia Ji¹, Zonghua Pu¹, Zongkui Kou¹, Jun Yu¹, Jinsong Wu², Shichun Mu^{1, *}

¹State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China

²NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan 430070, P. R. China

[‡]Ding Chen and Ruihu Lu contributed equally to this work.

*Corresponding author. E-mail: msc@whut.edu.cn (Shichun Mu)

S1 Experimental Details

S1.1 Computational Details

We conducted spin-polarized DFT calculations using the Vienma ab initio simulation package (VASP) [S1, S2]. Using the electron exchange and correlation energy was modelled within the generalized gradient approximation in the Perdew-Burke-Ernzerhof functional (GGA-PBE) [S3], while the projector augmented ware (PAW) pseudo-potentials was used to describe ionic cores [S4]. The long-range dispersion interactions between adsorbates and surface were treated applying DFT-D3 method [S5] the calculations were done with a plane-wave basis set defined by a kinetic energy cutoff of 450 eV. The k-point sampling was obtained from the Monkhorst-Pack scheme with a $(3 \times 3 \times 1)$ mesh for optimization and a $(4 \times 4 \times 1)$ mesh for the calculations of electronic structure. The geometry optimization and energy calculation are finished when the electronic self-consistent iteration and force were reach 10^{-5} eV and 0.02 eV Å⁻¹, respectively. A 6-layer $p(4 \times 4)$ Os (001), 5-layer $p(4 \times 4)$ OsB (001), 1.5-layer $p(3 \times 3) Os_2 B_3$ (001), and 2-layer $cOsB_2$ (011) supercells were built within 15 Å vacuum layers. During optimization, we fixed the bottom 3 layers Os (001), 3-layers OsB (001), 0.5-layer Os₂B₃ (001), and 11-layer OsB₂ (011), respectively, whilst the other layers were free for relaxation along z direction.

HER

The HER process is divide into the four fundamental reactions as following:

(1) $H^+ + e^- + * = H^*$

(2) $H^* = * + 1/2 H_2$

H* presents the H moiety on the adsorption site. Where which the energy of H^+/e^- is approximately equal to the energy of 1/2 H₂[S6].

The Gibbs Free Energy Variation

The change in Gibbs free energy (ΔG) of each adsorbed intermediate is calculated based

on the computational hydrogen electrode method developed by Nørskov et al.8 At standard condition (T = 298.15 K, pH = 0, and U = 0 V (vs. SHE)), the free energy G is defined as the following equation:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S$$

Where ΔE is the energy change obtained from DFT calculation, ΔE_{ZPE} is the difference

between the adsorbed state and gas, which was calculated by summing vibrational frequency for all model based on the equation: $E_{ZPE} = 1/2 \sum hv_i$. T is the temperature (298.15 K) in the above reaction system, and ΔS represents the difference on the

entropies between the adsorbed state and gas phase. The entropies of free molecules were obtained from NIST database (https://janaf.nist.gov/). And the free energy of the

adsorbed state H* can be taken as: $\Delta G_H = \triangle E_H^* + 0.24$ [S6].

d-band center

The *d*-band center proposed by Nørskov and co-workers [S7] is a semi-quantitative descriptor to describe the trend of reactivity of transition metals (TM), which is defined the *d*-band center (ε_d) relative to the Fermi level (E_F). A transition metal with a low ε_d value relative to the Fermi level, shows a weak adsorption for a given adsorbate. And the *d*-band center (ε_d) is calculated as following:

$$\varepsilon_{\rm d} = \frac{\int_{-\infty}^{+\infty} x \rho(x) dx}{\int_{-\infty}^{+\infty} \rho(x) dx}$$

Where $\rho(x)$ is the projector density of states (PDOS) with respect to Os sites in Os metal and OsB_x intermetallic compounds

S1.2 Materials and Reagents

Osmium (Os) powder was purchased from Aladdin Reagents Ltd. Anhydrous lithium chloride (LiCl) and potassium chloride (KCl), sodium borohydride (NaBH₄), potassium hydroxide (KOH), sulfuric acid (H₂SO₄), absolute ethanol and isopropyl alcohol were purchased from Sinopharm Chemical Reagent Co., Ltd. Commercial Pt/C (20 wt%) and Nafion (5 wt%) were obtained from Sigma-Aldrich. All the reagents are analytical grade and used without further treatment. Deionized (DI) water was employed as solvent.

S2 Supplementary Figures and Tables

Fig. S1 Top and side views of Os, OsB, Os₂B₃, and OsB₂ in pristine models and models with *H adsorption

Fig. S2 The phase diagram of the two-salt system (KCl + LiCl), which coming from the http://www.crct.polymtl.ca/FACT/documentation/ (FTsalt \rightarrow KCl-LiCl)

Fig. S3 Crystal structure (unit cell) of Os (**a**), hexagonal phase OsB (**b**), hexagonal phase Os₂B₃ (**c**) and orthorhombic phase OsB₂ (**d**)

Fig. S4 HAADF-STEM images and corresponding EDX elemental map for Os of metal Os

Fig. S5 HAADF-STEM images and corresponding EDX elemental maps for Os and B of OsB

Fig. S6 HAADF-STEM images and corresponding EDX elemental maps for Os and B of Os_2B_3

Fig. S7 (a, b) HAADF and corresponding BF images of OsB_2 . (c) Enlarged STEM image from the area indicated by the blue box in (a). (d) Corresponding high-resolution atomic image from the area indicated by the red box in (c)

Fig. S8 (a-c) HAADF-STEM image and corresponding EDX elemental maps for Os and B of OsB₂. (d) EDX spectrum of the area indicated by the blue box in (a) S6/S20

Fig. S9 Tafel curves of Os, OsB_X and Pt/C in 1 M KOH

Fig. S10 Cyclic voltammograms of (a) Os, (b) OsB, (c) Os_2B_3 and (d) OsB_2 in the region of (-0.85) - (0.75) V versus Ag/AgCl at different scan rates

Fig. S11 (a) Linear relationships between capacitive current and scan rate of Os and OsB_X . (b) Nyquist plots of OsB, Os_2B_3 and OsB_2

Fig. S12 Cyclic voltammograms of (a) Os, (b) OsB, (c) Os_2B_3 and (d) OsB_2 in the region of (-0.1) - (0.0) V versus SCE at different scan rates

Fig. S13 Evaluation of HER performance in 0.5 M H₂SO₄. (a) HER polarization curves, (b) Tafel curves, (c) corresponding overpotentials at 10 mA cm⁻² and Tafel slope of Os, OsB_X and Pt/C. (d) Linear relationships between capacitive current and scan rate, (e) the relationship between TOF and the measured potentials for Os and OsB_X. (f) Nyquist plots of OsB, Os₂B₃ and OsB₂

Fig. S14 LSVs normalized by ECSA of HER in 1 M KOH (a) and 0.5 M H₂SO₄ (b)

Fig. S15 Gibbs free energies changes of HER process on Os sites of Os, OsB, Os_2B_3 and OsB_2

Fig. S16 HER overpotentials (@50 mA cm⁻²) of Os, OsB, Os_2B_3 and OsB_2 in 0.5 M H_2SO_4 and 1 M KOH, respectively

Fig. S17 XPS survey patterns of Os, OsB, Os₂B₃ and OsB₂ S10/S20

Fig. S18 XPS spectra of Os 4f for Os, OsB, Os_2B_3 and OsB_2

Fig. S19 Os *K*-space oscillation, weighted by k^3

Fig. S20 The $\chi(R)$ and $\chi(k)$ space spectra fitting curves of Os L₃-edge for Os (a, b), OsB (c, d), Os₂B₃ (e, f)

Fig. S21 (a) Models of Os, OsB, Os₂B₃, and OsB₂ cell. The green and indigo balls S12/S20

represent B, Os atoms, respectively. (b) Correlations between surface Os-Os distance, B coordinated number and the ratio of B to Os atoms in Os, OsB, Os₂B₃, and OsB₂ cell. (c) Trends of Bader charge of B and Os atoms relative to the ratio of B to Os atoms in Os, OsB, Os₂B₃, and OsB₂ cell. (d) Projector density of states of B-2*p* and Os-5*d* orbitals. (e) COHP between B and Os atoms. (f) Correlation between *d*-band center, ICOHP and Bader charge of B atoms

Description: We first optimized the Os, OsB, Os₂B₃, and OsB₂ cell in Fig. S21a. We found the surface Os-Os distance increases while bulk B coordinated number decreases as the ratio of B to Os atoms increases, as displayed in Fig. S21b, underlyingly suggesting the weakening of Os-Os and Os-B interactions. Besides, the incremental Bto-Os ratio leads to more B atoms share the electrons from Os atoms, showing the more positive charge states of Os atoms and less negative charge states of B atoms in Fig. **S21c.** It points to that Os-B interaction replaces Os-Os interaction to stabilize Os atoms and more B-B interaction lows the strong p-d hybridization between B and Os. Accordingly, as shown in Fig. S21d, the originally metallic anti-bonding states above the Fermi level gradually shift to the lower level while the weaker Os-B interactions impedes the upshift of Os 5*d*-bands, totally meaning the downshift of Os band, in well agreement with the decrease of bonding states in **Fig. S21e**. therefore, the Bader charge of B atoms can be a simple descriptor to describe the change of Os 5*d*-bands in **Fig. S21f.** Furthermore, we found that the decrease of Bader charge of B atoms resulted from the higher B-to-Os atomic ratio monotonically relates with the declining integrated crystal orbital Hamilton population (ICOHP) and increase of Os d-band center, respectively.

Fig. S22 HER polarization curves before and after different potential cycles in 1 M KOH and 0.5 M H_2SO_4 of OsB_2 (a, d), Os_2B_3 (b, e) and OsB (c, f)

Fig. S23 Top and side views of *O adsorbed OsB (001), Os_2B_3 (001) and OsB_2 (011) models. The green, red, and indigo balls represent B, O, and Os atoms, respectively

Fig. S24 The relationship between the overpotential of the catalyst and the ε_d after different acceleration cycles in 0.5 M H₂SO₄

Fig. S25 Time-dependent current density curve of Pt/C in 1 M KOH S14/S20

Fig. S26 Time-dependent current density curve of Pt/C in 0.5 M H₂SO₄

Fig. S27 (a) XRD pattern and (b) XPS survey of OsB_2 before and after HER electrolysis in 0.5 M H₂SO₄ and 1 M KOH

Fig. S28 TEM images of OsB_2 before and after HER electrolysis in 1 M KOH S15/S20

Fig. S29 TEM images of OsB2 before and after HER electrolysis in 0.5 M H2SO4

Metal	Symbol	Unit of Measure	U.S.
Platinum	Pt	troy ounce	892
Iridium	Ir	troy ounce	4750
Osmium	Os	troy ounce	378
Palladium	Pd	troy ounce	2110
Rhodium	Rh	troy ounce	14600
Ruthenium	Ru	troy ounce	585

Table S1 Prices of six platinum group metals^[a]

[a] The prices for various platinum group metals are from the BASF corporation website on August 1, 2022. (https://apps.catalysts.basf.com/apps/eibprices/mp/)

Catalyst	Spectrum	Content of B (wt%)
OsB	B 249.677 r	5.6
Os ₂ B ₃	B 249.677 r	8.4
OsB ₂	B 249.677 r	11.6

Table S2 The content of B in OsB, Os_2B_3 and OsB_2 measured by ICP-OES

Catalyst	ECSA (cm ²)	ECSA (cm ²)
Os	50.0	36.7
OsB	61.7	41.7
Os ₂ B ₃	73.3	53.3
OsB ₂	128.3	75.0

Table S3 The ECSA values of Os, OsB, Os₂B₃ and OsB₂ for HER in 1 M KOH and 0.5 M $\rm H_2SO_4$

Table S4 Comparison of HER performance of OsB_2 with recently reported noble metal based chemical complex at 10 mA cm⁻² in alkaline media

Catalyst	Electrolyte	Overpotential (mV)	References	
OsB ₂	1 M KOH	8	This work	
Os ₂ B ₃	1 M KOH	19	This work	
OsB	1 M KOH	25	This work	
Os	1 M KOH	69	This work	
RuS_2	1 M KOH	H 11		
RuP ₂	1 M KOH	12	[S9]	
RhP ₂	1 M KOH	18	[S10]	
RhB ₂	1 M KOH	28	[S11]	
IrP ₂	1 M KOH	28	[S12]	
RuSe ₂	1 M KOH	30	[S13]	
PdP ₂	1 M KOH	35	[S14]	
PtP ₂ /Pt	1 M KOH	42	[S15]	
Pt/PtTe _X	1 M KOH	44	[S16]	
PtP ₂	1 M KOH	45	[S17]	
IrTe ₂	1 M KOH	54	[S18]	
OsP2@NPC	1 M KOH	70	[S19]	
PtSi	1 M KOH	38	[S20]	
a-RuTe ₂ PNRs	1 M KOH	36	[S21]	
2D PtSe ₂	1 M KOH	11	[S22]	
h-RuSe ₂	1 M KOH	34	[S23]	
RuP ₂ @NPC	1 M KOH	54	[S24]	
RuSe ₂ @NC	1 M KOH	30	[S25]	
RhSe ₂	1 M KOH	81	[S26]	
Li-IrSe ₂	1 M KOH	72	[S27]	

S17/S20

Sample	Shell	Na	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor
Os foil	Os-Os	12.0	2.70	0.0031	8.32	0.0034
OsB	Os-B	6.0	2.19	0.0039	9.23	0.0103
	Os-Os	6.0	2.84	0.0059	5.30	
Os ₂ B ₃	Os-B	7.2	2.20	0.0033	9.84	0.0055
	Os-Os	5.0	2.87	0.0027	5.76	
OsB ₂	Os-B	7.2	2.21	0.0070	7.59	0.0148
	Os-Os	3.5	2.89	0.0061	0.38	

Table S5 EXAFS fitting parameters at the Os L3-edge for various samples

^aCN, coordination number; ^{*b*}*R*, distance between absorber and backscatter atoms; ^{*c*} σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ^{*d*} ΔE_0 , inner potential correction; *R* factor indicates the goodness of the fit. according to the experimental EXAFS fit of Co foil by fixing CN as the known crystallographic value. Fitting range: $3.0 \le k$ (/Å) ≤ 12.5 and $1.0 \le R$ (Å) ≤ 3.0 (Os foil); $3.4 \le k$ (/Å) ≤ 10.4 and $1.2 \le R$ (Å) ≤ 3.1 (OsB) ; $3.0 \le k$ (/Å) ≤ 12.5 and $1.0 \le R$ (Å) ≤ 3.0 (Os₂B₃); $3.0 \le k$ (/Å) ≤ 12.8 and $1.1 \le R$ (Å) ≤ 3.0 (OsB₂).

Supplementary References

- [S1] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6(1): 15-50. <u>https://doi.org/10.1016/0927-0256(96)00008-0</u>
- [S2] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Cond. Matter 1996, 54(16): 11169. <u>https://doi.org/10.1103/PhysRevB.54.11169</u>
- [S3] Matthias Ernzerhof, John P. Perdew, Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 1998, 109(9): 476928. <u>https://doi.org/10.1063/1.476928</u>
- [S4] P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 1994, 50(24): 17953. https://doi.org/10.1103/PhysRevB.50.17953
- [S5] Grimme Stefan, Antony Jens, Ehrlich Stephan, Krieg Helge. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132(15): 154104. <u>https://doi.org/10.1063/1.3382344</u>
- [S6] J. K. Noerskov, T. Bligaard, A. Logadottir et al., Trends in the exchange current for hydrogen evolution. ChemInform 2005, 36(24): 0524023. <u>https://doi.org/10.1002/chin.200524023</u>
- [S7] Er Dequan, Ye Han, Frey Nathan C et al., Prediction of enhanced catalytic activity for hydrogen evolution reaction in janus transition metal dichalcogenides. Nano Lett. 2018, 18(6): 3943–3949. https://doi.org/10.1021/acs.nanolett.8b01335

- [S8] Y. Xu, C. Du, Q. Shen, et al., Well-dispersed pyrite-type RuS₂ nanocrystals anchored on porous nitrogen and sulfur co-doped hollow carbon spheres for enhanced alkaline hydrogen evolution. Chem. Engin. J. 2021, 417(7): 129318. <u>https://doi.org/10.1016/j.cej.2021.129318</u>
- [S9] F. Zhou, R. Sa, X. Zhang, et al., Robust ruthenium diphosphide nanoparticles for pH-universal hydrogen evolution reaction with platinum-like activity. Appl. Catal. B: Environ. 2020, 274: 119092. https://doi.org/10.1016/j.apcatb.2020.119092
- [S10] Wrinkled Rh₂P nanosheets as superior pH-universal electrocatalysts for hydrogen evolution catalysis. Adv. Energy Mater. 2018, 8(27): 1801891. <u>https://doi.org/10.1002/aenm.201801891</u>
- [S11] Q. Li, X. Zou, X. Ai, et al., Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2019, 9: 1803369. <u>https://doi.org/10.1002/aenm.201803369</u>
- [S12] Z. Pu, J. Zhao, I.S. Amiinu, et al., A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2019, 12: 952-957. https://doi.org/10.1039/C9EE00197B
- [S13] Z. Zhang, C. Jiang, P. Li, et al., Benchmarking phases of ruthenium dichalcogenides for electrocatalysis of hydrogen evolution: theoretical and experimental insights. Small 2021: e2007333. https://doi.org/10.1002/smll.202007333
- [S14] F. Luo, Q. Zhang, X. Yu, et al., Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting. Angew. Chem. Int. Ed. 2018, 130: 15078-15083. <u>https://doi.org/10.1002/ange.201810102</u>
- [S15] Z. Wang, B. Xiao, Z. Lin, et al., PtSe₂/Pt heterointerface with reduced coordination for boosted hydrogen evolution reaction. Angew. Chem. Int. Ed. 2021, 60: 23388-23393. <u>https://doi.org/10.1002/anie.202110335</u>
- [S16] J. Chen, M. Qin, S. Ma, et al., Rational construction of Pt/PtTex interface with optimal intermediate adsorption energy for efficient hydrogen evolution reaction. Appl. Catal. B Environ. 2021, 299: 120640. https://doi.org/10.1016/j.apcatb.2021.120640
- [S17] Z. Pu, R. Cheng, J. Zhao, et al., Anion-modulated platinum for highperformance multifunctional electrocatalysis toward HER, HOR, and ORR. iScience 2020, 23(12): 101793. <u>https://doi.org/10.1016/j.isci.2020.101793</u>
- [S18] Yecan Pi, Yong Xu, Leigang Li, et al., Selective surface reconstruction of a defective iridium based catalyst for high efficiency water splitting. Adv. Funct. Mater. 2020, 30(43): 2004375. <u>https://doi.org/10.1002/adfm.202004375</u>
- [S19] L. Fang, Y. Wang, X. Yang, et al., Uniform OsP₂ nanoparticles anchored on N,P-doped carbon: A new electrocatalyst with enhanced activity for hydrogen

generation at all pH values. J. Catal. **2019**, 370: 404-411. https://doi.org/10.1016/j.jcat.2019.01.010

- [S20] Z. Pu, T. Liu, G Zhang, General synthesis of transition-metal-based carbongroup intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range. Adv. Energy Mater. 2022, 12: 2200293.
- [S21] J. Wang, L. Han, B. Huang, et al., Amorphization activated rutheniumtellurium nanorods for efficient water splitting. Nat. Commun. 2019, 10(1): 5692. <u>https://doi.org/10.1038/s41467-019-13519-1</u>
- [S22] X. Ping, D. Liang, Y. Wu, et al., Activating a two-dimensional PtSe2 basal plane for the hydrogen evolution reaction through the simultaneous generation of atomic vacancies and Pt clusters. Nano Lett. 2021, 21: 3857–3863. <u>https://doi.org/10.1021/acs.nanolett.1c00380</u>
- [S23] W. Luo, Y. Zhao, H. Cong, et al., Hexagonal RuSe₂ nanosheets for highly efficient hydrogen evolution electrocatalysis. Angew. Chem. Int. Ed. 2021, 13: 7089-7093. <u>https://doi.org/10.1002/ange.202016207</u>
- [S24] Z. Pu, I.S. Amiinu, Z. Kou, et al., RuP₂ based catalysts with platinum like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew. Chem. Int. Ed. 2017, 56(38): 11559-11564. <u>https://doi.org/10.1002/anie.201704911</u>
- [S25] D. Chen, R. Lu, Y. Yao, et al., Duetting electronic structure modulation of Ru atoms in RuSe₂@NC enables more moderate H* adsorption and water dissociation for hydrogen evolution reaction. J. Mater. Chem. A 2022, 10: 7637-7644. <u>https://doi.org/10.1039/D2TA01032A</u>
- [S26] W. Zhong, B. Xiao, Z. Lin et al., RhSe₂: A superior 3D electrocatalyst with multiple active facets for hydrogen evolution reaction in both acid and alkaline solutions. Adv. Mater. 2021: 2007894. <u>https://doi.org/10.1002/adma.202007894</u>
- [S27] T. Zheng, C. Shang, Z. He et al., Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting. Angew. Chem. Int.

Ed. 2019: 1909369. https://doi.org/10.1002/anie.20