
Vol.:(0123456789)

1 3

High‑Power and Ultralong‑Life Aqueous Zinc‑Ion 
Hybrid Capacitors Based on Pseudocapacitive 
Charge Storage

Liubing Dong1, Wang Yang1, Wu Yang1, Chengyin Wang2, Yang Li3, Chengjun Xu4 *, 
Shuwei Wan5, Fengrong He5, Feiyu Kang4, Guoxiu Wang1 *

Liubing Dong and Wang Yang have contributed equally to this work.

 * Chengjun Xu, vivaxuchengjun@163.com; Guoxiu Wang, guoxiu.wang@uts.edu.au
1 Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Sydney, 

NSW 2007, Australia
2 School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, 

People’s Republic of China
3 School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 

NSW 2052, Australia
4 Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, 

Shenzhen 518055, People’s Republic of China
5 HEC Group Pty Ltd, Canterbury, VIC 3216, Australia

HIGHLIGHTS

• This work starts the research of pseudocapacitive oxide materials for multivalent  Zn2+ storage.

• The constructed  RuO2·H2O||Zn systems exhibit outstanding electrochemical performance, including a high discharge capacity, ultrafast 
charge/discharge capability, and excellent cycling stability.

• The redox pseudocapacitive behavior of  RuO2·H2O for  Zn2+ storage is revealed.

ABSTRACT Rechargeable aqueous zinc-ion hybrid capacitors and zinc-
ion batteries are promising safe energy storage systems. In this study, 
amorphous  RuO2·H2O for the first time was employed to achieve fast and 
ultralong-life  Zn2+ storage based on a pseudocapacitive storage mecha-
nism. In the  RuO2·H2O||Zn zinc-ion hybrid capacitors with Zn(CF3SO3)2 
aqueous electrolyte, the  RuO2·H2O cathode can reversibly store  Zn2+ in a 
voltage window of 0.4–1.6 V (vs. Zn/Zn2+), delivering a high discharge 
capacity of 122 mAh  g−1. In particular, the zinc-ion hybrid capacitors can 
be rapidly charged/discharged within 36 s with a very high power density 
of 16.74 kW kg−1 and a high energy density of 82 Wh  kg−1. Besides, 
the zinc-ion hybrid capacitors demonstrate an ultralong cycle life (over 
10,000 charge/discharge cycles). The kinetic analysis elucidates that the 
ultrafast  Zn2+ storage in the  RuO2·H2O cathode originates from redox 
pseudocapacitive reactions. This work could greatly facilitate the development of high-power and safe electrochemical energy storage.

KEYWORDS Zinc-ion hybrid capacitor; Hydrous ruthenium oxide; Ultralong life; Redox pseudocapacitance; High power
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1 Introduction

Novel energy storage systems with the merits of high safety, 
fast charge–discharge capability, and high energy density 
are highly demanded with the rapid development of electric 
vehicles and customer electronics. Recently, multivalent-
ion (e.g.,  Zn2+,  Ca2+,  Mg2+, and  Al3+) storage systems have 
emerged and exhibited unique electrochemical behaviors 
[1–6]. During various multivalent-ion storage systems, zinc 
metal anode-based aqueous rechargeable zinc-ion batteries 
(ZIBs) and zinc-ion hybrid capacitors (ZICs) are particularly 
attractive [1, 7–11], due to their high safety, low cost, abun-
dant natural resource of zinc, and unique electrochemical 
features of zinc metal anodes such as low redox potential 
of − 0.76 V (vs. standard hydrogen electrode) and ultrahigh 
volumetric capacity of 5845 Ah  L−1. Furthermore, the high 
ionic conductivity of aqueous electrolytes such as  ZnSO4 
solutions in ZIBs and ZICs is beneficial for achieving high 
power output. The electrochemical properties of ZIBs and 
ZICs are strongly dependent on the  Zn2+-storage behaviors 
in cathode materials.

Several cathode materials have been developed for ZIBs 
and ZICs, including manganese oxides, vanadium oxides, 
Prussian blue analogs, conductive polymers, and carbon 
materials.  Zn2+ insertion/extraction in manganese oxides, 
especially tunnel-structured  MnO2, creates high specific 
capacities. However, the poor electrical conductivity of 
manganese oxides and manganese dissolution issues cause 
unsatisfactory rate performance and poor cycling stability 
[12–15]. Vanadium oxides possess high capacities and fast 
kinetics for  Zn2+ storage [16–22], whereas their high toxic-
ity impedes their practical applications. Besides, most of 
the Prussian blue analogs show low capacities of about 50 
mAh  g−1 when used as cathode materials for ZIBs [23–26]. 
Although conductive polymers (e.g., polyaniline and 
polypyrrole) and carbon materials (e.g., activated carbon, 
denoted as “AC”) generally have a  Zn2+-storage capacity of 
100–150 mAh  g−1 and better rate performance compared to 
manganese oxides [11, 27–30], their low density of about 
0.3–1 mg cm−2 is unfavorable for the volumetric energy 
density of corresponding batteries. Therefore, seeking high-
performance  Zn2+-storage materials is still a big challenge.

Herein, for the first time, we demonstrate that fast, ultra-
long-life, and safe  Zn2+ storage can be realized in amorphous 
 RuO2·H2O cathode materials based on a pseudocapacitive 

storage mechanism. The constructed  RuO2·H2O||Zn ZICs 
can reversibly store  Zn2+ in a voltage window of 0.4–1.6 V 
(vs. Zn/Zn2+), delivering a capacity of about 122 mAh 
 g−1, an excellent rate capability and an ultralong cycle life 
exceeding 10,000 cycles.

2  Experimental

2.1  Electrochemical Measurements

Amorphous ruthenium oxide hydrate  (RuO2·xH2O) pow-
der was obtained from Sigma-Aldrich Corporation. To 
synthesize anhydrous  RuO2, the  RuO2·xH2O powder was 
heat-treated in air at 300 °C for 1 h with a heating rate of 
5 °C  min−1. The amorphous  RuO2·xH2O power (or anhy-
drous  RuO2 powder) was mixed with conductive black and 
polyvinylidene fluoride binder in N-methyl-pyrrolidone 
solutions, then coated on a stainless steel foil, and finally 
dried at 100 °C in vacuum to obtain  RuO2·xH2O (or  RuO2) 
electrodes. Mass loading of active materials in the prepared 
cathodes was 2.5–3.0 mg cm−2. Electrochemical perfor-
mance of these ruthenium oxides for  Zn2+ storage was evalu-
ated by assembling CR2032 coin cells, in which  RuO2·xH2O 
(or  RuO2) electrode was used as the cathode, commercial 
Zn foil was used as the anode, air-laid paper was used as 
separator, and 2 M Zn(CF3SO3)2 or 2 M  ZnSO4 aqueous 
solution served as the electrolyte. Cyclic voltammetry (CV) 
and electrochemical impedance spectroscopy (EIS) tests 
were performed on a Bio-Logic VMP3 electrochemical sta-
tion. An AC amplitude of 5 mV and a frequency range of 
0.1–100 kHz were applied for the EIS test at open-circuit 
voltage (OCV). For galvanostatic charge–discharge (GCD) 
measurements, when the applied current was 0.1–3 A  g−1, 
they were performed on a LAND battery testing instrument, 
and when the current was 5–20 A  g−1, the GCD measure-
ments were completed on the Bio-Logic VMP3 electrochem-
ical station. (This is because for fast charge/discharge tests, 
Bio-Logic VMP3 electrochemical station is more sensitive 
and accurate.)

2.2  Material and Electrode Characterizations

We used scanning electron microscopy (SEM; model: Zeiss 
Supra 55VP) and transmission electron microscopy (TEM; 
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model: Tecnai G2 F30) to observe the micromorphologies 
of samples and used a Brunauer–Emmett–Teller (BET) 
analyzer to characterize the specific surface area. X-ray dif-
fraction (XRD; model: Bruker D8 Discover Diffractometer) 
and X-ray photoelectron spectroscopy (XPS; model: MDTC-
EQ-M20-01) were applied to analyze the phase and com-
positions. Thermogravimetric (TG)-differential scanning 
calorimeter was utilized to determine the water content in 
amorphous  RuO2·xH2O powder. Note that to characterize the 
electrodes at various charge/discharge states, correspond-
ing cells were charged/discharged, then disassembled, and 
washed using deionized water five times to remove surface-
adsorbed electrolyte.

3  Results and Discussion

Figure 1 shows the physicochemical characteristics of the 
 RuO2·xH2O sample. The  RuO2·xH2O is irregular-shaped 
particles with a size of about 100–500 nm (Fig. 1a). Its 
selected-area electron diffraction (SAED) image (inset in 
Fig. 1b) exhibits a characteristic halo ring pattern, revealing 
the amorphous feature of the  RuO2·xH2O. Correspondingly, 
the high-resolution TEM image does not show clear lattice 

fringes (Fig. S1). The amorphous feature of the  RuO2·xH2O 
is also confirmed by the XRD result (Fig. 1c), from which 
only several broad diffraction peaks are observed. To deter-
mine the structural water content in the  RuO2·xH2O, TG 
analysis was performed, as shown in Fig. 1d. Mass loss in 
the temperature range of 100–300 °C originates from the 
structural water of the  RuO2·xH2O [31], which is ~ 12.4 wt%. 
This means that x in the  RuO2·xH2O is 1.0. Therefore, the 
 RuO2·xH2O is denoted as  RuO2·H2O. In the XPS spectrum 
of Ru 3d (Fig. 1e), the Ru  3d3/2 peak at 285.3 eV and Ru 
 3d5/2 peak at 281.1 eV are observed, corresponding well to 
the previously reported hydrous  RuO2 [32, 33]. Ru 3p XPS 
spectrum shown in Fig. S2 provides consistent evidence. O 
1 s XPS spectrum shown in Fig. 1f is split into three peaks, 
proving the coexistence of Ru–O–Ru and Ru–O–H bonds in 
the amorphous  RuO2·H2O [32, 33].

The electrochemical performance of the  RuO2·H2O for 
 Zn2+ storage was evaluated by assembling the cells with 
 RuO2·H2O cathode, Zn metal anode, and Zn(CF3SO3)2 
aqueous electrolyte. The  RuO2·H2O||Zn system shows 
an open-circuit voltage of 1.05 V and can be reversibly 
charged/discharged in a voltage window of 0.4–1.6 V 
(Fig. 2a). In such a voltage window, the Zn(CF3SO3)2 and 
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Fig. 1  a SEM image, b TEM image (inset: SAED pattern), c XRD pattern, d TG curve, e Ru 3d, and f O1 s XPS spectra of the  RuO2·xH2O 
sample
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 ZnSO4 aqueous electrolytes are stable and water decom-
position does not occur (Fig. S3). In the CV curves, there 
is one pair of broad redox peaks. Even at high scan rates 
such as 100 mV s−1, the redox peaks remain, suggesting 
good rate performance of the  RuO2·H2O||Zn system. As 
shown in the GCD profiles (Fig. 2b), the charge curves 
and discharge curves deviate from linear shapes without 
flat voltage plateaus. This is consistent with the broad 
redox peaks observed in the CV curves. At a charge/dis-
charge current of 0.1 A  g1, the  RuO2·H2O cathode shows 
a discharge capacity of 122 mAh  g−1 with a coulombic 
efficiency of 86%. When the current increases for 200 
times (to 20 A  g−1), in which the  RuO2·H2O||Zn system 
is charged/discharged within 36 s, the discharge capac-
ity still reaches 98 mAh  g−1. In fact, considering that the 
coulombic efficiency of the  RuO2·H2O||Zn system at low 
current densities of 0.1–1 A  g−1 and high current densities 
of 3–20 A  g−1 is 86–98% and 99–100%, respectively, the 
 RuO2·H2O||Zn system is more suitable for fast charging/
discharging. For comparison, rate performance of some 
typical cathode materials for  Zn2+ storage is summarized 

in Fig. 2c, including  MnO2 [15],  Zn0.25V2O5·nH2O [16], 
 VS2 [34], polyaniline [28], and AC [11]. Figure 2c intui-
tively shows the excellent rate capability of the  RuO2·H2O 
cathode, compared with the other cathode materials. It 
should be noted that the  RuO2·H2O exhibits similar supe-
rior performance in 2 M  ZnSO4 aqueous electrolyte (Fig. 
S4). Furthermore, according to the Ragone plot shown in 
Fig. 2d, the  RuO2·H2O cathode can provide a maximum 
energy density of 119 Wh  kg−1. More importantly, it keeps 
a high energy density of 82 Wh  kg−1 under the condition 
of delivering an ultrahigh power output of 16.74 kW kg−1. 
Such a high power output with considerable energy density 
is almost impossible for most of the current electrochemi-
cal energy storage systems [9, 16, 35]. For instance, the 
maximum power density of currently reported lithium-
ion batteries and aqueous ZIBs is generally smaller than 
1–10 kW kg−1.

The kinetic analysis was performed to reveal the mecha-
nisms for the superior electrochemical performance of 
the  RuO2·H2O cathode.  Zn2+ storage in the  RuO2·H2O 
cathode was firstly confirmed by the high-resolution Zn 
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2p XPS spectra shown in Fig. 3.  Zn2+ ions were stored in 
the  RuO2·H2O cathode when the cathode was discharged 
from pristine state to 0.4 V, and almost all  Zn2+ ions were 
extracted from the  RuO2·H2O cathode when the cathode 
was further charged to 1.6 V, implying highly reversible 
 Zn2+ storage in the  RuO2·H2O cathode. Besides,  H+ from 
the slightly acid Zn(CF3SO3)2 aqueous electrolyte is also 
proved to participate in the electrochemical reactions in the 
 RuO2·H2O//Zn system and contributes to a small capacity 

to the  RuO2·H2O cathode (Figs. S5–S7). For the CV curves 
at various scan rates of the  RuO2·H2O||Zn system (Fig. 2a), 
the relationship between their peak current (i) and scan rate 
(v) can be depicted through Eq. 1 [36]:

where a and b are variable parameters. Particularly, b values 
of 0.5 and 1.0 represent a diffusion-controlled process and 
a complete capacitive process, respectively [33]. As shown 
in Fig. 4a, the b values for the anodic peaks and cathodic 
peaks are close to 1.0, suggesting that  Zn2+ storage in the 
 RuO2·H2O cathode is dominated by a capacitive process.

We further tested CV curves at low scan rates (Fig. 4b). 
At 0.2–1 mV s−1, the voltage separation between anodic 
peaks and cathodic peaks is very small (< 0.08 V), which is a 
typical feature of pseudocapacitive behavior [37]. As a com-
parison, ZIB cathode materials such as  MnO2 generally pos-
sess a large voltage separation (> 0.3 V; Fig. S8). Further-
more, two capacitance differentiation methods were applied 
to analyze the pseudocapacitive reaction of the  RuO2·H2O 
for  Zn2+ storage. According to Dunn’s method (Fig. 4c, d) 
[37], 79.0–96.4% capacitance originates from the surface-
controlled capacitive process, i.e., redox pseudocapacitance 
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and electric double-layer capacitance. Considering that the 
specific surface area of the  RuO2·H2O is only 57 m2  g−1 (Fig. 
S9), the majority of the capacitance is redox pseudocapaci-
tance, while the electric double-layer capacitance accounts 
a small fraction. Trasatti’s method analysis in Fig. 4e, f 
points out that the maximum charge that can be stored in the 
 RuO2·H2O and the charge stored at the so-called outer sur-
face (easily accessible to electrolyte ions) of the  RuO2·H2O 
are 502.5 and 428.4 C  g−1, respectively [38]. This means that 
85.3% capacity is from the outer surface, which is consist-
ent with the Dunn’s method analysis. Such an energy stor-
age mechanism of redox pseudocapacitive behavior, as well 
as high conductivity of hydrous ruthenium oxides (higher 
than 100 S  cm−1) [31], benefits for the ultrafast charging/
discharging of the  RuO2·H2O cathode [37].

It should be emphasized that the structural water in the 
 RuO2·H2O plays a vital role in  Zn2+ storage. As a compari-
son, anhydrous  RuO2 sample was synthesized by heat-treat-
ing the  RuO2·H2O in air (Figs. 5a, b and S10). The TG curve 
confirms that after heat treatment, structural water content 
of the sample is negligible. As for the anhydrous  RuO2, its 
redox pseudocapacitive reactions are notably suppressed, 
corresponding to very low  Zn2+-storage capacities of 38–15 

mAh  g−1 at 0.1–20 A  g−1 (Figs. 5c, d and S11, S12), even 
though anhydrous  RuO2 generally possesses a higher elec-
trical conductivity than hydrous  RuO2·xH2O [31]. This is 
because the structural water can facilitate rapid ion transport 
in the  RuO2·H2O [34]. Similarly, hydrous ruthenium oxides 
perform much better than anhydrous  RuO2 in supercapaci-
tors with  H2SO4 aqueous electrolytes [31].

Besides the excellent high rate performance, the amor-
phous  RuO2·H2O cathode also exhibits superior long-term 
cyclic stability, with an 87.5% capacity retention over 10,000 
charge/discharge cycles (Fig. 6a). Meanwhile, the coulombic 
efficiency always maintains ~ 100% during the cycling test 
(except for the initial tens of cycles). Nyquist plots in Fig. 6b 
of the  RuO2·H2O||Zn hybrid capacitor reveal a small charge-
transfer resistance even after the 10,000 charge/discharge 
cycles. In addition, the long-term cycling test does not cause 
an obvious change in the phase composition and micromor-
phology of the amorphous  RuO2·H2O cathode (Fig. 6c and 
S13). These imply the high electrochemical and structural 
stability of the  RuO2·H2O cathode during repeated  Zn2+ 
storage processes.
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4  Conclusions

In summary, amorphous  RuO2·H2O was employed to 
achieve fast, ultralong-life, and safe  Zn2+ storage. In the 
 RuO2·H2O||Zn zinc-ion hybrid capacitors with aqueous 
Zn(CF3SO3)2 electrolyte, the  RuO2·H2O cathode revers-
ibly stores  Zn2+ in a voltage window of 0.4–1.6 V (vs. Zn/
Zn2+), displaying a discharge capacity of 122 mAh  g−1 and 
an outstanding high rate performance. The zinc-ion hybrid 
capacitors can be rapidly charged/discharged within 36 s, in 
which case a very high power density of 16.74 kW kg−1 and 
a high energy density of 82 Wh  kg−1 are delivered. Such an 
excellent high rate performance originates from redox pseu-
docapacitive reactions of the  RuO2·H2O by storing  Zn2+. 
Besides, the zinc-ion hybrid capacitors exhibit superior 
cycling stability with 87.5% capacity retention over 10,000 
charge/discharge cycles. This work could greatly facilitate 
the development of ultrafast and safe aqueous electrolyte-
based electrochemical energy storage.
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