Supporting Information for

# Nanofiber Composite Reinforced Organohydrogels for

## **Multifunctional and Wearable Electronics**

Jing Wen<sup>1,†</sup>, Yongchuan Wu<sup>1,†</sup>, Yuxin Gao<sup>1</sup>, Qin Su<sup>1</sup>, Yuntao Liu<sup>1</sup>, Haidi Wu<sup>1</sup>, Hechuan Zhang<sup>1</sup>, Zhanqi Liu<sup>1</sup>, Hang Yao<sup>1, \*</sup>, Xuewu Huang<sup>2</sup>, Longcheng Tang<sup>3</sup>, Yongqian Shi<sup>4</sup>, Pingan Song<sup>5</sup>, Huaiguo Xue<sup>1</sup>, Jiefeng Gao<sup>1, \*</sup>

<sup>1</sup> School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China

<sup>2</sup> Testing Center, Yangzhou University, Yangzhou, 225002, P. R. China

<sup>3</sup> Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China

<sup>4</sup> College of Environment and Sofity Environment String Further University Euclide

<sup>4</sup> College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, P. R. China

<sup>5</sup> Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia

†Jing Wen and Yongchuan Wu contributed equally to this work.

\*Corresponding authors. E-mail: jfgao@yzu.edu.cn (Jiefeng Gao); yaohang@yzu.edu.cn (Hang Yao)

## **Supplementary Figures and Tables**



Fig. S1 Conductivity of the composite organohydrogels versus different Ag concentrations



**Fig. S2** SEM images of the nanofiber composite membranes with different Ag concentrations: **a** 5 wt%, **c** 10 wt% and **e** 15 wt%. **b**, **d** and **f** are the magnified SEM images of **a**, **c** and **e**, respectively



**Fig. S3** Particle size distribution of AgNPs in the PVP/Ag@PU nanofiber composite membrane (10 wt% Ag concentration)



Fig. S4 The photograph of the PVP/Ag@PU nanofiber composite membrane with an ultralow resistance



Fig. S5 Morphology of the middle nanofiber composites layer



**Fig. S6** The storage modulus (*G'*) and loss modulus (*G''*) of the organohydrogels as a function of **a** oscillation time ( $\omega = 6.28$  rad s<sup>-1</sup>,  $\gamma = 0.1\%$ , T = 25 °C) and **b** oscillation strain ( $\omega = 6.28$  rad s<sup>-1</sup>, T = 25 °C)



**Fig. S7** Images of twisting, rolling and folding the composite organohydrogels, demonstrating the flexibility of the materials



Fig. S8 The pure shear test of Gel-PVP/Ag@PU



Fig. S9 Force-displacement curves of unnotched and notched a Gel, b Gel-PU, c Gel-Ag@PU and d Gel-PVP/Ag@PU



Fig. S10 Residual stresses of different gels after stress-relaxation tests



Fig. S11 The SEM image of the unstretched nanofiber composite membrane interlayer of the NCRO



Fig. S12 Cyclic stress-strain curves of a Gel, b Gel-PU and c Gel-PVP/Ag@PU with 100% step increase of the strain



Fig. S13 Stress versus strain curves of a Gel, b Gel-PU and c Gel-PVP/Ag@PU with 1000 successive loading-unloading cycles (100%)



Fig. S14 The corresponding stress and dissipated energy of a Gel, b Gel-PU and c Gel-PVP/Ag@PU



Fig. S15 Normalized relative conductivity variations of the NCRO with **a** room-temperature (RT) storage days, **b** low-temperature (LT) and high-temperature (HT) storage days, and **c** stretching cycles. The insets in each figure are the photographs demonstrating the durability tests



**Fig. S16** The storage modulus (*G'*) and loss modulus (*G''*) of the organohydrogels on a temperature sweep in the range of 25 °C to 60 °C ( $\gamma = 0.1\%$ ,  $\omega = 6.28$  rad s<sup>-1</sup>)



**Fig. S17** SEM images of **a** the nanofiber composite membrane and **b** the nanofiber composite membrane interlayer of the NCRO (both stretched by 30% strain)



**Fig. S18** Weight loss of the NCRO kept in the environment for 60 h. Inset is the photograph showing the state of the NCRO at the initial time and after 24 h

| Materials                                   | Tensile strength<br>(MPa) | Fracture<br>strain (%) | Toughness<br>(MJ/m <sup>3</sup> ) | Refs.     |
|---------------------------------------------|---------------------------|------------------------|-----------------------------------|-----------|
| PVA/glycerol/PVP/Ag@PU                      | 7.38                      | 941                    | 31.59                             | This work |
| PVA/starch/glycerol                         | 0.53                      | 793                    | 1.99                              | S1        |
| PVA/CNF/DMSO                                | 1.40                      | 660                    | 5.25                              | S2        |
| PVA/glycerol/CB/CNT                         | 4.80                      | 643                    | 15.93                             | S3        |
| PVA/SNF/g-C <sub>3</sub> N <sub>4</sub> /EG | 1.39                      | 586                    | N/A                               | S4        |
| PVA/DMSO                                    | 6.71                      | 718                    | 26.24                             | S5        |
| PVA/glycerol/WO <sub>3</sub>                | 1.50                      | 873                    | 6.56                              | S6        |
| PVA/glycerol/NaCl                           | 1.40                      | 370                    | 3.20                              | S7        |
| PVA/PVP/glycerol/CaCl <sub>2</sub>          | 1.40                      | 1200                   | 10.68                             | S8        |
| PVA/starch/glycerol/Na <sub>3</sub> Cit     | 1.45                      | 842                    | 6.91                              | S9        |
| PVA/CNF/TA/glycerol/NaCl                    | 2.01                      | 992                    | 10.41                             | S10       |
| PVA/glycerol                                | 7.23                      | 956                    | 36.89                             | S11       |
| PAM/GE/PU/glycerol/NaCl                     | 3.09                      | 615                    | 7.75                              | S12       |
| PAM/PAA/MoS <sub>2</sub> /EG                | 8.30                      | 310                    | N/A                               | S13       |
| PAM/MXene/glycerol                          | 0.17                      | 1037                   | N/A                               | S14       |

**Table S1** Comparison of the composite organohydrogel in this work with other kinds of strong and tough organohydrogels

Note: "N/A" indicates "not available" in the references.

| Materials                    | GF in strain ranges | Stability (cycles)-<br>strain | Refs.     |
|------------------------------|---------------------|-------------------------------|-----------|
| PVA/glycerol/PVP/Ag@PU       | 1.75 (0-150%)       | 3000-30%                      | This work |
| PVA/hydroxypropyl cellulose  | 1.2 (0-100%)        | N/A                           | S15       |
| PVA/PEDOT:PSS                | 1.5 (0-20%)         | N/A                           | S16       |
| PAAM/carrageenan/glycerol    | 0.8 (0-100%)        | N/A                           | S17       |
| VSNPs/PAAm/SA                | 1.73 (0-100%)       | 2500-25%                      | S18       |
| PVA/CA/AgNPs                 | 1.6 (0-200%)        | 200-50%                       | S19       |
|                              | 0.66 (0-24%)        |                               |           |
| PVA/PAA/PEDOT:PSS/CNTs       | 0.71 (24-58%)       | N/A                           | S20       |
|                              | 1.61 (58-101%)      |                               |           |
| PVA/PAANa                    | 0.83 (0-120%)       | N/A                           | S21       |
| PAAM/carrageenan/LiBr        | 0.44 (0-45%)        | 700-45%                       | S22       |
|                              | 1.35 (0-1%)         |                               |           |
| PVA/NaCl                     | 1.7 (1-10%)         | 200-30%                       | S23       |
|                              | 2.0 (10-100%)       |                               |           |
|                              | 0.44 (0-60%)        |                               |           |
| PAAm/PAAc/PDA/NaCl           | 0.69 (60-140%)      | N/A                           | S24       |
|                              | 0.84 (140-200%)     |                               |           |
|                              | 1.02 (0-60%)        |                               |           |
| DMAEA-Q/NaSS/CNFs/CNTs       | 1.4 (60-140%)       | 2000-100%                     | S25       |
|                              | 2.12 (140-200%)     |                               |           |
| PAA/sodium lignosulfonate/SA | 2.72 (0-72.8%)      | 200-20%                       | S26       |
| PVA/TA/EGaIn/NaCl            | 2.59 (0-50%)        | 800-20%                       | S27       |
| PAA/TA/CNC                   | 0.23 (0-40%)        | 1000-55%                      | S28       |

 Table S2 Comparison of the sensing performance of our composite organohydrogel based sensor with other gel based sensors

Note: "N/A" indicates "not available" in the references.

| Materials              | EMI SE (dB) | Thickness<br>(mm) | EMI SSE<br>(dB/mm) | Refs.     |
|------------------------|-------------|-------------------|--------------------|-----------|
| PVA/glycerol/PVP/Ag@PU | 44.5        | 0.36              | 123.6              | This work |
| PVA/PAAm/MXene         | 33.6        | 1                 | 33.6               | S29       |
| PVA/MXene sediment     | 33          | 1                 | 33                 | S30       |
| PAAm/CNF/MWCNT         | 28.5        | 2                 | 14.25              | S31       |
| PAA/chitosan/ACC/RGO   | 85          | 9.71              | 8.75               | S32       |
| PAAm/A-11/AgNWs        | 66          | 4.1               | 16.1               | S33       |
| PAA/ACC/MXene          | 45.3        | 0.13              | 348.5              | S34       |

Table S3 Comparison of the EMI shielding performance between the composite organohydrogel in this work and other organohydrogels and hydrogels reported in literatures

### **Description of Supporting Video**

Video S1 The pure shear test demonstration of the NCRO

### **Supplementary References**

- J. Lu, J. Gu, O. Hu, Y. Fu, D. Ye et al., Highly tough, freezing-tolerant, healable and [S1] thermoplastic starch/poly (vinyl alcohol) organohydrogels for flexible electronic devices. J. Mater. Chem. A 9(34), 18406-18420 (2021). https://doi.org/10.1039/D1TA04336F
- [S2] Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 30(35), 2003430 (2020). https://doi.org/10.1002/adfm.202003430
- [S3] J. Gu, J. Huang, G. Chen, L. Hou, J. Zhang et al., Multifunctional poly (vinyl alcohol) nanocomposite organohydrogel for flexible strain and temperature sensor. ACS Appl. Mater. Interfaces 12(36), 40815-40827 (2020). https://doi.org/10.1021/acsami.0c12176
- S. Bao, J. Gao, T. Xu, N. Li, W. Chen et al., Anti-freezing and antibacterial conductive [S4] organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chem. Eng. J. 411, 128470 (2021). https://doi.org/10.1016/j.cej.2021.128470
- L. Xu, D. Qiu, Reversible switching of polymeric gel structure and property by solvent [S5] exchange. Sci. China Mater. 65(2), 547-552 (2022). https://doi.org/10.1007/s40843-021-1824-8
- [S6] J. Yang, C. Tang, H. Sun, Z. Liu, Z. Liu et al., Tough, transparent, and anti-freezing

nanocomposite organohydrogels with photochromic properties. ACS Appl. Mater. Interfaces **13**(26), 31180-31192 (2021). <u>https://doi.org/10.1021/acsami.1c07563</u>

- [S7] X.-J. Zha, S.-T. Zhang, J.-H. Pu, X. Zhao, K. Ke et al., Nanofibrillar poly(vinyl alcohol) ionic organohydrogels for smart contact lens and human-interactive sensing. ACS Appl. Mater. Interfaces 12(20), 23514-23522 (2020). https://doi.org/10.1021/acsami.0c06263
- [S8] W.-Y. Guo, Q. Yuan, L.-Z. Huang, W. Zhang, D.-D. Li et al., Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability. J. Colloid Interface Sci. 608, 820-829 (2022). <u>https://doi.org/10.1016/j.jcis.2021.10.057</u>
- [S9] J. Lu, O. Hu, L. Hou, D. Ye, S. Weng et al., Highly tough and ionic conductive starch/poly(vinyl alcohol) hydrogels based on a universal soaking strategy. Int. J. Biol. Macromol. 221, 1002-1011 (2022). <u>https://doi.org/10.1016/j.ijbiomac.2022.09.083</u>
- [S10] M. Li, Y. Yang, C. Yue, Y. Song, M. Manzo et al., Stretchable, sensitive, and environment-tolerant ionic conductive organohydrogel reinforced with cellulose nanofibers for human motion monitoring. Cellulose 29(3), 1897-1909 (2022). <u>https://doi.org/10.1007/s10570-022-04418-8</u>
- [S11] Y. Wu, W. Xing, J. Wen, Z. Wu, Y. Zhang et al., Mixed solvent exchange enabled highperformance polymeric gels. Polymer 267, 125661 (2023). https://doi.org/10.1016/j.polymer.2022.125661
- [S12] D. Wang, J. Zhang, C. Fan, J. Xing, A. Wei et al., A strong, ultrastretchable, antifreezing and high sensitive strain sensor based on ionic conductive fiber reinforced organohydrogel. Composites Part B 243, 110116 (2022). https://doi.org/10.1016/j.compositesb.2022.110116
- [S13] J. Wang, J. Qu, Y. Liu, S. Wang, X. Liu et al., "Crocodile skin" ultra-tough, rapidly self-recoverable, anti-dry, anti-freezing, MoS<sub>2</sub>-based ionic organohydrogel as pressure sensors. Colloids Surf., A 625, 126458 (2021). https://doi.org/10.1016/j.colsurfa.2021.126458
- [S14] J. Wang, T. Dai, Y. Zhou, A. Mohamed, G. Yuan et al., Adhesive and high-sensitivity modified Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> (MXene)-based organohydrogels with wide work temperature range for wearable sensors. J. Colloid Interface Sci. 613, 94-102 (2022). <u>https://doi.org/10.1016/j.jcis.2022.01.021</u>
- [S15] Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang et al., Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 29(1), 1806220 (2019). <u>https://doi.org/10.1002/adfm.201806220</u>
- [S16] Q. Rong, W. Lei, L. Chen, Y. Yin, J. Zhou et al., Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew. Chem. Int. Ed. 56(45), 14159-14163 (2017). <u>https://doi.org/10.1002/anie.201708614</u>
- [S17] J. Wu, Z. Wu, S. Han, B.-R. Yang, X. Gui et al., Extremely deformable, transparent, and high-performance gas sensor based on ionic conductive hydrogel. ACS Appl.

#### S11/S13

Mater. Interfaces 11(2), 2364-2373 (2019). https://doi.org/10.1021/acsami.8b17437

- [S18] S. Ko, A. Chhetry, D. Kim, H. Yoon, J. Y. Park, Hysteresis-free double-network hydrogel-based strain sensor for wearable smart bioelectronics. ACS Appl. Mater. Interfaces 14(27), 31363-31372 (2022). <u>https://doi.org/10.1021/acsami.2c09895</u>
- [S19] L. Chen, X. Chang, H. Wang, J. Chen, Y. Zhu, Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano Energy 96, 107077 (2022). <u>https://doi.org/10.1016/j.nanoen.2022.107077</u>
- [S20] G. Ge, W. Yuan, W. Zhao, Y. Lu, Y. Zhang et al., Highly stretchable and autonomously healable epidermal sensor based on multi-functional hydrogel frameworks. J. Mater. Chem. A 7(11), 5949-5956 (2019). <u>https://doi.org/10.1039/C9TA00641A</u>
- [S21] J. Lai, H. Zhou, M. Wang, Y. Chen, Z. Jin et al., Recyclable, stretchable and conductive double network hydrogels towards flexible strain sensors. J. Mater. Chem. C 6(48), 13316-13324 (2018). <u>https://doi.org/10.1039/C8TC04958K</u>
- [S22] Z. Wu, H. Ding, K. Tao, Y. Wei, X. Gui et al., Ultrasensitive, stretchable, and fastresponse temperature sensors based on hydrogel films for wearable applications. ACS Appl. Mater. Interfaces 13(18), 21854-21864 (2021). https://doi.org/10.1021/acsami.1c05291
- [S23] Q. Wang, Q. Zhang, G. Wang, Y. Wang, X. Ren et al., Muscle-inspired anisotropic hydrogel strain sensors. ACS Appl. Mater. Interfaces 14(1), 1921-1928 (2022). <u>https://doi.org/10.1021/acsami.1c18758</u>
- [S24] Z. Gao, L. Kong, R. Jin, X. Liu, W. Hu et al., Mechanical, adhesive and self-healing ionic liquid hydrogels for electrolytes and flexible strain sensors. J. Mater. Chem. C 8(32), 11119-11127 (2020). <u>https://doi.org/10.1039/D0TC01094D</u>
- [S25] L. Jia, S. Wu, R. Yuan, T. Xiang, S. Zhou, Biomimetic microstructured antifatigue fracture hydrogel sensor for human motion detection with enhanced sensing sensitivity. ACS Appl. Mater. Interfaces 14(23), 27371-27382 (2022). <u>https://doi.org/10.1021/acsami.2c04614</u>
- [S26] C. Fu, Y. Ni, L. Chen, F. Huang, Q. Miao et al., Design of asymmetric-adhesion ligninreinforced hydrogels based on disulfide bond crosslinking for strain sensing application. Int. J. Biol. Macromol. 212, 275-282 (2022). <u>https://doi.org/10.1016/j.ijbiomac.2022.05.101</u>
- [S27] Z. Zhou, C. Qian, W. Yuan, Self-healing, anti-freezing, adhesive and remoldable hydrogel sensor with ion-liquid metal dual conductivity for biomimetic skin. Compos. Sci. Technol. 203, 108608 (2021). <u>https://doi.org/10.1016/j.compscitech.2020.108608</u>
- [S28] C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strainsensitive properties. Chem. Mater. 30(9), 3110-3121 (2018). <u>https://doi.org/10.1021/acs.chemmater.8b01172</u>
- [S29] Y. Yu, P. Yi, W. Xu, X. Sun, G. Deng et al., Environmentally tough and stretchable S12/S13

MXene organohydrogel with exceptionally enhanced electromagnetic interference shielding performances. Nano-Micro Lett. **14**(1), 77 (2022). https://doi.org/10.1007/s40820-022-00819-3

- [S30] Y. Yang, N. Wu, B. Li, W. Liu, F. Pan et al., Biomimetic porous MXene sedimentbased hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16(9), 15042-15052 (2022). https://doi.org/10.1021/acsnano.2c06164
- [S31] W. Yang, B. Shao, T. Liu, Y. Zhang, R. Huang et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10(9), 8245-8257 (2018). <u>https://doi.org/10.1021/acsami.7b18700</u>
- [S32] D. Lai, X. Chen, G. Wang, X. Xu, Y. Wang, Arbitrarily reshaping and instantaneously self-healing graphene composite hydrogel with molecule polarization-enhanced ultrahigh electromagnetic interference shielding performance. Carbon 188, 513-522 (2022). <u>https://doi.org/10.1016/j.carbon.2021.12.047</u>
- [S33] X. Huang, L. Wang, Z. Shen, J. Ren, G. Chen et al., Super-stretchable and self-healing hydrogel with a three-dimensional silver nanowires network structure for wearable sensor and electromagnetic interference shielding. Chem. Eng. J. 446, 137136 (2022). <u>https://doi.org/10.1016/j.cej.2022.137136</u>
- [S34] Y. Zhu, J. Liu, T. Guo, J. J. Wang, X. Tang et al., Multifunctional Ti<sub>3</sub>C<sub>2</sub>T<sub>X</sub> MXene composite hydrogels with strain sensitivity toward absorption-dominated electromagnetic-interference shielding. ACS Nano 15(1), 1465-1474 (2021). https://doi.org/10.1021/acsnano.0c08830