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Supplementary Figures and Tables 

Fig. S1 Block diagram of K-band frequency-modulated continuous wave (FMCW) 

radar 

Figure S1 shows a block diagram of K-band frequency-modulated continuous 

wave (FMCW) radar. The radar consists of a power board, a radio frequency (RF) 
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transceiver board, a power amplifier board, and antennas. The power board distributes 

the power required for the RF transceiver and power amplifier. The power amplifier 

board amplifies the transmitting signal of the radar. The RF transceiver board generates 

the transmitting signal and receives the reflected signal from targets. Universal software 

radio peripheral (USRP) N210 and Mini-PC (DFR0444, Lattepanda) were employed 

for capturing and saving the received radar signal. 

 

Fig. S2 Experiment environment to measure 2-dimensional electric field distribution of 

radar RF board without FPG and with FPG  

 Figure S2 shows the experiment environment to measure the 2-dimensional 

electric field distribution of the radar RF board with and without the FPG. By 

controlling the position of the probe antenna, the electric fields radiated from the RF 

transceiver PCB were 2-dimensionally measured in the area of 20 x 20 cm2. 

 

Fig. S3 a Experimental environment for measuring radiation pattern of standard Horn 

antenna with FPG in 5.8 ~ 8.2 GHz. b Experimental environment for measuring 

radiation pattern of standard Horn antenna with FPG in 8.2 ~ 12.4 GHz. c Experimental 

environment for measuring radiation pattern of standard Horn antenna with FPG in 12.4 

~ 18 GHz. d Experimental environment for measuring the radiation pattern of a 

standard Horn antenna with the FPG in 26.5 ~ 40 GHz 

 Figure S3 shows the experimental environments for measuring the radiation 

pattern of standard Horn antennas with various frequency bands. Various types of 
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standard horn antennas (Narda 656-20 for 5.8 ~ 8.2 GHz, Narda 659-20 for 8.2 ~ 12.4 

GHz, Narda 661-20 for 12.4 ~ 18 GHz, and MTG SGH-28 for 26.5 ~ 40 GHz) and 

open-ended probe antennas (OEW-137 for 5.8 ~ 8.2 GHz, OEW-90 for 8.2 ~ 12.4 GHz, 

OEW-62 for 12.4 ~ 18 GHz, and OEW-28 for 26.5 ~ 40 GHz) were used. 

 

Fig. S4 Experimental environment of external EMI shielding for radar target detection 

 Figure S4 shows the experimental environment to evaluate external EMI 

shielding for radar target detection. The external EMI signal was divided from the 

transmitting signal of the radar. A high-gain waveguide antenna was used as an external 

EMI source and radiated the external EMI signal to the receiver antenna of the radar. 

The FPG was applied between the waveguide antenna and the receiver antenna of the 

radar. 

 

Fig. S5 Block diagram of specific absorption rate measurement system 

 Figure S5 shows a block diagram of the specific absorption rate measurement 

system. The signal source was implemented as a signal generator (N5171B) and a 

power amplifier (AMP2027) was used to amplify the source signal. A LPF (low pass 

filter, L14012FL) was used for filtering the signal source noise. A 3-dB attenuator 
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(8491B) was employed to control the signal power. A dual-directional coupler (772D) 

was used for the system calibration ports. A 10 dB attenuator was inserted for port1 and 

a 20 dB attenuator was adopted for port3. Using these ports, the transmitted signal was 

tracked in real-time for system calibration. For the transmitting antenna, a dipole 

antenna (D5GHZV2) was adopted, and for the receiving antenna, a probe antenna 

(EX3DV4) was selected. A robot arm to control the position of the probe antenna was 

implemented by TX90XL and for a phantom, which is a solution with similar properties 

to human tissue, ELI Phantom V6.0 was used. The received signal from the probe 

antenna was received by a power detector (U8481A). 

Fig. S6 Optical transmittance of PI irradiated various lamp fluences from 0 to 22 J/cm2 

using a Full-spectrum and b Vis-NIR wavelengths. The dotted line represents the 

transmittance at 800nm 

Fig. S7 Schematic of various parameters for processing time calculation 

To compare processing times, the time it takes for a beam to scan the entire 

given area was calculated. Each parameter was referenced in the experimental section 

of the reference, and the calculation method is as follows (S1-S5) [S1-S3],  

Beam overlapping = (1 −
scan speed (mm s⁄ )

frequency (Hz)×beam diameter(mm)
) × 100 (S1) 

Beam space = beam diameter − 
beam diameter (mm)×beam overlapping (%)

100
     (S2) 

Number of lines (#) =
Distance (Y axis,mm)

Beam space (mm)
(S3) 

https://www.springer.com/journal/40820


Nano-Micro Letters 

S5/S17 

Scan time per line (s) =  
Distance (X axis,mm)

Scan speed (mm/s)
(S4) 

Area process time (s) = Number of lines (#) ×  Scan time per line (s) 
(S5) 

Single-pulse irradiation of the flash lamp can be achieved within milliseconds, 

the frequency is limited to prevent thermal damage to the equipment during continuous 

processing. In this experiment, the processing time was calculated and the sample was 

produced by fixing the frequency at 1 Hz for continuous processing. 

Table S1 Comparison of processing time with calculation between this work and the 

previous reports using a laser 

Beam 

space 

(mm) 

Scan 

speed 

(mm/s) 

10 × 10 mm2 100 ×100 mm2 200 × 200 mm2 

Refs. # of 

lines 

Scan 

time 

per 

line 

(s) 

Area 

process 

time 

(s) 

# of 

lines 

Scan 

time 

per 

line 

(s) 

Area 

process 

time 

(s) 

# of 

lines 

Scan 

time 

per 

line 

(s) 

Area 

process 

time 

(s) 

0.12 586 83 0.017 1.411 833 0.17 141.61 1666 0.34 566.44 [S4] 

0.1 200 100 0.05 5 1000 0.5 500 2000 1 2000 [S5] 

0.03 1000 333 0.1 3.33 3333 1 333.3 6666 2 1333.2 [S6] 

0.05 1500 200 0.006 1.3 2000 0.066 133.3 4000 0.133 533.3 [S7] 

0.25 150 40 0.06 2.4 400 0.6 240 800 1.2 960 [S8] 

50 

x100 
100 

# of 

Shot 

1 

4ms 4ms 

# of 

Shot 

2 

1 at 

1Hz 
2 

# of 

Shot 

8 

1 at 

1Hz 
8 FPG 

Table S2 The comparison of the light-induced porous graphene from this work 

with the previously reported method 

Laser induced  

photo-reduction 

Lamp induced  

photo-reduction 

Laser induced  

Photo-pyrolysis 
This work 

Carbon 

precursor 

Graphene oxide 

(GO) 

Graphene oxide 

(GO) 
PI PI 

Light source Laser Lamp Laser Lamp 

Light 

wavelength 
Mono-spectrum Broad-spectrum Mono-spectrum 

Broad-spectrum 

(Synergistic-effect) 

Beam profile Gaussian Flat-top Gaussian Flat-top 

Large area 

process 

compatibility 

x o x o 

Beam size µm ~ mm mm ~ cm µm ~ mm mm ~ cm 

References [S9] [S10] [S4] -
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Table S3 Comparison of the analysis results of the FPG with those of previous studies 

on light-induced graphene 

Ref [S4] [S11] [S12] [S13] [S14] 
This 

Work 

Carbon 

precursor 
PI film 

PI 

+ urea
PI film 

Poly(Ph-

ddm) 

Film 

PGE-a PI Film 

Light source Laser Laser Laser Laser Laser Flash lamp 

Produced 

material 
graphene 

Produced 

material 

thickness 

~ 25 µm ~ 15 µm - ~ 50 µm ~50 µm ~ 62 µm 

Raman 

spectroscopy, 

observed Peak 

D,G 

and 2D 

D,G 

and 2D 

D,G 

and 2D 

D,G 

and 2D 

D,G 

and 2D 

D,G 

and 2D 

Raman,  ID/IG

ratio 
< 1 > 1 <1 ~ 0.65 ~ 0.8 ~ 0.8 

Raman, I2D/IG

ratio 
- ~0.4 - - ~ 0.3 ~0.38 

XPS,  atomic 

percent 

C 1s > 

97 % 

C 1s >

90 % 
- 

C 1s > 

92 % 
C 1s > 97 % C 1s > 96 % 

XRD, peak(2θ) 
25.9° 

/ 42.9° 

23.65° 

/ 42° 
25.8° 

25.8° 

/ 43° 

26° 

/ 42° 

26° 

/ 43° 

TEM, 

interlayer 

distance 

~3.37 Å ~3.8 Å ~3.4 Å ~3.5 Å ~3.42 Å ~3.3Å 

Fig. S8 a SEM-EDS mapping magnified image at lamp fluence of 22 J/cm2. Green 

color represents carbon element. Surface SEM images of the FPG under various 

fluences: b 18, c 22 and d 24 J/cm2. The pore size according to the lamp fluence is 

approximately 1.4 ~ 4.4 µm at 18 J/cm2, 5.1 ~ 10.2 µm at 22 J/cm2, and 7.8 ~ 19.2 µm 

at 24 J/cm2, respectively 
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To additionally characterize the structure of synthesized materials, we 

performed an EDS mapping, as shown in Fig. S8a. The carbon element constituting 

graphene was expressed as green color and distinguished pores were verified in the 

black area. In addition, we confirmed flash lamp effects on pore formation by 

irradiating various lamp fluence from 18 to 24 J/cm2 to the PI film. As shown in Fig. 

S8b, c and d, the pore size was enlarged from ~1.4 µm to ~19.2 µm in accordance with 

increasing lamp energy due to the difference in the quantity and emission speed of gas 

generated from PI [S15]. 

Fig. S9 a surface SEM image, b Element mapping image and c Mass (%) data by SEM-

EDS of the FPG at a fluence of 22 J/cm2  

Figure S9 presents the results of elemental mapping of the FPG using SEM-

EDS (Energy Dispersive X-ray Spectroscopy). Fig. S9a shows the surface SEM image 

of the FPG. Fig. S9b displays an image of the elements carbon, nitrogen, and oxygen, 

represented by green, orange, and yellow, respectively. As demonstrated in Fig. S9c, 

the mass percentage of carbon appears to be 96.2%. The results of the elemental 

mapping analysis indicate that nitrogen and oxygen from the PI are decomposed, 

leaving a dominant presence of carbon. 

Fig. S10 X-ray diffraction (XRD) spectra of the FPG obtained at a fluence of pristine 

and 22 J/cm2  

The crystallinity of the material can be confirmed through XRD peaks. Fig. 

S10 shows an intense peak centered at 2θ = 26°, giving an interlayer spacing (d) of 

~3.4 Å between (002) planes in the FPG, indicating a high degree of graphitization. The 

interlayer spacing calculated through the XRD peak is derived using the following 

formula: 

https://www.springer.com/journal/40820
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nλ = 2dsinθ 

where n represents the order of diffraction, λ is the wavelength, d is the interlayer spacing

between corresponding points in adjacent crystal planes and θ is the Bragg angle. This 

result is consistent with measurements obtained using TEM. The peak at 2θ = 43° is 

indexed to (100) reflections which are associated with an in-plane structure. These 

indicate the formation of crystalline graphene in the FPG. 

In XRD analysis, a notable distinction between graphite oxide and graphene is 

that the (002) peak of graphene oxide appears slightly lower and broader. Furthermore, 

the existence of a characteristic diffraction peak at 2θ = 11.4°, corresponding to the 

(001) plane, affirms the oxidation of the graphitic structure and the formation of

oxygenated functional groups such as carbonyl, carboxyl, epoxide, and hydroxyl

groups in graphite oxide [S16]. Amorphous carbon, on the other hand, exhibits a broad

peak within 2θ = 20 ~ 30° on the XRD spectrum [S17].

Fig. S11 Cross-sectional SEM images of the FPG under various fluences: a 12, b 14, c 

18, d 22, and e 24 J/cm2 

Fig. S12 The conductivity of the FPG at various lamp fluences of 12, 14, 18, 22, and 

24 J/cm2 
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The electrical conductivity of the FPG was calculated using the given equation 

and the conductivity values were plotted as a function of lamp fluence in Fig. S12. 

Conductivity (S m⁄ ) =  
1

Sheet resistance(Ω sq)⁄  ×Thickness (m)

Fig. S13 EMI SE at C-band (4 ~ 8 GHz). SER, SEA, and SET are reflection, absorption, 

and total EMI SE, respectively. Shielding performance exceeds 20 dB in the C-band, a 

value applicable in practical applications 

Fig. S14 R, A and T coefficients under various frequencies at a fluence of 22 J/cm2. R, 

T, and A each represent reflection, transmission, and absorption, respectively 

Figure S14 shows the power coefficients at K-band. The power coefficients are 

used to explain the mechanism of EMI shielding. R, T, and A each represent reflection, 

transmission, and absorption, respectively. As depicted in Fig. S14, the R value is higher 

than A across all frequencies, indicating that the material exhibits EMI shielding 

characteristics predominantly through reflection. 

https://www.springer.com/journal/40820
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Fig. S15 SEM images of the FPG without micro-pores. Surface images a with pores, b 

without pores. Cross-sectional images c with pores, d without pores. The FPG formed 

without micro-pores has unaligned structure due to insufficient time for pore expansion 

during the manufacturing process 

Fig. S16 a T, R and A coefficients of flash induced graphene with pores and without 

pores. T, R, and A represent the transmission, reflection, and absorption coefficients, 

respectively. The sample with micro-pores had a higher A coefficient, and a lower R 

coefficient than that without micro-pores. b EMI SET of flash induced graphene with 

pores and without pores at K-band. Although the SET values are similar, for the 

graphene with pores, the SEA value is higher and the SER value is lower 

The porous structure is known to affect internal scattering due to an increase in 

internal surface area, which is related to EM wave absorption [S18]. To verify the EMI 

shielding characteristics solely due to porosity, we compared power coefficient and SE 

between the samples with and without micro-pores at a similar thickness (Fig. S15). As 

shown in Fig. S16a, the sample with micro-pores had a higher A coefficient, and a lower 

R coefficient than that without micro-pores. The sample with micro-pores also showed 

a higher SEA value (as shown in Fig. S16b) although SET values of the two samples 
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were similar. These results indicate that the porous structure enhanced EMI shielding 

properties by increasing EM wave absorption. 

 

Fig. S17 SET results at pristine, 500, 1000, 5000, and 10000 cycles 

 

Fig. S18 a Changes in sheet resistance and EMI SE after bending with various bending 

radii ranging from 5 mm to 1 mm. The inset is an optical image (scale bar: 10 mm) of 

the FPG in a bent state. b EMI SE at the K-band after bending with various bending 

radii from 5 mm to 1 mm. From a bending radius of 5 mm down to 1 mm, the EMI SE 

decreased due to the formation of cracks when the bending radius was less than 3 mm 

 

Fig. S19 SEM surface images after bending with bending radii of a 5 mm, b 3 mm, and 

c 1 mm, respectively. Cracks occur at a bending radius of less than 3mm 
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Table S4 Comparison of SE, SE/t, SSE and SSE/t of this work with previously 

reported various shielding materials 

 Thickness 

(um) 

Density 

(g/cm3) 

SE 

(dB) 

SE/t 

(dB/cm) 

SSE 

(dBcm3/g) 

SSE/t 

(dBcm2/g) 
Refs. 

Carbon 300 0.28 44.5 1483.33 158.92 5297.619 [S19] 

Carbon 5000 0.014 21 42 1500 3000 [S20] 

Carbon 4000 0.055 40 100 727.27 1818.182 [S21] 

CNT 130 0.846 65 5000 76.83 5910.165 [S22] 

CNT 1800 0.01 54.8 304.44 5480 30444.44 [S23] 

CNT 3000 0.042 104 346.66 2476.19 8253.968 [S24] 

CNT 2000 0.0321 41.1 205.5 1280.37 6401.869 [S25] 

CNT 2000 0.0625 71.4 357 1142.4 5712 [S26] 

Graphene 2000 0.017 60.4 302 3552.94 17764.71 [S27] 

Graphene 2000 0.116 30.5 152.5 262.93 1314.655 [S28] 

Graphene 80 1.85 77.2 9650 41.72 5216.216 [S29] 

Graphene 120 0.41 105 8750 256.09 21341.46 [S30] 

Graphene 30 0.093 17 5666.66 182.79 60931.9 [S31] 

Graphene 1600 0.022857 40 250 1750.01 10937.57 [S32] 

Graphene 200 0.075 43.82 2191 584.26 29213.33 [S33] 

Graphene 160 0.0249 18 1125 722.89 45180.72 [S34] 

Graphene 4 1.49 38.1 95250 25.57 63926.17 [S35] 

Graphene 200 0.078 63 3150 807.69 40384.62 [S36] 

Graphene 53 0.22 32.7 6169.81 148.63 28044.6 [S37] 

Graphene 2.8 2.14 39 139285.7 18.22 65086.78 [S38] 

Graphene 3000 0.00578 33.3 111 5761.24 19204.15 [S39] 

Graphene 5000 0.0167 63.6 127.2 3808.38 7616.766 [S40] 

Graphene 2040 0.228 69.8 342.15 306.14 1500.688 [S41] 

Mxene 0.04 2.39 17 4250000 7.11 1778243 [S42] 

Mxene 0.94 4.3 46 489361.7 10.69 113805 [S43] 

Mxene 0.17 3.29 3 176470.6 0.91 53638.48 [S44] 

Mxene 500 0.041 43.7 874 1065.85 21317.07 [S45] 

Mxene 3000 0.42 104 346.66 247.61 825.3968 [S24] 

Metal  1.2 1.6 45 375000 28.12 234375 [S46] 

Metal  8 2.7 66 82500 24.44 30555.56 [S47] 

Metal  10 8.96 70 70000 7.81 7812.5 [S47] 

Metal  2100 1 26.8 127.61 26.8 127.619 [S48] 

Metal  5000 0.032 84 168 2625 5250 [S49] 

This Work 

(24J/cm2) 
92 0.0402 34 3695.65 845.77 91931.65 

 

This Work 

(22J/cm2) 
62 0.0354 24.6 3967.74 694.91 112083.1 

 

This Work 

(18J/cm2) 
48 0.0354 18.7 3895.83 528.24 110051.8 

 

 The EMI SE, SE/t, SSE and SSE/t were calculated using the given equations,  
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SE t⁄ (dB cm)⁄ = SE(dB) Thickness⁄ (cm) 

SSE (dB · cm3 g)⁄ = SE(dB) Density⁄ (g cm3⁄ ) 

SSE t⁄ (dB · cm2 g)⁄ = SE(dB) Density⁄ (g cm3⁄ )/Thickness (cm)  

where SE is the shielding effectiveness, t is the thickness, SE/t is the absolute shielding 

effectiveness, SSE is the specific shielding effectiveness and SSE/t is the absolute 

specific shielding effectiveness.  

 

Fig. S20 a EMI shielding experiment environment for the drone radar which shows a 

distance of 4.3 m from the target to the FPG-applied drone radar b Result of the radar 

signal received by drone radar without and with the FPG which shows the FPG blocks 

the transmitter signal of drone radar well 

 Experiments were performed utilizing a radar system installed in a drone, as 

depicted in Fig. S20a. The experiment involved detecting a target located 4.3 m away 

using a 24 GHz radar system integrated into the vehicle. As shown in Fig. S20b, the 

target could be detected prior to applying the FPG. However, once the FPG was applied, 

the target became undetectable. These results validate the potential use of the FPG in 

experimental environments similar to those described in [S50]. 
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