Supporting Information for

## **Air-Stable Binary Hydrated Eutectic Electrolytes with Unique Solvation Structure for Rechargeable Aluminum-Ion Batteries**

Pengyu Meng<sup>1, #</sup>, Jian Huang<sup>2, #</sup>, Zhaohui Yang<sup>1</sup>, Min Jiang<sup>1</sup>, Yibo Wang<sup>1</sup>, Wei Zhang<sup>3</sup>, Jiao Zhang<sup>1</sup>, Baode Sun<sup>1</sup>, Chaopeng Fu<sup>1, \*</sup>

<sup>1</sup> School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China

<sup>2</sup> State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China

<sup>3</sup> Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH, UK

<sup>#</sup> Pengyu Meng and Jian Huang contributed equally to this work.

\*Corresponding author. E-mail: <u>chaopengfu@sjtu.edu.cn</u> (C. Fu)

## **Supplementary Figures**



**Fig. S1** Digital photos of Al(ClO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O/MU mixtures with different molar ratios (1:2, 1:4, 1:6, 1:8, 1:10, 1:12 and 1:14)



Fig. S2 Raman spectra of the electrolyte before and after being exposed to air for 10 days



Fig. S3 (a) Air stability of AMHEE-1:4 in the air (25 °C) and (b) fluidity comparison of the samples after 20 days



**Fig. S4** Corrosive properties of the AMHEE. Initial (**a**) stainless-steel sheet and (**b**) aluminum foil. (**c**) Stainless-steel sheet and (**d**) aluminum foil submerged in the AMHEE for a duration of 7 days. (**e**) Stainless-steel sheet and (**f**) aluminum foil after removal from the AMHEE



Fig. S5 SEM of the (a) aluminum foil and (b) stainless steel before and after immersion in AMHEE



**Fig. S6** EDS Mapping surface scanning results of the (**a**) aluminum foil and (**b**) stainless steel before and after immersion in AMHEE



Fig. S7 XRD of (a) the stainless steel and (b) aluminum foil before and after immersion in AMHEE



**Fig. S8** Thermogravimetric analysis of (**a**) MU, (**b**) Al(ClO<sub>4</sub>)<sub>3</sub>·9H<sub>2</sub>O, (**c**) AMHEE-1:2, (**d**) AMHEE-1:6, (**e**) AMHEE-1:10 and (**f**) AMHEE-1:14



Fig. S9 Gravimetric analysis of water in AMHEE



**Fig. S10** <sup>17</sup>O NMR spectra of AMHEEs with different molar ratios (1:2, 1:4, 1:6, 1:10 and 1:14)



Fig. S11 Solvation structures of  $Al(ClO_4)_3 \cdot 9H_2O/MU$  mixtures with molar ratios of (a) 1:2, (b) 1:6, (c) 1:10, and (d) 1:14



**Fig. S12** RDFs of the AMHEEs with ratios of (**a**) 1:2, (**b**) 1:4, (**c**) 1:6, (**d**) 1:10, and (**e**) 1:14 from MD simulations



**Fig. S13** Optimized structures of Al-complex with coordination number of six through DFT calculations



Fig. S14 LUMO partial charge densities of Al-complexes



Fig. S15 Mullikan charge of Al in different Al-complexes



Fig. S16 SEM images of Al in original state (left) and after cycling (right)



Fig. S17 XPS full spectra of (a) original Ti and (b) cycled Ti in AMHEE



Fig. S18 Elemental mappings of the Al surface after cycling



Fig. S19 TOF-SIMS depth profiles of various species of interest acquired from the Al surface



Fig. S20 3D cross-section images of various species of interest acquired from the Al anode. (a)  $Al^+$ , (b)  $AlNH_2^+$ , (c)  $CH_3Al^+$ , (d)  $CONH_2NHAl^+$ , (e)  $AlCONH_2^+$  and (f)  $Al_2ClO_2^+$ 



**Fig. S21** 3D images of component distribution acquired from the Al surface. (a)  $Al^+$ , (b)  $AlNH_2^+$ , (c)  $CH_3Al^+$ , (d)  $CONH_2NHAl^+$ , (e)  $AlCONH_2^+$  and (f)  $Al_2ClO_2^+$ 



Fig. S22 SEM images of V<sub>2</sub>O<sub>5</sub> rods synthesized by hydrothermal method



Fig. S23 XRD pattern of the V<sub>2</sub>O<sub>5</sub> electrode



Fig. S24 CV curves of the Al/AMHEE/V<sub>2</sub>O<sub>5</sub> full cell with different AMHEEs electrolytes at a scan rate of 1 mV s<sup>-1</sup>



**Fig. S25** CV curves of the AIBs. (a) AMHEE-1:2, (b) AMHEE-1:4, (c) AMHEE-1:6, (d) AMHEE-1:10 and (e) AMHEE-1:14 as electrolytes at a scan rate of 1mV s<sup>-1</sup>



Fig. S26 The discharge/charge curves of AIBs. (a) AMHEE-1:2, (b) AMHEE-1:4, (c) AMHEE-1:6, (d) AMHEE-1:10 and (e) AMHEE-1:14 as electrolytes at a current density of  $0.1 \text{ A g}^{-1}$ 



Fig. S27 Charge/discharge curves of the AIB when the carbon paper current collector was used as the positive electrode



Fig. S28 Cycling performance of AIBs. (a) AMHEE-1:2, (b) AMHEE-1:4, (c) AMHEE-1:6, (d) AMHEE-1:10 and (e) AMHEE-1:14 as electrolytes at a current density of  $0.1 \text{ A g}^{-1}$ 



Fig. S29 The self-discharge curves of the AIBs with  $V_2O_5$  in AMHEEs with different molar ratios



Fig. S30 Photos of  $V_2O_5$  electrodes at different discharge/charge states



Fig. S31 SEM and EDS mapping images of  $V_2O_5$  electrodes at different voltage states (a) 0.4 V and (b) 1.6 V

| Table S1 Calculated densities and porosities of Al-comp |
|---------------------------------------------------------|
|---------------------------------------------------------|

|                              | 1:2   | 1:4   | 1:6   | 1:10  | 1:14  |
|------------------------------|-------|-------|-------|-------|-------|
| Density (g/cm <sup>3</sup> ) | 1.675 | 1.366 | 1.307 | 1.232 | 1.206 |
| Porosity (%)                 | 70.30 | 78.71 | 81.54 | 86.10 | 86.57 |

| Complex                   | $E_{\rm s}$ (kcal/mol) | $E_{\rm s}({\rm eV})$ |
|---------------------------|------------------------|-----------------------|
| $[Al(H_2O)_6]^{3+}$       | 783.1745453            | 33.96166              |
| $[Al(H_2O)_5]^{3+}$       | 716.2532288            | 31.05968              |
| $[Al(H_2O)_4]^{3+}$       | 644.1607891            | 27.93345              |
| $[Al(H_2O)_3]^{3+}$       | 532.7758318            | 23.10335              |
| $[Al(H_2O)_2]^{3+}$       | 393.5769369            | 17.06711              |
| $[Al(H_2O)]^{3+}$         | 213.0549922            | 9.238939              |
| $[Al(MU)(H_2O)_5]^{3+}$   | 832.0049571            | 36.0791482            |
| $[Al(MU)(H_2O)_4]^{3+}$   | 781.4009559            | 33.88475111           |
| $[Al(MU)(H_2O)_3]^{3+}$   | 723.4292357            | 31.37085949           |
| $[Al(MU)(H_2O)_2]^{3+}$   | 632.0501736            | 27.40828848           |
| $[Al(MU)(H_2O)]^{3+}$     | 520.4050646            | 22.56689854           |
| $[Al(MU)]^{3+}$           | 411.2591741            | 17.83388496           |
| $[Al(MU)_2(H_2O)_4]^{3+}$ | 872.8968466            | 37.85238828           |

Table S2 Calculated solvation energies of  $Al^{3+}/MU/H_2O$  complexes

| $[Al(MU)_2(H_2O)_3]^{3+}$                              | 835.8180521 | 36.24449964 |
|--------------------------------------------------------|-------------|-------------|
| $[Al(MU)_2(H_2O)_2]^{3+}$                              | 787.0257737 | 34.12866628 |
| $[Al(MU)_2(H_2O)]^{3+}$                                | 710.7522495 | 30.82113336 |
| $[Al(MU)_2]^{3+}$                                      | 615.8302386 | 26.70492556 |
| $[Al(MU)_3(H_2O)_3]^{3+}$                              | 906.569208  | 39.31256001 |
| $[Al(MU)_3(H_2O)_2]^{3+}$                              | 870.0181489 | 37.72755614 |
| $[Al(MU)_3(H_2O)]^{3+}$                                | 833.4509064 | 36.14185049 |
| $[Al(MU)_3]^{3+}$                                      | 771.9584156 | 33.47528382 |
| $[Al(MU)_4(H_2O)_2]^{3+}$                              | 930.5113191 | 40.35078817 |
| [Al(MU) <sub>4</sub> (H <sub>2</sub> O)] <sup>3+</sup> | 897.7764089 | 38.93126817 |
| $[Al(MU)_4]^{3+}$                                      | 873.0344888 | 37.85835702 |
| [Al(MU) <sub>5</sub> (H <sub>2</sub> O)] <sup>3+</sup> | 935.5287603 | 40.56836501 |
| $[Al(MU)_5]^{3+}$                                      | 922.9566591 | 40.02318712 |
| $[Al(MU)_6]^{3+}$                                      | 953.6957133 | 41.35615862 |

Nano-Micro Letters

**Table S3** Electrochemical performance of AIBs with V2O5 cathode

| Electrolyte                                             | Current       | 1st            | Discharge      | Cycle  | Reference |
|---------------------------------------------------------|---------------|----------------|----------------|--------|-----------|
|                                                         | density       | capacity       | voltage        | number |           |
|                                                         | $(mA g^{-1})$ | $(mAh g^{-1})$ |                |        |           |
| AlCl <sub>3</sub> /EMImCl IL                            | 125           | 305            | ~0.6 V         | 20     | [1]       |
| Al(OTF) <sub>3</sub> aqueous                            | 40            | 200            | ~0.8 V         | 50     | [2]       |
| electrolyte                                             |               |                |                |        |           |
| Al(ClO <sub>4</sub> ) <sub>3</sub> •9H <sub>2</sub> O/M | 100           | 320            | $\sim 0.9 \ V$ | 100    | This work |
| U HEE                                                   |               |                |                |        |           |

## **Supplementary References**

- [S1]N. Jayaprakash, S. K. Das, L. A. Archer. The rechargeable aluminum-ion battery. Chem. Commun. 47, 12610-12612 (2011). <u>https://doi.org/10.1039/C1CC15779E</u>
- [S2]Q. Zhao, L. Liu, J. Yin, J. Zheng, D. Zhang, J. Chen, L. A. Archer. Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells. Angew. Chem., Int. Ed. 59, 3048-3052 (2020). <u>https://doi.org/10.1002/anie.201912634</u>