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 HIGHLIGHTS

• The nucleation overpotential was regulated by sodium L-tartrate to drive smaller critical size of Zn nucleus and accelerate the nuclea-
tion rate.

• The L-tartrate anions and sodium ions can increase de-solvation energy barrier suitably and hinder the agglomerative Zn deposition 
resepectively.

• Nucleation overpotential in modified electrolyte could increase from 28.3 to 45.9 mV, and high Zn utilization rate of 80% at current 
density of 10 mA  cm−2 can be achieved.

ABSTRACT Dendrite formation severely compromises further development of zinc ion batteries. Increasing the nucleation overpotential 
plays a crucial role in achieving uniform deposition of metal ions. How-
ever, this strategy has not yet attracted enough attention from researchers 
to our knowledge. Here, we propose that thermodynamic nucleation over-
potential of Zn deposition can be boosted through complexing agent and 
select sodium L-tartrate (Na-L) as example. Theoretical and experimental 
characterization reveals L-tartrate anion can partially replace  H2O in the 
solvation sheath of  Zn2+, increasing de-solvation energy. Concurrently, the 
 Na+ could absorb on the surface of Zn anode preferentially to inhibit the 
deposition of  Zn2+ aggregation. In consequence, the overpotential of Zn 
deposition could increase from 32.2 to 45.1 mV with the help of Na-L. The 
Zn-Zn cell could achieve a Zn utilization rate of 80% at areal capacity of 
20 mAh  cm−2. Zn-LiMn2O4 full cell with Na-L additive delivers improved 
stability than that with blank electrolyte. This study also provides insight 
into the regulation of nucleation overpotential to achieve homogeneous 
Zn deposition.
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1 Introduction

Rechargeable aqueous Zn ion batteries (ZIBs) are the most 
attractive candidate for next-generation energy storage tech-
nology owing to its high abundance, inherent safety, and 
environmental friendliness [1–7]. Additionally, Zn anode 
particularly features large theoretical capacity (820 mAh  g−1, 
5855 mAh  cm−3), low toxicity, and moderate redox potential 
(− 0.76 V vs. standard hydrogen electrode) [8–12]. How-
ever, the Zn anode suffers from spongy Zn deposition with 
uncontrollable dendrite growth. Such loose structure will 
enhance the chemical corrosion during the repeated plat-
ting and stripping processes [13–16]. Unfortunately, the 
dendritic Zn particles can damage the separator and cause 
battery short circuits, which hinders the practical applica-
tion of ZIBs [5, 17–20]. At present, it is urgent to consider 
strategy to inhibit the growth of Zn dendrite based on the 
intrinsic mechanism of Zn deposition.

In fact, electrochemical Zn deposition is one of the earli-
est subjects within the framework of electrochemistry, which 
takes place at Zn anode and electrolyte interfaces under the 
influence of an electric field, and includes electrocrystal-
lization [21–25]. The electrocrystallization process usually 
involves transformation from an unbalanced state to an equi-
librium state at a certain overpotential ( � ), which can be 
described as [26]:

where ∆G is Gibbs free energy of nucleation of Zn elec-
trocrystallization, h is the height of Zn atom, r is radius of 
crystal nucleus, σ is interfacial tension between electrode 
and electrolyte, A refers to the atomic mass of Zn, ρ is the 
density of nucleus, n is valence of  Zn2+ and F is faraday’s 
constant. The crystal nucleus can exist stably only if ∆G < 0, 
otherwise they will dissolve in electrolyte [26, 27]. Corre-
spondingly, the critical size (rc) and Gibbs free energy ∆Gc 
of stable nucleus can be obtained based on ∂∆G/∂r = 0:

Obviously, only nuclei with r greater than the rc can effec-
tively exist and grow [26]. Notably, the rc is governed by η. 
Figure 1a schematically depicts the relationship between Zn 
growth behaviors and nucleation overpotential. The higher 

η could drive the smaller rc of the nucleus, which promotes 
the growth of metal deposition. In contrast, lower η will lead 
to the deposition of Zn aggregation, resulting in dendrite 
growth [23, 24, 26]. Additionally, the nucleation rate (ω) 
could be also calculated using ∆Gc:

where K is pre-exponential factor and L is Avogadro con-
stant. The equation shows that nucleation rate increases 
exponentially with the increase of overpotential, allowing 
for the formation of fine and uniform plating layer. There-
fore, the overpotential plays a vital role in achieving uni-
form deposition of  Zn2+. In electrocrystallization process, 
overpotential can arise from two principal causes: on the 
one hand, it comes from the de-solvation of metal ions in 
the electrolyte to the surface of the metal electrode (electro-
chemical overpotential); on the other hand, the hindrance 
incorporation in the lattice (as result of surface diffusion or 
displacement of adsorbed species, crystallization overpo-
tential) [22]. Thus, to access dendrite suppressing charac-
teristic, the nucleation overpotential of Zn deposition can 
be adjusted. Although various strategies have been adopted 
to design dendrite-free Zn anode, such as surface coating 
[28], additives in electrolyte [29, 30] and three-dimensional 
Zn architectures [31, 32], systematic studies on nucleation 
overpotential of Zn deposition is still rare.

Here, we introduce sodium L-tartrate (Na-L), a typical 
complexing agent, into  ZnSO4 (ZS) electrolyte to regulate 
nucleation overpotential for dendrite-free ZIBs. The experi-
ments and theoretical simulations revealed that L-Tartaric 
anions  (L−) could enter the primary solvation shell of  Zn2+, 
decreasing the number of  H2O molecules and increasing de-
solvation energy barrier suitably. Besides,  Na+ can be prefer-
entially adsorbed on Zn metal anode and induced a dynamic 
electrostatic shielding layer around abrupt Zn protuberance, 
which hinders the simple agglomerative Zn deposition [33, 
34]. Under the effect of Na-L additive, the Zn nucleation 
overpotential in modified electrolyte (ZS-Na-L) could 
increase from 28.3 to 45.9 mV. Consequently, the ZS-Na-L 
electrolyte enables Zn-Cu cells to deliver a high Coulombic 
efficiency (CE) of ~ 99.8% for 600 cycles at a current density 
of 10 mA  cm−2, and long-term cycling stability of Zn-Zn 
cells up to 1500 h. At a current density of 10 mA  cm−2, 
the Zn-Zn cell with optimized electrolyte exhibited a stable 
Zn deposition for ~ 500 h. Moreover, the Zn full cells with 
high mass loading  Li2MnO4 (LMO) cathode (~ 12 mg  cm−2) 
deliver a stable discharge capacity of 90 mAh  g−1 after 500 
cycles. The results demonstrate the importance of nucleation 

(1)ΔG = −
�hr2�nF�

A
+ 2�hr�

(2)rc = Ah�/(�nF�)

(3)ΔG
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overpotential on Zn deposition and provide a research para-
digm for other metal anodes.

2  Experimental and Calculation

2.1  Preparation of Electrolyte

The 2 M ZS electrolyte was prepared by dissolving 1 mol of 
 ZnSO4·7H2O (99.995%, Aladdin) in deionized (DI) water 
to acquire 0.5 L of solution. The ZS-Na-L electrolytes were 
prepared by adding different amounts (2, 4, and 6 mmol) of 
sodium L-tartrate (≥ 98%, Aladdin) into 100 mL 2 M ZS 
electrolyte.

2.2  Preparation of Electrodes

The purchased Zn foil (99.99%) was polished with sandpa-
per and punched into a disc to be employed as Zn anode. The 
LMO cathode was obtained through mixing 70 wt% LMO 
powders (Hefei kejing Co., Ltd.), 20 wt% conductive carbon 
(KS-6, MTI, Co. Ltd.) and 10 wt% polytetrafluoroethylene 

(PTFE) in isopropanol (Sigma-Aldrich Co., Ltd.). The 
obtained slurry was coated on the Ti mesh and dried at 60 °C 
for 12 h under vacuum. The mass loading of active material 
on the Ti mesh was about 12 mg  cm−2.

2.3  Materials Characterizations

Hitachi SU-70 field-emission SEM was employed to investi-
gate morphology for Zn foil and LMO. The phase structure 
of materials was explored using D8-XRD (Bruker AXS, 
WI, USA). To characterize the interface morphologies of 
Zn plating process, the optical microscope (Leica DVM6) 
was employed. AFM images were collected by Icon (Bruker) 
AFM. The ATR-FTIR spectra were conducted by Bruker 
Alpha FT-IR spectrometer. In-situ differential electrochemi-
cal mass spectrometry was performed on a commercial mass 
spectrometer (Hiden, Beijing) with a Zn-Zn cell contain-
ing Zn electrodes, glass fiber separator, and a stainless-
steel spacer (height: 1 mm). Before testing, the system was 
deflated with Ar for 12 h (~ 5 ×  106 Torr), and then the result-
ing gas was used during 5 mA  cm−2 charging/discharging. 

Fig. 1  a Schematic diagram of the effect of overpotential on the Zn deposition process. b–c In-situ microscopy images of Zn plating process in 
the ZS electrolyte and ZS-Na-L electrolyte (Scale bar: 100 μm). d–e AFM images of the cycled Zn in the ZS electrolyte and ZS-Na-L electrolyte
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The Raman analysis was done by DXR Raman microscope 
with an excitation length of 532 nm.

2.4  Electrochemical Characterization

Zn foils with a thickness of 100 μm as the electrode, 100 
μL electrolyte and a piece of glass fiber (GE-Whatman) 
separator were assembled in Coin-type (CR 2032) cells. 
50 μm Zn foil was employed for high ZUR test. After pol-
ished, the mass loading is ~ 30 mg   cm−2, corresponding 
to theoretical capacities of ~ 25 mAh  cm−2. Zn-LMO full 
cells with ~ 10 μm Zn foils (at the N/P ratio of ~ 4.2, ~ 24% 
ZUR) were tested in different electrolytes. The Galvanostatic 
charge and discharge measurements were conducted on a 
Neware battery systems instrument (CT-4008 T) after rest-
ing for 4 h. CV, LSV and EIS tests were performed by a CHI 
660e electrochemical workstation (ChenHua Instruments 
Co.). The corrosion behavior was performed using three-
electrode system (Zn foil as working electrode, Pt as the 
counter electrode, and Ag/AgCl as reference electrode) on 
the CorrTest CS2350H electrochemical workstation (Wuhan 
CorrTest Instrument Corp., Ltd. China).

2.5  Finite Element Method Simulations

The modeling of Zn electrodeposition was simulated by 
using COMSOL Multiphysics 6.0. The height of the simu-
lation area is 6 μm and the width is 10 μm. The mesh is 
selected based on triangles or tetrahedra, while using pro-
gressively fine refinements for the electrode bands (Fig. 
S17). The Zn deposition process is described by Butler-
Volmer equation. Furthermore, the Butler-Volmer equation 
must account for the ion concentration on the surface since 
 Na+ adsorbs on the surface in ZS-Na-L electrolyte.

where θ is the coverage of adsorbed inhibiting additive and 
cannot exceed unity, C’ is the coefficient of  Zn2+ concentra-
tion, k is coefficient of  Na+, k’ is the inhibiting transfer coef-
ficient of the  Na+, F is the Faraday constant, R is the molar 
gas constant, T is the ambient temperature, η is the overpo-
tential,  i0 is the exchange current density. Before simulation, 
a semi ellipse nucleus was set.

(5)iloc = −(C� − k�) exp

(

−(� − k��)F�

RT

)

i0

2.6  Computational Details

Molecular dynamics (MD) simulations were conducted 
in the Forcite module in Materials Studio of Accelrys 
Inc. A condensed phase optimized molecular potentials 
for atomistic simulation studies (COMPASS II) and force 
field were chosen for all molecular dynamics simulations, 
and the time step was fixed to be 1 fs. The size of box is 
5 nm × 5 nm × 5 nm. The simulation cells contained 3055 
 H2O, 200  ZnSO4 and 4 Na-L. The electrolyte systems were 
equilibrated in the isothermal-isobaric ensemble (NPT) 
with a pressure of 0.1 GPa and a decay constant of 0.1 ps 
for 500 ps. The temperature was set to be 298 and 323 K 
with a Nose thermostat. Next, another 1000 ps simula-
tion operation was performed in the Canonical Ensemble 
(NVT). The simulation time was long enough to ensure 
that the equilibrium states of the electrolyte systems were 
reached.

The density function theory (DFT) was performed using 
generalized gradient approximation (GGA) and Perdrew-
Burke-Ernzerhof (PBE) exchange correlation functional 
in Castep module of the Materials Studio of Accelrys Inc. 
The cutoff energy with the value of 800 eV was used in 
all the calculations [35–38]. The Γ point was set for sav-
ing the computational resources. The convergence cri-
terion for the electronic structure iteration was set to be 
 10−5 eV, and that for geometry optimizations was set to 
be 0.02 eV Å−1 on force. Zn (002) surface is modeled by 
4 layers 5 × 5 supercell and a vacuum thickness of 15 Å is 
applied. The bottom two layers were kept fixed to maintain 
bulk property.

The quantum chemical computations for water mol-
ecules and ions were carried out on DMOl3 package in 
Materials Studio at the level of DFT. Geometry optimi-
zations and energy calculations were performed using 
GGA and PBE. The energy convergence criterion was set 
to be  10–6 Hartree. The binding energy (Eb) is defined as 
following:

where, Etotal is the total energy of the system, Ec is the energy 
of cation and Em is the energy of water molecules.

(6)Eb = Etotal − Ec − Em
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3  Results and Discussion

3.1  Morphology of Zn Deposition Using Different 
Electrolytes

The Na-L modified electrolyte (ZS-Na-L) was prepared via 
dissolving Na-L into ZS electrolyte. To explore the effect of 
Na-L on  Zn2+ plating behavior, in-situ optical microscopy 
was employed to visually scrutinize the surface morphology 
evolution of Zn electrodes at current density of 10 mA  cm−2. 
As presented in Fig. 1b, the Zn electrode in ZS electrolyte 
displays some bubbles on the surface at approximately 
5 min, which continue to grow and eventually transform into 
dendrites at 15 min. In contrast, the Zn deposition process 
is homogeneous and stable using the ZS-Na-L electrolyte 
(Fig. 1c). After 15 min plating, no dendrite-like morphology 
is observed, indicating that the Na-L is advantageous for 
homogenizing the nucleation sites and inhibiting the growth 
of dendrites. The surface features of Zn electrode cycled in 
different electrolytes were also characterized using atomic 
force microscopy (AFM), as illustrated in Fig. 1d, e. The 
Zn electrode cycled in electrolyte with Na- L additive has a 
much smooth surface with height of ~ 0.35 μm. However, Zn 
electrode cycled in the ZS electrolyte possesses a rough sur-
face with the height of ~ 1.9 μm. Such a high surface rough-
ness can be attributed to the inhomogeneous deposition of 
 Zn2+. Figure S1 exhibits the scanning electron microscopy 
(SEM) images of the cycled Zn electrode. The Zn surface in 
ZS electrolytes becomes rough with flake-like dendrites due 
to the continuous reactions. In comparison, the Zn electrode 
cycled in the ZS-Na-L electrolyte shows a dense and smooth 
morphology, further demonstrating the promising regulation 
of Zn deposition behavior by Na-L.

3.2  Physicochemical Investigation on the Role of Na‑L 
for Zn Deposition

To verify the effect of Na-L additive on the nucleation over-
potential, ZS electrolytes containing different concentrations 
of Na-L were prepared. As shown in Fig. 2a, the overpoten-
tial in ZS electrolyte exhibits only ~ 28.9 mV. After introduc-
ing 20 mmol  L−1 Na-L into ZS electrolyte (ZS-Na-L20), the 
Zn-Cu cell delivers an overpotential of ~ 32.3 mV (Fig. 2b). 
When the Na-L concentration was further increased to 

40 and 60 mmol  L−1, overpotential increased to 45.9 and 
45.1 mV respectively (Figs. 2c and S2). This result dem-
onstrates that the nucleation overpotential could rise with 
the increasing Na-L concentration, but the overpotential 
is essentially stable at a concentration of 40 mmol  L−1 or 
higher. From optical images of electrolytes with different 
concentrations of Na-L (Fig. 2c), ZS-Na-L40 is homogene-
ous and clear. However, ZS-Na-L60 is suspensive due to 
the recrystallization of the solute. Hence, 2 M  ZnSO4 with 
40 mmol  L−1 Na-L is optimal. According to Eq. 1, the ΔG 
and rc also related to interfacial tension in addition to over-
potential. The contact angle measurements were conducted. 
The almost unchanged contact angle demonstrate Na-L has 
no effect on interfacial tension between Zn electrode and 
electrolyte (Fig. S3). The pH and ionic conductivity are also 
key parameters in electrolyte. As shown in Figs. S4-S5, with 
the increase of additive concentration, the ionic conductivity 
and pH value of the electrolyte will increase. Therefore, the 
Na-L additive is effective for ion transport and inhibition of 
hydrogen evolution reaction. The Zn deposition mechanism 
in ZS and ZS-Na-L electrolytes was explored by chrono-
amperometry (CA) test (Fig. 2d). The continuous increasing 
current density in ZS electrolyte indicates a rampant two-
dimensional (2D) diffusion and uneven dendrite growth due 
to tip effect [39, 40]. In contrast, the current density in a cell 
containing ZS-Na-L electrolyte stabilizes immediately after 
applying an overpotential, indicating three-dimensional (3D) 
diffusion of a uniform crystal [41–43]. Moreover, to evaluate 
the reversibility, Zn-Ti cell was assembled to investigate Zn 
plating/stripping behaviors. As shown in cyclic voltamme-
try (CV) curves in Fig. S6, the Zn nucleation in ZS-Na-L 
electrolyte exhibits larger polarization voltage than that in 
ZS electrolyte (96 mV), indicating improved driving force 
for nucleation at the initial Zn deposition in ZS-Na-L elec-
trolyte [44, 45].

The crystal structure of Zn deposition acquired from dif-
ferent electrolytes was collected by X-ray Diffraction (XRD). 
As a result, a stronger (002) peak could be seen in ZS-Na-L 
electrolyte, as shown in Fig. 2e. The enlarged (002) planes 
for Zn deposition in ZS-Na-L electrolyte are demonstrated 
quantitatively by the increase in I(002)/I(100) from 2.11 to 2.32. 
Based on epitaxial mechanism that drives the surface tex-
ture with the crystallographic orientation of the (002) plane 
(Fig. 2f), it is safe to conclude that the as obtained surface 
of the (002) crystal plane was smooth and conductive to 
uniform  Zn2+ deposition [40, 46]. To analyze the inhibition 
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effect of Na-L on parasitic reaction between Zn electrodes 
and electrolyte, the linear sweep voltammetry (LSV) and lin-
ear polarization test were employed. As presented in Fig. 2g, 
the LSV curves exhibit a much higher oxygen evolution 
reaction overpotential of the cell with ZS-Na-L electrolyte. 
From the linear polarization curves in Fig. S7, increased cor-
rosion potential could be realized using Na-L, indicating a 
lower tendency of corrosion of Zn electrodes. To accurately 
quantitate gas production, in-situ differential electrochemical 
mass spectrometry (DEMS) was set up to detect hydrogen 
flux during Zn striping/plating process in different electro-
lytes at a current density of 5 mA  cm−2. As shown in Fig. 2h, 
the hydrogen evolution rate during Zn-Zn cells cycling in ZS 
electrolyte could reach from initial 0.1–0.15 mmol  h−1  cm−2. 
Inversely, there is almost no  H2 detected in ZS-Na-L elec-
trolyte, indicating that the Na-L additive successfully modu-
lated the side reaction.

3.3  Intrinsic Mechanism of Na‑L Increased 
Overpotential

To investigate the unique role of Na-L in the electrolyte, a 
series of characterizations including nuclear magnetic reso-
nance (NMR), Raman and Fourier transform infrared spec-
troscopy (FTIR) were conducted. Figure 3a shows the 2H 
NMR spectra of pure  D2O, ZS electrolyte and ZS-Na-L elec-
trolyte. 2H peak shift increases from 4.69 to 4.73 ppm when 
ZS is added into Pure  D2O, implying a decreased surround-
ing electronic density, and weakened shielding of proton in 
water molecules, denoting less free water in ZS environment 
due to the strong coordination between  Zn2+ and  D2O [47, 
48]. When compared to the ZS electrolyte, the 2H peak in 
the ZS-Na-L electrolyte shifts lower to 4.71 ppm, indicat-
ing that more  H2O molecules was in a free state [49]. Such 
results demonstrate that the addition of Na-L has a function 

Fig. 2  The nucleation overpotential of Zn plating with a ZS electrolyte, b ZS-NA-L 40 electrolyte; c Concentration of Na-L versus potential 
curves. Inset images are the optical images of ZS electrolyte with different concentrations of Na-L. d CA curves of Zn-Zn cells using differ-
ent electrolytes at an overpotential of -150 mV; e XRD pattern of Zn deposits from the Zn electrodes of Zn-Zn cell under a current density of 
2 mA  cm−2 for 1 h. f Illustration of hexagonal structure of Zn. g Linear sweep voltammetry curves of Zn-Ti cell in different electrolytes at a scan 
rate of 1 mV  s−1. In situ DEMS curves of Zn-Zn cells in h ZS-Na-L electrolyte and i ZS electrolyte
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of weakening the solvation interaction between  Zn2+ and 
 H2O, which can also be confirmed by FTIR test (Fig. S8). 
The stretching of  SO4

2− in ZS electrolyte shifts to higher 
wavenumbers after introducing Na-L. Raman spectroscopy 
also revealed that  SO4

2− band exhibited stronger shoul-
der shift to low frequency with increasing Na-L increas-
ing (Fig. S9). Such results indicate that the introduction of 
Na-L impairs the electrostatic coupling between  Zn2+ and 
 SO4

2− and weakens the constraint around  SO4
2−, thus further 

confirming the regulated  Zn2+ solvation structure [48].
The solvation structure of  Zn2+ in different electrolytes 

was further analyzed by molecular dynamics (MD) simu-
lations. The statistical results of MD simulations in Fig. 
S10 show that the primary solvation shell (PSS) of  Zn2+ 

consists of six  H2O molecules in ZS electrolyte. In com-
parison, a new solvation structure, with five  H2O and one 
 L− was observed in ZS-Na-L electrolyte, demonstrating an 
obvious change in solvation structure after introducing Na-L 
(Fig. 3b). To quantitatively investigate the solvation struc-
ture, radial distribution functions (RDFs) and coordination 
number (CN) analysis were carried out. For ZS electrolyte, 
the first solvation shell of  Zn2+ is represented by the first 
RDF peak, which locates at ~ 2 Å and corresponds to Zn-OH 
pairs with CN of ~ 5.3 (Fig. S11). For Zn-Na-L electrolyte, 
the first RDF peak of Zn-L is located at ~ 1.8 Å, indicat-
ing the involvement of Na-L in the first solvation structure 
of  Zn2+ (Fig. 3c). Correspondingly, Fig. 3d shows that the 
CN of Zn-OH in ZS-Na-L electrolyte decreases from 5.3 to 

Fig. 3  a 2H spectra of  H2O from  D2O, ZS and ZS-Na-L. b Snapshot of ZS-Na-L system obtained from MD simulation and partial enlarged 
snapshot referring to  Zn2+ solvation structure. c RDFs for ZS-Na-L  Zn2+-O  (H2O) and d  Zn2+-O (Na-L) collected from MD simulations in ZS-
Na-L system. e Calculated activation energies in ZS and ZS-Na-L electrolytes. f Binding energy for  Zn2+ with different compounds  (H2O,  L−) 
under DFT calculations. g‑h Electrostatic potential mapping of the original  Zn2+-6H2O (left) and  Zn2+-5H2O-L− (right) solvation structures
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4.72, indicating that the solvation structure is significantly 
changed by Na-L. As shown in Fig. S12, the number of 
hydrogen bonds in ZS-Na-L electrolyte is lower than that 
of ZS system, demonstrating that the Na-L is favorable of 
destructing original hydrogen-bond network inside pure ZS 
environment since they can push  H2O molecule out of PSS. 
The energy barrier in the de-solvation process of  Zn2+ was 
quantitatively evaluated from activation energy (Ea) via law 
of Arrhenius [50]. The Nyquist plots of Zn-Zn cells at dif-
ferent temperatures and the charge transfer resistance (Rct) 
could be easily acquired (Fig. S13 and Table S1). The Ea was 
calculated by fitting ln(1/Rct) vs. 1000/T in different electro-
lytes [51, 52]. As shown in Fig. 3e, the Ea is 46.92 kJ  mol−1 
in ZS electrolyte, whereas the Ea in ZS-Na-L electrolyte is 
higher (50.15 kJ  mol−1). Such results demonstrate that Na-L 
additive could bring higher de-solvation energy barrier in 
ZS-Na-L electrolyte, which contributes the improved nuclea-
tion overpotential. To analyze the transportation capability 
of different electrolytes, the mean-squared displacement 
(MSD) versus time were employed (Fig. S14). The diffusion 
coefficient of  Zn2+ increases based on the slope (MSD vs. 
time) when Na-L is added in ZS electrolyte, revealing Na-L 
is helpful for transferring  Zn2+ to some extent. To further 
understand the impact of Na-L addition, quantum chemistry 
calculations were performed. Compared with the interac-
tion between  H2O and  L−, it is easier for  Zn2+ to bind with 
 H2O and  L−, and obviously  Zn2+ is much more inclined to 
combine with  L− than  H2O (Fig. 3f), in accordance with 
the solvation structure from MD simulations. Meanwhile, 
the electrostatic potential of  Zn2+ solvation structure was 
observed in Fig. 3g. The electrostatic potential decreased 
when one  L− is introduced into original  Zn2+-6H2O PSS 
to replace one of the  H2O, indicating that the electrostatic 
repulsion around  Zn2+ can be weakened and beneficial for 
the fast transportation.

Considering that Zn plating/stripping occurs at the inter-
face, the interacting behavior between Zn anode and elec-
trolyte was further studied. We first carried out density func-
tional theory (DFT) calculations to the adsorption energy 
between Zn slab and different molecules was compared. As 
shown in Fig. 4a, the adsorption energy of  Na+ is much 
lower than that of  H2O,  L− or  Zn2+ on Zn (002) crystal 
plane, indicating that the  Na+ preferentially adsorbs on Zn 
surface instead of the other molecules and thus acts as a 
dendrite inhibitor (Fig. 4b). These can also be supported 
by electrochemical test results. The Nyquist plots of Zn-Zn 

cells in ZS-Na-L electrolyte exhibit higher charge transfer 
resistance (Fig. S15), indicating the adsorption of  Na+ on the 
surface of electrode. Additionally, less  Zn2+ electrostatically 
interacts with Zn metal in ZS-Na-L electrolyte, which is 
evidenced by the zeta potential test (Fig. S16) [34, 53, 54].

To further reveal the impact of  Na+ before adsorption 
on the Zn deposition, surface evolution on Zn foils was 
explored by finite element method (FEM) simulations. 
Detailed parameters are provided in Experiment section. 
As exhibited in Fig. 4c, for ZS electrolyte, current density 
at tip of the initial stage is higher than the other regions. 
As the plating time increases from 1 to 3 min, gradual and 
continuous deposition of Zn tends to occur on the uneven 
surface, eventually leading to a severe problem of uncontrol-
lable growth. Conversely, for ZS-Na-L electrolyte, the  Na+ 
will be absorbed on the surface of Zn electrode before the 
dendrite growth and shielding the cutting-edge electric field 
[55]. Finally, the more Zn will grow smoothly with reduced 
dendrite growth (Fig. 4d), which is also consistent with the 
above experimental observation of optical image and AFM 
(Figs. 1c and S1).

3.4  Electrochemical Performance of Zn Anode 
with Different Electrolytes

The uniform Zn deposition could be achieved with the 
help Na-L additive through previous experimental repre-
sentation and theoretical analysis. Therefore, it is expected 
that the electrochemical performance of Zn anodes could 
be greatly improved. Certainly, these results demonstrate 
that the Na-L additive is conductive to homogeneous Zn 
deposition. To confirm this speculation, we firstly investi-
gated the rate performance of symmetric cells with a fixed 
capacity of 1 mAh  cm−2 at various current densities from 
1 to 10 mA  cm−2 (Figs. S18–S19). The Zn-Zn cells tested 
in ZS-Na-L electrolyte exhibit more stable voltage profile 
than that in ZS electrolyte. Cycling performance of Zn-Zn 
cells was also evaluated at different current densities and 
areal capacities. As shown in Fig. 5a, after introducing Na-L 
into ZS electrolyte, the Zn-Zn cells can achieve a long cycle 
lifespan of 1500 h at 2 mA  cm−2 with a capacity per cycle of 
1 mAh  cm−2, but cells in ZS electrolyte exhibit inferior cycle 
stability of 120 h. To test Zn utilization rate (ZUR) in dif-
ferent electrolyte, Zn foil with mass loading ~ 30 mg  cm−2, 
corresponding to theoretical capacities of ~ 25 mAh  cm−2, 
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were employed. As shown in Fig. 5b, the excellent stabil-
ity of 500 h can also be obtained in the presence of Na-L 
with a high current density of 10 mA  cm−2 and ZUR of 
20% (5 mAh  cm−2). In contrast, the Zn-Zn cells in ZS elec-
trolyte cause short circuiting after only 120 h. Further, we 
tested Zn-Zn cells at a high ZUR of 80% (20 mAh  cm−2). 
The symmetric cell in ZS-Na-L electrolyte could be cycled 
stably for 200 h, which is 4 times that of the cell in ZSO 
electrolyte. Excitingly, the cumulative plated capacity (CPC) 
in this work are superior to other recent reports as depicted 
in Fig. 5d, suggesting the advantage of increasing overpo-
etntial strategy in protecting Zn anodes. The reversibility 
of Zn plating/stripping chemistry was further investigated 
using Zn-Cu cell. Figure 5e shows the CE of Zn anodes in 
different electrolytes. Obviously, the CE is rather low in the 
initial cycles. This is because the deposition process of Zn 
on Cu encounters a reshaped Zn coordination. After that, 
the CE drastically fluctuates and decreases only after 110 
cycles due to the dendrite growth and side reactions. But for 

Zn-Cu cells using ZS-Na-L electrolyte, although the initial 
CE is close to that of ZS electrolyte, it achieves stability and 
high stripping/plating efficiency with a remarkable average 
CE of 99.7% after 500 cycles. The galvanostatic charging/
discharging curves of Zn-Zn cells were further measured 
(Fig. S20). A small voltage platform could be observed in 
charging process, attributing to the Zn-Cu de-alloying [56]. 
Even under high current densities of 10 mA  cm−2, the Zn 
electrodes in ZS-Na-L electrolyte also demonstrated better 
reversibility than ZS electrolyte (Fig. S21).

Considering electrolyte is necessary to energy storage sys-
tems [57, 58], the electrochemical properties of Zn full cell 
are evaluated with commercial  LiMn2O4 (LMO) as cathode 
material. Notably, 1 M  Li2SO4 was added into both ZS and 
ZS-Na-L electrolyte to provide the lithium sources during 
the full cell test. The octahedron morphology of LMO is 
shown in Fig. S22. The XRD pattern in Fig. S23 exhibits 
the pure phase of LMO. The reaction kinetics of Zn-LMO 
cell based on ZS-Na-L electrolyte were investigated under 

Fig. 4  a Adsorption energies of  H2O,  Na+, and  Zn2+ on Zn (001) surface. b Schematic Diagrams of the role of  Na+. FEM simulations results 
of the Zn−electrolyte interface at 1, 2 and 3 min (from left to right) in c ZS and d ZS-Na-L electrolytes (Up: cathode, down: anode). The black 
lines show the original Zn-electrolyte interface
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different scanning rates (Fig. S24). Based on equation of 
i = avb, the fitted b values for redox peak are 0.65 and 0.72, 
indicating the combined contribution by diffusion-controlled 
and capacitive reactions [59]. The rate performance of the 
Zn-LMO cell with different electrolytes was explored at 
various current densities as shown in Figs. 5f and S25. In 
the ZS-Na-L electrolyte, a significantly enhanced rate capac-
ity can be achieved. The capacity for ZS-Na-L electrolyte is 
larger than that for ZS electrolyte with further cycling under 
current densities of 0.5C, 1C, 2C, 3C and 5C, demonstrating 
the effective role of Na-L additive. The cycle stability of 
Zn-LMO cell using ZS and ZS-Na-L electrolytes is further 
investigated at the current density of 2 C. Inset image in 
Fig. 5g exhibits a fan can be driven by a LMO full cell. The 
capacity retention of both cells could reach ~ 99.3% at the 
first 100 cycles. However, Zn-LMO cell in ZS electrolyte 
cannot operate properly after 300 cycles, which could be 
attributed to the dendrite formation and side reactions (Fig. 

S26). In comparison, the cell with ZS-Na-L electrolyte can 
retain a reversible capacity of 90 mAh  g−1 with a high CE of 
99.7% after 500 cycles, further demonstrating the effective 
role of Na-L.

4  Conclusions

In summary, we introduced a green and economic Na-L 
electrolyte additive to regulate the thermodynamic behavior 
of Zn deposition. MD simulations combined with experi-
mental studies confirmed the strong interaction between 
 L− and  Zn2+, modulating  Zn2+ solvation structure and 
increasing de-solvation energy barrier. Additionally,  Na+ 
preferentially absorbs on the Zn metal surface, preventing 
the deposition of  Zn2+ aggregation. Both effects improve 
the nucleation overpotential of Zn deposition and assist in 
reducing the uncontrollable growth of dendrite, which can 
be observed in optical microscope and AFM images. As a 

Fig. 5  Cycling performance of Zn-Zn symmetric cells with or without Na-L addition collected at a 2 mA  cm−2, 1 mAh  cm−2 and b 10 mA  cm−2 
and 5 mAh  cm−2. c 10 mA  cm−2 and 20 mAh  cm−2 respectively. d. CPC comparison of Zn-Zn cell between this work and other reports. The 
detailed references corresponding to the point number are listed in Table S2. e Zn plating/stripping CE at 1 mA  cm−2 and 0.5 mAh  cm−2 in dif-
ferent electrolytes. f Rate performance and g cyclic stability and efficiency of Zn-LMO cells in two electrolytes at 2C, inset image showing Zn-
LMO cell drives a fan
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result, dendrite-free and intrinsically stable Zn plating/strip-
ping can be realized in the electrolyte with Na-L. Moreover, 
Zn-LMO cells using ZS-Na-L electrolyte deliver high levels 
of capacity, CE, and stability, demonstrating a significant 
impact of nucleation overpotential on performance of ZIBs. 
Additionally, we believe that other complexing agents such 
as amino carboxylate, organic phosphonate and phosphate 
can also be employed to regulate nucleation overpotential 
for the development of advanced energy storage devices.
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