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HIGHLIGHTS
e (ritical issues including mechanical stability, water and oxygen resistance, transparent electrodes for flexible perovskite solar cells
are discussed.

e Roll-to-Roll technology presents a promising avenue for fabrication of flexible perovskite solar cells fabricated for large-scale com-
mercial application.

e Balancing the transmittance and conductivity of transparent electrodes has become a significant issue in developing efficient flexible

perovskite solar cells.

ABSTRACT The demand for building-integrated photovoltaics and portable

(
energy systems based on flexible photovoltaic technology such as perovskite @&Qt // ceting ‘ T 4
embedded with exceptional flexibility and a superior power-to-mass ratio is § ;ga\é‘“ ra,,%/ %@
enormous. The photoactive layer, i.e., the perovskite thin film, as a critical com- ;Q 4 : S ’"7@‘ %@ %
ponent of flexible perovskite solar cells (F-PSCs), still faces long-term stability 5 ﬁ ,}"'@ *'% X %
issues when deformation occurs due to encountering temperature changes that '-i'-) t.g .5‘ %‘i}‘ E -
also affect intrinsic rigidity. This literature investigation summarizes the main 'T%, g Al e :‘?- S.: /i
factors responsible for the rapid destruction of F-PSCs. We focus on long-term %, ‘ 5‘
mechanical stability of F-PSCs together with the recent research protocols for K < h"tera_,,d oy
improving this performance. Furthermore, we specify the progress in F-PSCs "508 (edistonce \“\g oS
concerning precise design strategies of the functional layer to enhance the flex- "'od""katio,, ew“:a? >
ural endurance of perovskite films, such as internal stress engineering, grain \\\ b/

boundary modification, self-healing strategy, and crystallization regulation. The 2 oy
Ng-ter \\)
existing challenges of oxygen-moisture stability and advanced encapsulation 9-term stab

technologies of F-PSCs are also discussed. As concluding remarks, we propose our viewpoints on the large-scale commercial application
of F-PSCs.
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1 Introduction

Currently, different types of solar photovoltaic systems have
been proposed to effectively convert photons into electric-
ity, for example perovskite solar cells (PSCs) [1-3], organic
photovoltaics (OPVs) [4-6], CIGS solar cells [7-9], silicon
solar cells [10, 11], CdTe solar cells [12, 13], dye-sensitized
solar cells (DSCs) [14, 15], GaAs solar cells [16, 17], and
quantum dot solar cells (QDSCs) [18, 19]. For photovol-
taic devices, the figure of merit for large-scale application
is their efficiency, manufacturing cost, and stability. PSC is
endorsed as an emerging technology for photovoltaic appli-
cations because of its superior efficiency, facile processable
features, and low cost [20].

These typical hybrid perovskite materials have an octa-
hedral crystalline structure and the general formula ABX;
(Fig. 1a). Recently, PCE over 25.8% has been realized in
single-junction PSCs [21, 22], stemming from distinctive
performances of halide perovskites, such as a tunable band-
gap, easy fabrication with low-temperature solution meth-
ods, and an excellent absorption coefficient [23]. Further,
continuous large-area roll-to-roll manufacturing methods
have enabled massive production to substantially enhance
the cost-effectiveness of flexible PSCs and exhibit high mar-
ket prospects [24-26].

Figure 1b presents the energy levels and charge transpor-
tation in flexible perovskite solar cells (F-PSC). The pho-
togenerated electron—hole pairs in perovskite layer separate
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Fig. 1 a Illustration of a typical crystalline structure of perovskite
ABX;. b Respective energy level and charge transport diagram. Typi-
cal flexible PSC devices with ¢ n-i-p architecture and d p-i-n archi-
tecture
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easily to free carriers because of a reduced exciton bind-
ing energy. These free charge carriers can be efficiently
extracted from the absorber to the electron transport layer
(ETL) and hole transport layer (HTL), respectively. Accord-
ing to the direction of light incidence, there are two types
of F-PSCs such as regular n-i-p and inverted p-i-n architec-
tures (Fig. 1c, d). The ETL, acting as the charge-selective
layer, is deposited on the transparent conductive plastic
substrates, followed by fabricating a perovskite absorbing
layer with spin-coating technique. Subsequently, the HTL
and the back electrodes are deposited to build a regular n-i-p
structure planar F-PSCs. In addition, for an inverted p-i-n
planar F-PSCs, the positions of the charge transport layers
are interchanged [27, 28].

F-PSCs can be made with plastic substrates like PET [29],
PEN [30], and PI [31] owing to their naturally flexible nature
and low-temperature processing. This fits them in different
applications, such as flexible portable power supplies, flex-
ible display devices, and building-integrated photovoltaic
(BIPV) systems [32-37]. Notably, F-PSCs can be manufac-
tured via roll-to-roll technology as new paper printing and
have been demonstrated for commercial organic PVs [38].
Thus, F-PSCs are widely applied in the domains of wearable
devices and portable power sources. They can function as a
power source for smartphones, even in indoor ambient light
environments, while enabling outdoor operation of portable
devices. Additionally, lightweight F-PSCs present highly
advantageous conditions for military applications, particu-
larly in individual combat and aerospace settings, where
weight reduction is paramount due to constrained payload
capacity. In such circumstances, they can reach locations
inaccessible to rigid devices. For example, F-PSCs with high
power-per-weight ratios demonstrate remarkable potential as
power sources for military detection and micro-spacecraft,
as well as for environmental and industrial monitoring, uti-
lizing solar leaves or weather balloons.

The first report of the F-PSCs deals with a PCE of 2.62%
[39], in which the chemical bath deposition (CBD)-pro-
cessed ZnO nanorods were used as electron transport layers
(Fig. 2). Since then, various routes have been utilized to
enhance PCE and flexural endurance of flexible photovolta-
ics including optimization of the interface and architecture
of devices. Among these efforts, the interface modification
and optimization of charge transport layers significantly
improve the power conversion efficiency and long-term sta-
bility for F-PSCs. PET-based conductive substrates made of

https://doi.org/10.1007/s40820-023-01165-8
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Fig. 2 The journey of efficiency evolution for F-PSCs during the period from 2013 to 2023 [39—48]

an aluminum-doped ZnO were also reported for F-PSC [40].
Specifically, the flexible device could endure 50 bending
cycles with 99% of the initial PCE. In order to highlight the
benefits of F-PSCs, low-temperature processing has been
investigated by utilizing conductive metal oxides as charge
transportation layers. A low-temperature deposition method
was proposed to fabricate highly dispersed Zn,SnO, (ZSO)
nanoparticles as an electron-conducting electrode for flex-
ible devices with a PCE of 15.3% [41].

In this respect, as a critical functional layer of F-PSCs,
the components of perovskite materials are critical in the
photovoltaics properties and mechanical reliability. A novel
sulfur-based organic molecule to optimize the perovskites
system on flexible devices [44] obtained a high efficiency
of 18.4%. Nevertheless, the conversion efficiency of Pb-
based perovskite devices is limited by their low spectral
response in the near-infrared (NIR) wavelength region. Zhu
et al. [46] introduced a hetero-junction into flexible devices.
The resultant F-PSCs obtained an excellent efficiency of
21.73% and retained 95% of their initial PCE values after
1,000 cycles of consecutive bending. Recently, a novel his-
tamine diiodate (HADI) additive was designed to passivate
the buried perovskite surface, achieving a record PCE of
22.4% with over 90% initial PCE maintenance after varied
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bending cycles [47]. Followed by another report, where flex-
ible photovoltaics achieved a champion efficiency of 23.4%
by using in situ cross-linking organic molecules along with
perovskite crystal growth [48]. The resultant flexible perovs-
kite films have low Young’s modulus and high crystalline
quality, resulting in a maintenance of approximately 90% of
their initial PCE for the robust F-PSCs.

In recent years, there has been relevant literature summa-
rizing recent developments in flexible photovoltaic devices
[49-52]. Unlike most existing reviews, this report focuses
on the key scientific challenges underlying the long-term
stability issue in F-PSCs, such as mechanical durability
and water-oxygen resistance. Recently, critical progress has
been reported to enhance the photovoltaic performances of
F-PSCs, achieving the certified PCE of over 23% for single-
junction devices [28, 48], which is comparable to those of
rigid photovoltaic. To date, extensive study has focused on
the strategies to enhance the PCE of F-PSCs. Mechanical
stability and flexural endurance are equally important to
power conversion efficiency to achieve large-scale applica-
tions of F-PSCs (Table 1). Mechanical durability represents
the occurrence of cracks on the perovskite layer because
of external mechanical stress, which would induce elastic
deformation and lattice distortion when twisting, bending,

@ Springer
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Table 1 Performance parameters of reported F-PSCs

Device structure Initial PCE (%) Bending cycles Bending radius % of initial ~ Refs.
(mm) PCE
PEN/ITO/SnO,/perovskite/Spiro-OMeTAD/Ag 19.51 6,000 8 95 [45]
PEN/ITO/PTAA/perovskite/CH1007/PCBM/BCP/Ag 21.73 1,000 5 95 [46]
PEN/ITO/HADI-SnO,/FA 4Cs,, ;Pbl;/Spiro-OMeTAD/Au 22.44 1,000 5 90 [47]
PET/ITO/SnO,/perovskite/Spiro-OMeTAD/Au 23.40 5,000 5 93 [48]
PET/ITO/PEDOT:EVA/Perovskite/PCBM/BCP/Ag 19.87 7,000 5 95 [53]
PET/ITO/FI-SnO,/Perovskite/Spiro-OMeTAD/Au 21.00 20,000 5 80 [54]
PEN/ITO/PTAA/Perovskite/C60/BCP/Cu 21.76 25,000 5 90 [55]
PEN/ITO/PTAA/PFN-Br/Perovskite/C60/BCP/Cu 20.00 10,000 2.5 73 [56]
PEN/ITO/NiO,/Perovskite/PCBM/BCP/Bi,Te; 18.16 1,000 4 95 [57]
Mica/ITO/PEDOT:PSS/Perovskite/PCBM/BCP/Ag 18.00 5,000 5 92 [58]
PEN/ITO/SnO,/Perovskite/Spiro-OMeTAD/Ag 23.10 2,000 10 90 [59]
PET/ITO/SnO,/Perovskite/Spiro-OMeTAD/Au 17.98 1,000 2 82 [60]
PET/ITO/NiOx/Perovskite/PCBM/BCP/Ag 19.03 3,000 5 80 [61]

and internal residual stress during thermal annealing. The
cracks and lattice distortion on the perovskite layer could
generate unfavorable phase transitions and accelerate serious
ion migrations in F-PSCs that can eventually result in per-
ovskite decomposition and damage the device performance
largely.

Large-area F-PSCs could be significant for accelerating
the commercialization of F-PSCs. Significant achievement
has been obtained in producing large-scale F-PSCs cur-
rently; however, issues are hindering to achieve commer-
cialization and applications of F-PSCs. For example, it is
difficult to manufacture low roughness and homogeneous
perovskite films onto flexible substrates featuring rough
and inhomogeneous surfaces. Particularly, during the heat
sintering procedure of device fabrication, the difference in
thermal conductivity between the plastic substrates and the
conventional rigid glass substrates might explain the nonu-
niform perovskite films on the former. Similarly, the con-
ductivity and transportation of electrodes are also essential
for efficient and stable photovoltaic devices necessary for
commercialization. Arguably, a high level of flexibility with
competitive mechanical stability is required to meet the cur-
rent market demands.

So far, ITO and AZO are the preferred metallic oxides for
flexible conductive electrodes. Still, the brittleness of those
materials hinders the flexural endurance of flexible photo-
voltaics. Most of the substrates made of plastics are unable
to withstand high-temperature treatments due to their low
heat distortion temperature. High annealing temperatures

© The authors

can cause the deformation of flexible substrates, leading
to defects in the perovskite layer and adjacent functional
layers. This poses a significant challenge in attaining out-
standing performances in F-PSCs. Furthermore, the flex-
ible substrates that consist of polymers have weak water and
oxygen resistance compared to rigid glass because of a high
water vapor transmission rate (WVTR). Thus, the flexible
substrates and functional layers should be finely designed to
realize efficient and stable large-area F-PSCs.

We review the recent progress on the strategies for
improving the devices’ flexural endurance based on perovs-
kite engineering and interfacial modification to induce long-
term operational stability. Efforts in the advanced encapsu-
lation strategies are also discussed to solve the problem of
penetration of moisture and oxygen through polymer-based
flexible substrates.

2 Required Properties of F-PSCs

Elasticity is a characteristic of solid material that allows
it to restore its original form once the external stress is
removed. This external stress can take various forms, such
as tensile (Fig. 3a), compressive (Fig. 3b), and bending
stress (Fig. 3c). Elastic deformation takes place prior to the
plastic yield or mechanical breakdown of materials and is
commonly observed in strain-induced stability problems
with perovskite materials frequently experiencing distor-
tion or crack (Fig. 3d). Therefore, in order to understand

https://doi.org/10.1007/s40820-023-01165-8
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voltaic active materials [62]. f The fracture energy of perovskites on flexible substrates [62]. Young’s modulus of perovskite films as a function

of g Pb-X bond strength [63] and h the Pb-X bond distance [64]

the mechanics-coupled stability for perovskite materials, it
is necessary to first address the structure—performance rela-
tionship regarding their elastic properties. Young’s modulus
(E) is a critical parameter for evaluating the flexural endur-
ance of flexible materials. Therefore, an experimental study
should be conducted to measure the long-term operational
stability of organic—inorganic halide metal perovskites using
Young’s modulus. Perovskite films form the residual stress
during process procedures, causing the formation of cracks
and delamination (the inset of Fig. 3d).

The cohesion energy (G,) is a critical parameter for
assessing the flexural endurance of devices and is correlated
with reliability through deformation and manufacturing pro-
cesses in various photovoltaic devices. The development of

SHANGHAI JIAO TONG UNIVERSITY PRESS

interfacial residual stresses due to fabrication processes can
result in the amplification of these stresses during operation,
leading to the evolution of defects within photoelectronic
materials. The determination of G, is based on the strain
energy release rate, while the estimation of G, is linked to
the critical stress (P.) causing crack development. Equa-
tion 1 is utilized for the computation of G, [65].

12P %a? 2
G. = —Ca(1+o.64ﬁ) (1)
a

¢ BERW

By utilizing the compliance relationship in Eq. 2, the
elastic compliance measurement of dA/dP is employed to
experimentally ascertain an estimation of the crack length
as shown following:

@ Springer
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The mechanical stability of perovskite materials is character-
ized via Eq. 3 [66]:

H\"'/> p
E) - 3)

ki = 0.0l6< =7

where P is the applied stress, H is the hardness, E is Young’s
modulus, and c is the length of the crack.

As shown in Fig. 3e, the fracture energy for perovskite
devices [62, 67] is less by an order of magnitude than of
OPV and c-Si or CIGS solar cells by two orders of mag-
nitude [68]. Nonetheless, residual stress plays a crucial
role in determining the stability of perovskite photovol-
taics. By using the slot-die coating technique, the G, of
methylammonium (MA) perovskite was determined to be
0.83+0.04 J m~2. Similarly, the perovskite layers obtained
by spin-coating technology at various ratio of MA, |;FA g3
showed a comparable result with a G, of 0.56+0.10 J m™>
[62]. The decrease in G, in MA/FA-based components,
when contrasted with the MA-based perovskite, may be
attributed to the relationship between fracture strength and
perovskite grain size. Smaller-grained films have larger grain
boundaries, which behave as defects and weaken the qual-
ity of layers, making them susceptible to crack propagation
under mechanical loads (Fig. 3f).

The chemical bonding of Pb-X is considered a crucial
parameter in determining the flexural endurance of perovs-
kite devices [69]. The Pb-X bond strength increases in the
order of £} < Ep < E(,, which consistent with the increasing
Young’s modulus (Fig. 3g) [63]. Moreover, the size, sym-
metry, and electronegativity variations among the organic
cations may have an impact on Young’s modulus of the
halide perovskites. For instance, the M-X bond length in
the inorganic framework is typically longer in FA*-based
halide perovskites than in their MA™" counterparts because of
larger FA* than MA™* [64, 70]. Therefore, the high-stiffness
perovskite films can be produced by A-site cations. The
conventional photoactive perovskite material, CH;NH;Pbl,
(MAPbI;), has Young’s modulus in the range of 14 ~35 GPa
(calculated values) dependent on the various phases. Fig-
ure 3h indicates longer Pb-X bond distance which leads to
lower mechanical stiffness across the family of lead-based
single halide perovskites. The Young’s modulus (E, G, and
B) shows a high dependence with the metal-halide bond

© The authors

strength, exhibiting a tendency of from I, Br, to Cl for per-
ovskite materials with the same A cation and metallic ions
[64].

3 Merits and Shortcomings of F-PSCs

F-PSCs possess distinctive merits such as arbitrary-shaped
forming, roll-to-roll manufacture, high power-per-weight,
and flexibility compared to rigid photovoltaics. Roll-to-roll
deposition technology is a convenient and efficient manu-
facturing process for mass-producing large-area F-PSCs. It
offers benefits such as cost-effectiveness, efficient material
usage, and high production capacity. The rate of roll-to-roll
deposition in solution phase chemistries for F-PSCs depends
on the evaporation of solvents and film transformations,
which are commonly carried out in ovens [26]. Develop-
ing routes to reduce the required time for these processes
can further enhance the cost efficiency of F-PSCs. The
roll-to-roll process enables fast and affordable production
of flexible and lightweight PSCs, making them suitable for
various wearable electronics, portable power supplies, and
BIPV [38, 71]. Thus, the advancement of the roll-to-roll
coating process or printing process has enabled the transfer
of flexible photovoltaics from the laboratory to the indus-
trial sector for large-area device manufacturing. To achieve
roll-to-roll production of F-PSCs, it is significant to realize
low roughness and large-scale production of sequential func-
tional layers. Although the roll-to-roll fabrication of charge
transport layers has already been established in OPVs, it is
not fully explored in the process of perovskite layers yet.
Three essential steps involved in the roll-to-roll deposition
of perovskite layers are listed as follows: firstly, the deposi-
tion of perovskite precursor solution onto flexible substrates
with scalable coating techniques. Secondly, the removal of
solvents by heating or vacuuming, for example, converts the
wet films from the precursor state into a state of super-sat-
uration. Lastly, thermal annealing is employed to facilitate
the crystallization procedure (Fig. 4a) [25]. The transition
from a wet precursor state to an intermediate phase is cru-
cial in the vast production of high-grade perovskite films.
For instance, the technique of anti-solvent extraction has
been widely employed to achieve excellent performance in
small-sized photovoltaic cells (PSCs) by inducing a state of
super-saturation through the rapid drip of anti-solvent while

https://doi.org/10.1007/s40820-023-01165-8
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spin-coating process. The redundant solvent is eliminated
via spin-coating, which creates a supersaturated film from
the precursor wet film containing a retardation mediator.
Furthermore, lightweight and outstanding flexibility is
critical for power sources in electronics like portable power
supply. The mechanical durability of perovskite materials
is strongly dependent on substrates. Therefore, the plastic
substrates have a fundamental impact on the lightness and
flexibility for perovskite devices. For example, the highest
recorded power-per-weight of 23 W g~! was achieved by
the lightweight F-PSCs [72]. Moreover, serval transparent
electrodes made of plastics substrates have been explored to
substitute the natural fragile ITOs for F-PSCs (Fig. 4b). The
feature of high power-per-weight for F-PSCs is very advan-
tageous when compared to other power-generating devices
including motors (0.3-8.4 W g!) and heat pumps (0.03-10
W g~1). Furthermore, the low-temperature solution-pro-
cessable methods could further reduce the cost of F-PSCs
modules. It was suggested that utilizing lightweight plas-
tic substrates can effectively reduce the total cost of PSCs
installation as compared to rigid ones, leading to a lower
comprehensive cost that permits different mounting methods

SHANGHAI JIAO TONG UNIVERSITY PRESS

[73]. Additionally, the latest research also commented that
arigid PSC with a 17% PCE would require a minimum of
24 years to become competitive with silicon installed in a
residential area. However, F-PSCs with the same efficiency
would need to endure for 19 years only [73]. Therefore,
according to the anticipated balance of system cost one
could expect by 2030, a perovskite photovoltaic module
with an efficiency of over 23% would last for 24 years if
the substrates are rigid, but reduced to 17 years for flexible
substrates (Fig. 4c). Nonetheless, so far, the F-PSCs have not
exhibited excellent flexural endurance and environmental
stability compared with those rigid one. The primary cause
for the poor property of devices could be specifically attrib-
uted to the difference between rigid glass and flexible plastic
substrates in terms of the coefficient of thermal expansion
and transmittance of materials. The limited thermal-anneal-
ing process for flexible substrates impedes the production of
metallic oxides and charge transport layers, thus lowering
the PCE and operational stability. Moreover, plastic sub-
strates usually exhibit lower optical transmittance compared
to rigid glass substrates, which is another critical factor for
the limited photovoltaic property of F-PSCs.

@ Springer
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4 Strategies Utilized in Flexible Perovskite
Solar Cells

4.1 Internal Stress Engineering

Thermoplastic polymer-based materials, such as PEN, PET,
and PI, are mostly used as plastic substrates of F-PSCs due
to their outstanding flexibility, roll-to-roll processability,
and lightweight properties [74-76]. However, these flexible
substrates become deformed and soften during a repeated
bending deformation and/or thermal-annealing process,
resulting in an inhomogeneous stress distribution among
the perovskite layer. This has a tremendous influence on the
mechanical stability and flexural endurance of F-PSCs. Fig-
ure Sa presents the residual stress against annealing tem-
perature for perovskites, in which the anti-solvent exchange
agent of diethyl ether was used in material fabrication. The
films exhibit tensile stress of 57.6 +4.9 MPa annealing at
100 °C, while those present a value of 20.7 +6.6 MPa at
60 °C. There is a residual stress of -10.8 +15.2 MPa for
perovskite films fabricated without annealing (i.e., all
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processes were performed at 25 °C). A clear linear relation-
ship was observed between the residual tensile stresses in
perovskite layers and the annealing temperature, showing
the stress values increased at higher annealing tempera-
tures [77]. The correlation can be determined by computing
the anticipated stress caused by the difference in thermal
expansion, o, given by Eq. 4:

Ep AT
oy (@) @

OAT =

where E, represents the modulus of the perovskite, v,
denotes the Poisson’s ratio of the perovskite, while o, and
ay, correspond to the thermal expansions of the substrate and
perovskite, respectively. To note here, that negative stress
was observed in films, indicating the presence of residual
solvent and incompletely converted perovskite compounds.
This was supported by the fact that the photocurrent density
was slightly lower for F-PSCs (25 °C) compared to those
annealed at higher temperatures. The stress-annealing tem-
perature linearity demonstrated that no stress release occurs
within the temperature range. Therefore, the stress distribu-
tion in the perovskite layer has a remarkable effect on the
device’s stability.
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Fig. 5 a The stress levels of CsMAFA-triple cation (black) were measured at different temperatures and the comparison to the predicted stress
levels. The stress levels of MAPbI; (red) were measured after formation at room temperature and with annealing at different temperatures, show-
ing low-stress values in all cases [77]. b Schematic illustration of a grain boundary stress release strategy for F-PSCs [78]. ¢ Schematic diagram
of releasing the residual strain and micro-strain of perovskite films through the pre-buried HCOONH, additive [79]. d The plots of lattice spac-
ing d(g,) versus sin.¥ for perovskite films with the pre-buried HCOONH, additive [79]
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The molecule internal stress control strategy has been
widely used to diminish residual stress and enhance the flex-
ural endurance of F-PSCs. Wang et al. [78] proposed a stress
release engineering technology to achieve high mechani-
cal stability and phase stability of F-PSCs via introducing a
cross-linkable additive with 3D architecture in perovskite grain
boundaries (Fig. 5b). The optimized devices obtained a record
efficiency of 21.63%, which could retain 91.8% of the initial
efficiency after 10,000 bending cycles at a radium of 5 mm. In
addition, F-PSCs have been severely restricted due to the inter-
facial residual stress resulting from the significant deformation
of flexible substrates. Liu et al. [79] utilized an amine-based
organic molecule additive as a pre-buried molecule in tin diox-
ide (Sn0O,) to achieve excellent mechanical stability in F-PSCs,
retaining over 90% of its initial PCE values after 4000 bending
cycles at a bending radius of 7 mm. This can be attributed to
the additionally enhanced interfacial adhesion in perovskite
films (Fig. 5¢). Moreover, the (012) crystallographic plane of
the perovskite film, without HCOONH, in SnO, ETL, exhib-
ited a shift toward a lower 20 position as the ¥ angle was
varied from 0° to 55° using GIXRD technology. The lattice
spacing d g, increases monotonically, indicating significant
tensile stress within the perovskite film. Conversely, the lat-
tice spacing d,,, keeps constantly at different depths for the
perovskite film treated with HCOONH,. This result suggests
the residual stress had been released effectively. This study
indicates that the HCOONH, can significantly improve the
perovskite lattice homogeneity in the top layer (Fig. 5d). The
developed F-PSCs exhibited a record efficiency of 22.37% and
maintained it over 90% after 4,000 bending cycles. A nanocel-
lular scaffold was designed that serves as an interfacial layer
to build a flexural buffer layer, resulting in released mechani-
cal stresses during the distortion of the flexible devices [80].
These results demonstrate that the nanocellular scaffold buffer
layer enhances the mechanical stability of F-PSCs due to the
uniform distribution of internal stress in the perovskite layer.

4.2 Grain Boundary Modification

Typically, the low crystallinity of perovskites is typically
attributed to a large number of grain boundaries (GBs),
which generate deep-level trap states in the bandgap of
semiconductors, resulting in an enhanced in carrier recom-
bination rate and a significant reduction in open-circuit
voltage. Similarly, flexible perovskite films contain internal

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

defects, particularly at the grain boundary, which decreases
the mechanical stability of F-PSCs (Fig. 6a) [54, 81, 82].
Notably, in a status of bending, stretching, or twisting, GBs
are the stress concentration region for the perovskite films.
The deformation damage is hard to recover via conventional
routes, thus leading to the weak comprehensive performance
of F-PSCs. Currently, grain boundary modification is an
effective strategy to prevent phase transitions and eliminate
the detrimental trap states, improving the flexural endurance
stability of F-PSCs. To address this issue, many strategies
on grain boundary modification and dimensional engineer-
ing have been utilized to enhance the flexural endurance
of F-PSCs. For instance, the utilization of cross-linkable
organic molecules has been applied to decrease trap-state
density and thus improve perovskite crystallinity and film
quality, resulting in an enhancement of the mechanical per-
formance of flexible photovoltaics. A photo-polymerized
Ce,-based organic molecule [83] was utilized as a grain
boundary modification agent to passivate the defects via
the cross-linked polymerization of Cyy-based organic mol-
ecules initiated with ultraviolet light (254 nm) and obtained
the extraordinary mechanical stability of perovskite films
(Fig. 6b).

To investigate the spatial distribution of defect states in
devices, the width of depletion layers was varied in devices
with different DC voltages in capacitance—voltage (C-V)
characterization. Subsequently, the capacitance value was
also measured at each voltage to determine the correspond-
ing charge density (V,) for each edge of depletion layers with
the following Eq. 5 [86]:

5 [61(1/62)]‘l

ece A? dv

N(X) =~ )

By subtracting N, before and after bending, the spatial
distribution of the increased defect density of devices can
be acquired. As illustrated in Fig. 6¢, the device exhibited
a higher increase in defect density close to the Cg, layer,
which could be attributed to large strain in the area. Fur-
thermore, the higher proportion of enhanced defect density
near 350 nm may be linked to the higher concentration of
GBs in the horizontal direction (Fig. 6¢) [55]. In addition,
theoretically dimensional engineering could improve the
flexural endurance of 3D perovskites. Shi et al. [54] reported
a dimension engineering strategy for accurate growth of
two-dimensional perovskites at the grain boundaries of
three-dimensional perovskites, while a trans-GBs structure
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Fig. 6 a Atomic model of the symmetric tilt grain boundary. The boundary of CsPbl; cells is depicted by the solid lines, whereas the grain
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was formed under the stimulation of water molecule, thus
resulting in a mechanically stable F-PSCs (Fig. 6d). Based
on the results obtained from the PeakForce QNM imaging
technique, the 2-bromobenzylammonium iodide (2-BBAI)
capping layer can be considered as softer as evidenced by
its lower Young’s modulus (4.8 GPa) in comparison with
3D MHP (12 GPa), which is summarized in Fig. 6e. Such
type of capping layer can be difficult to reinforce the flex-
ural endurance of perovskite films. Conversely, the 4-BBAI-
based trans-grain boundary two-dimensional phase has an
average Young’s modulus (8.1 GPa) similar to that of 3D
MHPs (12 GPa). Therefore, it can effectively reinforce the
GBs, ultimately improving the fracture energy of the entire
perovskite film (Fig. 6f). The polymer-based additives used
for grain boundary modification, such as polyvinylpyrro-
lidone (PVP) [87], polyvinyl alcohol (PVA) [88], and polyu-
rethane (PU) [89], can improve the flexural endurance of
perovskites and even stitch cracks at the GB regions, thus
improving the flexible devices’ stability performance. A soft
repairing route [90] was proposed for GBs, and a stretch-
able sticky elastomer (s-ELA) was used to join the rigid
crystallite grains, thereby resulting in the passivation of the
defects at GBs and improving the mechanical endurance
of F-PSCs. Moreover, the devices maintained 86% of the

© The authors

initial PCE after 10,000 cycles at 10% stretching, indicating
their outstanding stretching durability. Typically, outstand-
ing flexural endurance and high photovoltaic performance
cannot be obtained simultaneously based on the polymer-
based grain boundary modification strategy. Similarly, small
molecular functional additives present unique advantages
in passivating grain boundary defects and enhancing the
flexural endurance of perovskite film. For example, meth-
ylammonium succinate (MS) acts as a multifunctional
organic salt, which could release strain and reinforce grain
boundaries. This effect could be correlated with the ethylene
group betwixt the two carboxyl groups of the MS molecu-
lar which provides enough toughness to alleviate the strain
[91]. These strategies generally follow the idea of incorpo-
ration of organic molecules into GBs and passivating the
defects at GBs. However, the interaction of these organic
passivation molecules could be too weak to fundamentally
guarantee the mechanical stability of F-PSCs. Song et al.
[81] introduced a sulfonated graphene oxide (s-GO) to build
stable GBs via interacting with the [PbI6]4‘ at GBs. The
defects of vacant iodine could be effectively passivated by
the s-GO-[PbI¢]* complex, achieving excellent mechanical
stability. Nonetheless, the perovskite films containing s-GO

https://doi.org/10.1007/s40820-023-01165-8
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demonstrate a lower average elastic modulus in comparison
with the control samples.

4.3 Self-healing Strategy

Achieving high-performance F-PSCs with long-term opera-
tional stability requires considerable attention to deployment
on novel materials including perovskite films, electrodes,
and flexible substrates. The main objective is to create
effective and stable flexible photovoltaics that can with-
stand repeated mechanical displacement. Despite massive
efforts made in this line, current F-PSCs still suffer from
the crack formation during deformation (Fig. 7a). Subse-
quently, irreversible performance degradation occurs along
with mechanical fracture [92-95].

Recently, many protocols for implementing the self-
healing strategy for F-PSCs have been suggested to solve
the problem of rapid attenuation and irreversible recovery
of photovoltaic performance caused by repeated bending
deformation processes. For example, a self-healing poly-
mer has been proposed to mix into the perovskite precur-
sor as a polymer scaffold for perovskite crystallization and
to stitch cracks on the perovskite surface. The self-healing
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mechanism of perovskite films includes either physical or
chemical behaviors, such as van der Waals contacts [98],
dynamic covalent behavior [99], the supramolecular effect
[100], and chemical bonding [101]. Integrating the self-heal-
ing materials into GBs of perovskite films equipped them
with self-healing abilities. The adverse variables regarding
stability can be transformed into advantages due to repairing
damaged F-PSCs. A self-healing polyurethane (s-PU) scaf-
fold was introduced with dynamic oxime-carbamate linkages
into perovskite films to obtain self-healed F-PSCs via a ther-
mal annealing treatment at 100 °C to enhance the mechani-
cal durability of perovskites [96]. Due to the repaired cracks
and passivation of the GBs of the perovskite film via the
self-healing s-PU molecule, the F-PSCs retained over 88%
of their initial PCE after 1000 stretching cycles (Fig. 7b).
Nevertheless, the F-PSCs typically operate at room temper-
ature, which implies that the thermal self-healing process
may potentially harm the organic carrier transport layers.
Therefore, it is vital to create a self-healing perovskite that
can heal itself under gentle external stimuli. The disulfide
groups in polyurethane are weak covalent bonds, which
can assist to offer a healing functionality at lower tempera-
ture and hold a proper level of bond strength as well. The
restructured disulfide bonds can easily form free radicals at
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Fig. 7 a Normalized PCE of F-PSCs without self-healed function as a function of the number of stretching cycles. Inset: illumination of cracked
flexible perovskite film and F-PSCs after being stretched [96]. b Synthesis and thermal-driven self-healing mechanism of the self-healing PU
[96]. ¢ Schematic diagram of the thermal-driven self-healing process of perovskite films with dynamic covalent disulfide polyurethane elasto-
mers [92]. d Stability test of the F-PSCs with/without self-healing function [97]
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low temperature (~ 60 °C). Thus, the sulfur radicals create
disulfide bonds with the neighbors via an exchange reac-
tion as cooling down the temperature to implement the self-
healing function (Fig. 7c). 88% of the initial PCE of the
damaged F-PSCs was recovered with this method [92]. A
cross-linkable additive [97] was prepared to achieve ultra-
high bending durability and efficient self-healing F-PSCs at
room temperature. The cross-linked monomer located on
the perovskite GBs could potentially release residual stress
in 3D perovskite films. In addition, it can heal deformation-
induced cracks in the perovskite due to the covalent disulfide
bonds. The F-PSCs containing cross-linked monomer
exhibit excellent self-healing ability (Fig. 7d). Inspired by
the scales of the pangolin, a biomimetic self-healing route
via introducing a soft elastomer of diphenylmethane diisocy-
anate polyurethane (MDI-PU) in perovskite films to achieve
a flexural endurance flexible device was demonstrated. The
resultant F-PSCs retained 87.8% of its initial PCE values
after 2000 bending cycles [89]. Mechanical damage caused
by repeated deformation could be healed multiple times
under specific conditions, greatly extending the lifespan of
flexible devices and reducing their costs.

Moisture is typically considered a negative factor that
affects the stability of perovskite. A mechanically stable
formamidinium lead iodide (FAPbI;) film using a moisture-
triggered self-healing process was fabricated [88]. This pro-
cess allows for the repair of mechanical damage in a humid
environment. The poly(vinyl alcohol) micro-scaffold can
absorb water molecules and sew up cracks in brittle per-
ovskite films. During this self-healing process, the loosely
bonded halide ions interact with a thermal source or ultra-
violet inducer, leading to the ion migration and creation of
interstitial and vacancy defects. Therefore, the pursuit of
a mild self-healing technology is of great importance in
enhancing the mechanical property of F-PSCs. By strength-
ening the understanding of the materials and interfaces
employed, it is confident to produce F-PSCs that are flexible
and suitable for commercial use.

4.4 Crystallization Regulation

The flexural endurance of F-PSCs is closely correlated with
the crystalline quality of perovskite on flexible substrates.
In case of poor crystalline quality, the formation of numer-
ous grain boundaries occurs, resulting in lower mechanical

© The authors

stability and reduced flexural endurance for the perovskite
film. As the grain boundaries are prone to point defect
formation, which may serve as deep trap levels. The trap
density is expected to increase as grains become smaller
because of a greater overall grain boundary area. The sim-
ulation results suggest that the effective density of traps
increases significantly, surpassing the anticipated rise from
the grain boundary area alone [102]. It can be inferred that
perovskite films with large grains are far more stable than
those of small grains (Fig. 8a). The flexural endurance and
mechanical stability of F-PSCs were granted by an in situ
self-polymerization of methyl methacrylate (sSMMA) in Pbl,
to form a distinctive autonomously longitudinal organic scaf-
fold (Fig. 8b). The perovskite crystals with vertical crystal
growth can be confined within an sSMMA scaffold that fills
the pinholes and cracks within perovskite films and thus
enhance the mechanical stability [103]. The toughness of
the interface between MAPbI; and ETL is demonstrated by
its corresponding fracture energy, which is approximately
three times higher at 1.14 +0.24 ] m™2. This indicates that
the fracture occurs along the MAPbI,/ETL interface. The
results demonstrate that larger grains are advantageous in
enhancing the total fracture resistance of perovskite films
for PSCs, leading to improved mechanical stability and reli-
ability (Fig. 8c).

Inspired by the alternating soft-hard structure of the spine,
an adhesive polymer between the ITO and perovskite lay-
ers was employed for the same purpose [53]. This approach
facilitates the oriented crystallization of the perovskite and
improves the adhesion between the perovskite layer and
the flexible substrates as well (Fig. 8d). When bending the
samples, negligible cracks were found on the perovskite
films based on PEDOT:EVA layer, while obvious cracks
were determined on the films upon PEDOT:PSS layer. The
Young’s modulus of PET/ITO/PEDOT:EVA HTL film sur-
face (139 MPa) was determined to be lower than that of
PET/ITO/PEDOT:PSS (258 MPa). In short, the excellent
perovskite crystallization process effectively enhances the
films’ mechanical stability (Fig. 8e). The F-PSCs showed
exceptional mechanical stability, maintaining over 85%
of their original PCE even after 7,000 narrow bending
cycles without significant angular dependence. However,
this method only provides limited control over the top por-
tion of the perovskite layer and poses challenges in terms
of repeatability and production scalability. Moreover, the
pinholes that originate from the crystallization process of

https://doi.org/10.1007/s40820-023-01165-8
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perovskite film are potentially responsible for creating a
slightly increased stress concentration area within F-PSCs,
which consequently leads to a decrease in flexural endurance
and mechanical stability [44, 105-107]. To accomplish the
outstanding long-time operational stability of F-PSCs, it is
essential to reduce pinholes and increase the crystallization
quality of perovskite films by controlling the nucleation and
crystallization rate. To date, a variety of techniques have
been employed to manufacture high-quality perovskite films,
including the use of additives to delay the crystallization rate
and anti-solvent to make pinhole-free dense perovskite films.
Though additives are beneficial in improving the crystal-
line quality, an excessive amount of additives to perovskite
precursors often brings on precipitation due to interaction
among them, creating numerous pinholes and poor-quality
crystalline films. Therefore, it highly requires to develop a
novel and universal method that can fabricate high-quality,
pinhole-free perovskite films to achieve exceptional mechan-
ical robustness of F-PSCs. The cross-linking reaction is usu-
ally triggered after the perovskite film has already formed,
resulting in an inability to precisely monitor and guide the
evolution of the perovskite film in real time. A meticulously

SHANGHAI JIAO TONG UNIVERSITY PRESS

constructed functional monomer as an in situ cross-linked
molecule shows the simultaneous activation of the in situ
cross-linking and perovskite growth process to produce per-
ovskite films of large grains, dense stacking, and a preferred
crystal orientation [48].

5 Flexible Electrode Materials for F-PSCs

The primary objective in the advancement of F-PSCs is to
investigate transparent conductive electrodes that demon-
strate high conductivity. The ultimate goal for the bottom
electrode is to exhibit exceptional characteristics, includ-
ing transparency, flexibility, conductivity, low-temperature
processability, and chemical stability. The bottom electrode,
referred to as the window electrode, plays a crucial role in
attaining high performance in bottom-illuminated F-PSCs
by enabling the transmission of incident light for absorption
by the perovskite layer, while simultaneously facilitating the
collection of photogenerated charges. Transparent conduc-
tive oxides (TCOs), conductive polymers, carbon nanoma-
terials, and metallic nanostructures are widely employed as
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transparent electrodes in F-PSCs. Transparent metal oxide
electrodes on plastic substrates, predominantly ITO, are
commonly used in F-PSCs due to their excellent photoelec-
tronic performances. Unfavorably, on a plastic substrate, the
ITO tends to crack because of the substrate shrinkage during
mechanical bending, leading to considerable sheet resistance
and diffuse reflectance [108—111]. Thus, it is vital to develop
flexible transparent electrodes with properties of outstanding
mechanical stability and high transparency and conductiv-
ity. Several materials, including carbon-based nanomateri-
als, metal mesh, transparent conducting polymers, and metal
nanowires are employed in F-PSCs. In this instance, it is
critical to balance the conductivity and transparency of the
flexible electrodes. Moreover, for an ideal F-PSC, it should
retain a minimum of 90% of its initial PCE even after under-
going 1,000 bending cycles to meet the commercialized
requirements [112]. The ‘cask effect’ of F-PSCs remains
a barrier to their deployment in practical applications. Fur-
thermore, the stability of F-PSCs depends strongly on the
physical performances of their flexible substrates, including
the glass transition temperature, thermal expansion coeffi-
cient, and water and oxygen barrier performance, as shown
in Table 2 [113].

A summary of the diverse flexible transparent electrodes
employed in F-PSCs, along with their optical transparency
and electrical conductivity, is presented in Table 3. ITO/

increase, primarily due to the deformation of PEN sub-
strates. The critical temperature for ITO/PET is only 150 °C.
A continuous bending of ITO/PET and ITO/PEN films at a
curvature radius lower than a certain critical value can cause
their degradation (Fig. 9a) [114]. Moreover, the ITO-based
flexible substrate would crack when being continuous bent
or stretched due to its rigidity and brittleness, leading to a
dramatic decrease in its conductivity. Due to the brittleness,
the conductivity of ITO degrades as the curvature increases.
Under tensile stress, the cracking/channeling becomes the
primary cause of failure, while under compressive stress,
the debonding may be a factor to be seriously considered.
For example, when the r value is less than 14 mm, the ITO-
based flexible substrates could generate degradation under
tensile stress, while the degradation occurs for r values less
than 8 mm under compressive stress (e.g., Ry increased
by 50% after 150 cycles at r=5 mm). Typically, the degrada-
tion emerges at a critical value for the radius of curvature at
around r=35 mm per cycle (Fig. 9b).

Recently, architectural designs that facilitate mechanical
deformation have shown the beneficial in reducing dam-
age caused by flexing, indicating significant potential for

Table 3 Performance parameters of conventional flexible transparent
electrodes

Flexible electrode Sheet resist-  Transmittance (%) Refs
PET and ITO/PEN exhibit marginally lower transmittance ance (Q sq™")
in the visible-light spectrum than their glass counterparts.  prriro 10~15 731 [115]
However, the transmittance is significantly lower in the ultra-  pgNn/ITO 14 78 [116]
violet range considering the robust absorption of polymer PI-SWNT/MoO, 82 30 [117]
substrates. The ITO/PEN exhibits remarkable thermal sta-  PET/PEDOT:PSS 234.3 >80 [118]
bility, as its resistance remains unchanged (15 Qsq~') even = PET/Ag-mesh/PHI000 3 82~86 [119]
after annealing up to 235 °C. However, an annealing pro- ~ PEN/graphene/MoO; — 552.0 97 [42]
cess at over 250 °C results in a significant 20-fold resistance
Table 2 Performance parameters for conventional flexible substrates
Substrate PET PEN PI PDMS PC
Modulus (MPa) 2~4x%10° 0.1~0.5x10° 2.5x%10° 1 2.0~2.6x10°
T, °C) 70~110 120~ 155 155~270 125 145
T, (°C) 115~258 269 250~452 115~160
Water absorption (%) 0.4~0.6 03~04 1.3~3 >0.1 0.16~0.35
Work Temp. (°C) -50~150 <400 -45~200 -40~130
Vol. Res. (Q.cm) 10" 10° 1.5x10" 1.2x10" 10'°~10"®
Thermal expansion coefficient ~ 15~33 20 8§~20 310 75

(ppm/°C)

Density (g/cm®) 1.39 1.36 1.35~1.43 1.03 1.20~1.22
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real-world application of F-PSCs. Especially, metal meshes
provide an intriguing substitute for the TCOs electrode used
commonly in flexible photovoltaics, owing to their excellent
mechanical stability and conductivity. Figure 9c presents a
transparent conductive electrode with an embedded metal
mesh on a flexible substrate [120]. The conductive network
was facilitated by the Ni-mesh with excellent conductivity
(Fig. 9d). The PET/Ni-mesh/PH1000 electrode surpasses the
Ag-mesh alternative in terms of high transparency (85-87%)
while maintaining morphological consistency even in exten-
sively sized PET/Ni-mesh: PH1000 electrodes. After 5,000
bending cycles at a radius of curvature of 5 mm, the fabri-
cated F-PSCs retained 95.4% of the initial PCE.

SHANGHAI JIAO TONG UNIVERSITY PRESS

Silver nanowires (AgNWs) are considered as conductive
materials for flexible photovoltaic devices due to high con-
ductivity and inherent flexibility [122—124]. Nevertheless,
the AgN'Ws network obtained through solution processing
methods generally exhibits a limited coverage (<40%), high
surface roughness, elevated junction resistance, and poor
chemical stability. Consideration should be given to both the
substrate and electrode roughness as they affect the morphol-
ogy of the upper layers. In general, an elevated roughness of
the electrode surface can result in a decrease in the crystal
quality of the perovskite absorber, thereby weak device per-
formance. Moreover, the junctions of AgNWs concentrate
heat locally by radiation which further decreases the device’s
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stability. So far, many post-treatments have been proposed
for those AgNWs-based flexible substrates; however, none
of them have completely solved the issues faced with flexible
devices. A welding technique for an integrated flexible trans-
parent electrode design [121] was reported, showing a low
sheet resistance (R,) of 18 Q sq™! and a high transmittance
of 95% at 550 nm (Fig. 9¢). The resultant welding AgNWs-
based flexible electrode has excellent mechanical stability
in the bending and peeling tests (Fig. 9f). Furthermore, the
corrosion and oxidation of substrates must be considered
when AgNWs networks are exposed to air or severe condi-
tions. To provide a passivated surface, the blocking layer
must have mechanical durability, superior barrier property,
and high transmittance to reduce excess energy loss. Im et al.
[125] proposed to protect the AgNW:s electrode by vacuum-
depositing a 10-nm-thick ITO layer, and the resultant flex-
ible devices exhibited over 14% efficiency and exceptional
chemical stability.

6 Environmental Stability and Advanced
Encapsulation Technologies in F-PSCs

The perovskite absorber is easily damaged by continuous
light irradiation, oxygen, and humidity, resulting in crystal
structural transformation and degradation of the perovskite
absorber layer and further decreasing F-PSCs photovoltaic
performance. Long-term light exposure could lead to deg-
radation and lattice distortion because the light-induced
degradation process can damage the perovskite structure
via a thermal-induced lattice distortion [126, 127]. The
ultralow thermal conductivity of perovskite materials
(~0.4 W m™' K™') and the conventional organic hole trans-
port materials (~0.15 W m~' K ') make these two kinds of
functional layers fail to effectively dissipate heat by them-
selves [128, 129]. Subsequently, heat accumulates inside
PSCs to accelerate device degradation. To overcome this,
Zhou et al. [130] added silica aerogel to a perovskite film to
serve as both a heat dissipation medium and a passivator for
the perovskite surface. The characterization of integrating
infrared thermal imaging and a laser thermal conductivity
meter revealed that the additive with higher thermal con-
ductivity improves the stability and thermal transport effi-
ciency of F-PSCs [131]. Furthermore, continuous illumina-
tion could promote ion migrations in F-PSCs and thus lead
to local chemical component segregation, which would alter

© The authors

mechanical performance distribution. Advanced encapsula-
tion technology is immediately required for F-PSCs with a
plastic substrate, as the conventional rate of encapsulation
fails to ensure the stability of the devices [132—134].

It is widely recognized that F-PSCs are prone to deteriora-
tion when exposed to an atmospheric environment, which
poses a significant challenge in creating F-PSCs that can
maintain long-term stability in practical applications. Glass
has been widely used to encapsulate rigid perovskite solar
cells to prevent the spreading of moisture or oxygen into
functional layers. However, the rigid and fragile character-
istics of glass substrates render them unsuitable for F-PSCs
applications. The primary focus of this section is to explore
the most recent advanced encapsulation technologies that
are being employed to block water and oxygen into the vul-
nerable perovskite layer, which significantly enhances their
long-term operational stability and lifespan.

The evaluation of encapsulation materials usually involves
examining their oxygen transmission rate (OTR) and water
vapor transmission rate (WVTR) [135]. These measures
reflect how fast oxygen gas and water vapor can cross a spec-
ified area of the material within a particular period of time.
Generally, higher OTR and WVTR levels indicate greater
quantities of oxygen gas and/or water vapor entering the
sensitive material, leading to a faster degradation [136]. To
date, F-PSCs have been encapsulated using either a single-
layer or multiple-layer encapsulation technique. The former
approach uses only a single layer of inorganic or organic
material to encapsulate the F-PSCs. However, pinholes and
flaws should probably to form on the surface of encapsulants,
allowing oxygen or moisture to infiltrate the encapsulation
layer. In the latter approach uses organic/inorganic hybrid
thin film by combination inorganic layers with organic lay-
ers. Using barrier films and encapsulation to shield the sensi-
tive photoactive layer from moisture and oxygen has proven
to be one of the most important and successful methods
for stabilizing F-PSCs. Typically, the inorganic encapsu-
lation layer, e.g., AL, O3, Si0,, Si3N,, or SIO\N,, acts as a
buffer layer to prevent the penetration of water and oxygen.
In addition, the organic encapsulation layer, e.g., polyure-
thane (PU), poly(ethylene-1-octene) (POE), and poly(1,3,5-
trimethyl-1,3,5-triviny-Icyclotrisiloxane) (PV3D3), works
as a buffer layer, reducing the defects in inorganic encap-
sulation layer and further improving the reliability of the
device (Table 4). Multilayer thin-film encapsulation has been
widely employed in organic photoelectric devices. As shown
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Table 4 The performance and stability of encapsulated devices conducted under different conditions

Encapsulation materials Perovskite materials Stability test conditions % of initial PCE Refs

AZO Al 04 MAPbDI, 500 h/85 °C 86.7 [139]
PDMS MAPbDI, 3000 h/ambient 100 [140]
PV3D3/Al,04 (FAPbI;) g7(MAPbBI3), 13 300 h/50 °C 97 [141]
Organosilicate MAPbI, 3000 h/85 °C 92 [142]
UV-curable fluoropolymer (FAPbI;) (MAPbBr3), _, 2190 h/outdoor test 95 [143]
PI tape MAPbI, 1620 s/water 96.3 [144]
Adamantane nanocomposite MAPbDI, 60 s/water 95 [145]
PU (5-AVA) MA, _ Pbl, 2136 h/outdoor test 97.5 [146]
UV-curable epoxy MAPbDI, 144 h/85 °C 85 [147]
SnO, MAPbI, 7300 h/60 °C/N, 95 [148]
Polyolefin Csg,17FA( 53Pb(Bry 171 23)3 1000 h/85 °C 99 [149]
Poly(ethylene glycol)/resin MAPbDI, 450 days 100 [150]

(Fig. 10a), in comparison with the non-encapsulated control
devices, the device lifetime has been significantly increased
for ‘partial’ and ‘complete’ encapsulated F-PSCs stored
under an atmospheric environment. ‘Partially’ encapsulated
devices maintained approximately 80% of their initial PCE
for over 400 h before a sharp performance decline (Fig. 10b)
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[137]. The point was revealed when the stacked blocking
films under conditions of extensive bending were evaluated
[135]. Their research examined the performance of cured
perhydropolysilazane (PHPS) as an inorganic encapsula-
tion layer. The WVTR significantly increased throughout
an initial cyclic bending test with bending 150 times at a
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Fig. 10 a Illustration of a conventional encapsulation structure [137]. b Photovoltaic performance dependence of non-encapsulated and encap-
sulated F-PSCs as a function of storage time under ambient conditions [137]. ¢ Schematic diagram of hybrid organic/inorganic multilayer bar-
rier structure. d Significant improvement in water-oxygen resistance after incorporating organic interlayers, as shown in the inset featuring the

organic/inorganic multibarrier [135]
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radius of 3 mm due to the natural brittleness of cured PHPS
films. Amending this, polymer-based barrier interlayers were
introduced to construct a PHPS/polymer multilayer barrier
encapsulation on flexible substrates (Fig. 10c) and were able
to attain significantly superior mechanical reliability with
only a slight decrease in WVTR after 3,000 bending cycles
as shown in Fig. 10d. A similar phenomenon [138] was
discovered when they subjected eight variations of multi-
barriers to a severe cyclic bending test. The integration of
polymer interlayers in the barrier architecture significantly
improved mechanical robustness.

7 Conclusion and Outlook

F-PSCs have experienced significant advancements in
PCE and mechanical stability during the current decade
(2013-2023). We summarize the recent breakthroughs
achieved in the stability of F-PSCs and attributed them to
the compositional engineering of perovskite and flexible
transparent conductive electrodes as well as advanced encap-
sulation technologies. These advancements have resulted
in a record PCE of over 23% for flexible perovskite solar
cells. Several innovative and effective approaches to date
indicate that this field is rapidly developing, which pushes
the photovoltaic performance of F-PSCs closely to that of
rigid counterparts.

So far, flexural endurance and long-term operational sta-
bility remain vulnerabilities in their practical application.
The intrinsic brittleness of the perovskite lattice makes it
susceptible to distortion, leading to unfavorable defects and
cracks in the perovskite films during repeated deformations.
To bring these F-PSCs into a large-scale application, it is
paramount to induce self-healing capability and push their
long-term operational stability, thereby enabling the devices
with recoverable lifetimes. Strategies have been applied to
enhance the flexural endurance and mechanical stability of
F-PSCs, such as component optimization, grain boundary
modification, self-healing technologies, crystallization regu-
lation, and interfacial modification. The self-healing behav-
ior of perovskite is induced by external stimulation, which
enables flexible devices to achieve recoverable performance
and stability.

Enhancing mechanical and environmental stability is a
key aspect in the development and large-scale manufactur-
ing of F-PSCs. In order to limit the effect of oxygen and
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moisture, various barrier materials and advanced encapsula-
tion techniques have been employed, including polymer bar-
rier materials, thin films, and nanoparticle polymer matrixes.
The state-of-the-art encapsulation strategies exhibit robust
stability in laboratory conditions. Further study is desirable
to uncover the effects of oxygen and moisture. At present,
a series of advanced encapsulation technologies have been
proposed to ensure the environmental stability of F-PSCs,
although they are still in the initial stages. Considering other
factors that include the surface roughness, composition, and
crystallinity of the perovskite film, as well as additive engi-
neering and interface modification, are crucial to improve
the long-term operational stability of F-PSCs. Incorporating
these considerations alongside encapsulation strategies is
recommended to enhance the mechanical and environmental
stability of F-PSCs in the future.

There is also a lack of a standard characterization of
long-term operational stability. So far, the reports carried
out under various conditions are incomparable in parallel
and thus fairly provide few useful references for subsequent
research. For the industrialization of flexible perovskite
photovoltaic devices, it is necessary to establish a scientific
evaluation standard procedure on their stability.
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