Supporting Information for

Effectively Modulating Oxygen Vacancies in Flower-Like δ-MnO₂

Nanostructures for Large Capacity and High-Rate Zinc Ion Storage

Yiwei Wang¹, Yuxiao Zhang¹, Ge Gao¹, Yawen Fan¹, Ruoxin Wang¹, Jie Feng¹, Lina Yang², Alan Meng², Jian Zhao^{1, *}, Zhenjiang Li^{1, *}

¹College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, P. R. China

²College of Chemistry and Molecular Engineering, Qingdao University of Science

and Technology, Qingdao 266042, Shandong, P. R. China

*Corresponding authors. E-mail: <u>zjcc2016@qust.edu.cn</u> (Jian Zhao)

zhenjiangli@qust.edu.cn or zjli126@126.com (Zhenjiang Li)

S1 Calculations

The corresponding diffusion coefficients of the δ -MnO₂ and δ -MnO_{2-x} electrodes are obtained according to the equation:

$$D_{GITT} = \frac{4}{\pi\tau} (\frac{m_B V_M}{M_B S})^2 \cdot (\frac{\Delta E_S}{\Delta E_\tau})^2$$

in which τ denotes the constant current pulse time (s), m_B, V_M, M_B, and S represent the weight (g), molar volume (cm³ mol⁻¹), molecular weight (g mol⁻¹) of the electrode and contacting area (cm²) between the electrode and electrolyte, respectively.

S2 Supplementary Figures

Fig. S1 a-b SEM images of $\delta\text{-MnO}_{2\text{-}x\text{-}}0.5$ and $\delta\text{-MnO}_{2\text{-}x\text{-}}5.0$

Fig. S2 CV curves for a δ -MnO₂, b δ -MnO₂-x-0.5 and c δ -MnO_{2-x}-5.0 electrodes at 0.2~2.0 mVs⁻¹

Fig. S3 Capacity retention rate of a δ -MnO₂, b δ -MnO₂-x-0.5 and c δ -MnO_{2-x}-5.0

Fig. S4 Charge/discharge profiles of the **a** δ -MnO₂, **b** δ -MnO_{2-x}-0.5 and **c** δ -MnO_{2-x}-5.0 at 0.5~10.0 A g⁻¹

Fig. S5 In-situ ion diffusion coefficients of the **a** δ -MnO₂, **b** δ -MnO_{2-x}-0.5 and **c** δ -MnO_{2-x}-5.0

Fig. S6 CV profiles at diverse sweep rates of the **a** δ -MnO₂, **b** δ -MnO_{2-x}-0.5 and **c** δ -MnO_{2-x}-5.0. The evaluation of b values from linear fits in logarithmic plots of peak currents versus scan rates for the **d** δ -MnO₂, **e** δ -MnO_{2-x}-0.5 and **f** δ -MnO_{2-x}-5.0

Fig. S7 The side-view theoretical models of a δ -MnO₂, b δ -MnO_{2-x}-0.5, c δ -MnO_{2-x}-2.0 and d δ -MnO_{2-x}-5.0

Fig. S8 a The side-view theoretical models of δ-MnO₂ adsorbing H⁺, **b** δ-MnO_{2-x}-0.5 adsorbing H⁺, **c** δ-MnO_{2-x}-2.0 adsorbing H⁺, **d** δ-MnO_{2-x}-5.0 adsorbing H⁺ and **e** δ-MnO₂ adsorbing Zn²⁺, **f** δ-MnO_{2-x}-0.5 adsorbing Zn²⁺, **g** δ-MnO_{2-x}-2.0 adsorbing Zn²⁺, **h** δ-MnO_{2-x}-5.0 adsorbing Zn²⁺

Fig. S9 The ex-situ FESEM image at fully discharged state (point V)

Cathode materials	Voltage range	Specific capacitance	Rate performance	References
$Mn_{0.15}V_2O_5{\cdot}nH_2O$	0.2~1.6 V	299 mAh·g ⁻¹	150mAh·g ⁻¹	[S1]
		@0.5 A·g ⁻¹	@10 A·g ⁻¹	
$K_{0.43}(NH_4)_{0.12}V_2O_{5-\delta}$	1.7~4.0 V	373.7 mAh·g ⁻¹	213 mAh·g ⁻¹	[S2]
		@0.5 A·g ⁻¹	@10 A·g ⁻¹	
P-Co-NVO	0.3~1.2 V	253.5 mAh·g ⁻¹	167.4 mAh·g ⁻¹	[\$3]
		@0.5 A·g ⁻¹	@10 A·g ⁻¹	
V2O3	0.2~1.6 V	382.5 mAh·g ⁻¹	205 mAh·g ⁻¹	[S4]
		@0.4 A·g ⁻¹	@12.8 A·g ⁻¹	
Od-HVO @PPy	0.2~1.6 V	346.5 mAh·g ⁻¹	252.6 mAh·g ⁻¹	[\$5]
		@0.1 A·g ⁻¹	@10 A·g ⁻¹	
Na ⁺ doping VO ₂ nanobelts (NVO)	0.2~1.6 V	345 mAh·g ⁻¹	121 mAh·g ⁻¹	[S6]
		@0.2 A·g ⁻¹	@10 A·g ⁻¹	
ZnO-QDs-VN-0.5	0.4~1.6 V	348.5 mAh·g ⁻¹	125.4 mAh·g-1	[S7]
		@0.2 A·g ⁻¹	@5.0 A·g ⁻¹	
MnO2@PANI	1.0~1.85 V	342 mAh·g ⁻¹	100 mAh·g-1	[S 8]
		@0.2 A·g ⁻¹	@5.0 A·g ⁻¹	
S-MnO ₂	0.8~1.8 V	324 mAh·g ⁻¹	205 mAh·g ⁻¹	[S9]
		@0.2 A·g ⁻¹	@2.0 A·g ⁻¹	
δ-MnO ₂ NDs	1.0~1.9 V	335 mAh·g ⁻¹	206 mAh·g ⁻¹	[S10]
		@0.1 A·g ⁻¹	@2.0 A·g ⁻¹	
δ-MnO _{2-x} -2.0	0.9~1.8 V		420.7 mAh·g ⁻¹	This work
			@2.0 A·g ⁻¹	
		551.8 mAh·g ⁻¹	328.6 mAh·g ⁻¹	
		@0.5 A·g ⁻¹	@5.0 A·g ⁻¹	
			262.2 mAh·g ⁻¹	
			@10.0 A·g ⁻¹	

Table S1 The comparison of electrochemical properties of δ -MnO_{2-x}-2.0 with the previously reported cathode materials for zinc ion batteries

Table S2 The comparison of electrochemical properties of δ -MnO_{2-x}-2.0 with the previously reported cathode materials for zinc ion batteries

Samples	Cycling current density	Cycle performance	References
$Zn//\beta$ -MnO ₂	0.2 A·g ⁻¹	53.7% (after 1000 cycles)	[S11]
δ-MnO ₂ NDs	1.0 A·g ⁻¹	86.2% (after 1000 cycles)	[S10]
V2O5/CNTs hybrid paper	10.0 A·g ⁻¹	76.9% (after 500 cycles)	[S12]
ZnO-QDs-VN-0.5	5.0 A·g ⁻¹	54% (after 1800 cycles)	[S7]
ZNCMO@N-rGO	1.0 A·g ⁻¹	78.5% (after 900 cycles)	[S13]
$Zn/rGO/\!/V_3O_7{\cdot}H_2O/rGO$	1.5 A·g ⁻¹	79% (after 1000 cycles)	[S14]
NiHCF/RGO	0.2 A·g ⁻¹	80.2% (after 1000 cycles)	[S15]
Zn/NVO	4.0 A·g ⁻¹	82% (after 1000 cycles)	[S16]
β-MnO ₂	1.0 A·g ⁻¹	89.1% (after 600 cycles)	[S17]
MnO ₂ @PEDOT	1.11 A·g ⁻¹	83.7% (after 300 cycles)	[S18]
		~90% (after 500cycles)	
δ-MnO _{2-x} -2.0	3.0 A·g ⁻¹	~87% (after 1000 cycles)	This work
		~83% (after 1500 cycles)	

Supplementary References

- [S1] H. Geng, M. Cheng, B. Wang, Y. Yang, Y. Zhang et al., Electronic structure regulation of layered vanadium oxide via interlayer doping strategy toward superior high-rate and low-temperature zinc-ion batteries. Adv. Funct. Mater. 30, 112 (2019). <u>https://doi.org/10.1002/adfm.201907684</u>
- [S2] Y. Zhao, S. Liang, X. Shi, Y. Yang, Y. Tang et al., Synergetic effect of alkalisite substitution and oxygen vacancy boosting vanadate cathode for superstable potassium and zinc storage. Adv. Funct. Mater. 32, 2203819 (2022). https://doi.org/10.1002/adfm.202203819
- [S3] M. Du, Z. Miao, H. Li, F. Zhang, Y. Sang et al., Oxygen-vacancy and phosphate coordination triggered strain engineering of vanadium oxide for high-performance aqueous zinc ion storage. Nano Energy 89, 106477(2021). https://doi.org/10.1016/j.nanoen.2021.106477
- [S4] J. Ding, H. Zheng, H. Gao, Q. Liu, Z. Hu et al., In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv. Energy Mater. 11, 2100973 (2021). <u>https://doi.org/10.1002/aenm.202100973</u>
- [S5] Z. Zhang, B. Xi, X. Wang, X. Ma, W. Chen et al., Oxygen defects engineering of VO₂·xH₂O nanosheets via in situ polypyrrole polymerization for efficient aqueous zinc ion storage. Adv. Funct. Mater. **31**, 2103070 (2021). <u>https://doi.org/10.1002/adfm.202103070</u>
- [S6] Y. Liu, X. Wu, Hydrogen and sodium ions Co-intercalated vanadium dioxide electrode materials with enhanced zinc ion storage capacity. Nano Energy 86, 106124 (2021). <u>https://doi.org/10.1016/j.nanoen.2021.106124</u>
- [S7] Y. Bai, H. Zhang, B. Xiang, Q. Yao, L. Dou et al., Engineering porous structure in Bi-component-active ZnO quantum dots anchored vanadium nitride boosts reaction kinetics for zinc storage. Nano Energy 89, 106386 (2021). <u>https://doi.org/10.1016/j.nanoen.2021.106386</u>
- [S8] N. Li, Z. Hou, S. Liang, Y. Cao, H. Liu et al., Highly flexible MnO₂@polyaniline core-shell nanowire film toward substantially expedited zinc energy storage. Chem. Eng. J. 452, 139408 (2023). https://doi.org/10.1016/j.cej.2022.139408
- [S9] Y. Zhao, P. Zhang, J. Liang, X. Xia, L. Ren et al., Uncovering sulfur doping effect in MnO₂ nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Stor. Mater. 47, 424-433 (2022). <u>https://doi.org/10.1016/j.ensm.2022.02.030</u>
- [S10] H. Tang, W. Chen, N. Li, Z. Hu, L. Xiao et al., Layered MnO₂ nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Stor. Mater. 48, 335-343 (2022). <u>https://doi.org/10.1016/j.ensm.2022.03.042</u>

- [S11] W. Liu, X. Zhang, Y. Huang, B. Jiang, Z. Chang et al., β-MnO₂ with proton conversion mechanism in rechargeable zinc ion battery. J. Energy Chem. 56, 365-373 (2021). <u>https://doi.org/10.1016/j.jechem.2020.07.027</u>
- [S12] Y. Li, Z. Huang, P. K. Kalambate, Y. Zhong, Z. Huang et al., V₂O₅ nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 60, 752-759 (2019). <u>https://doi.org/10.1016/j.nanoen.2019.04.009</u>
- [S13] Y. Tao, Z. Li, L. Tang, X. Pu, T. Cao et al., Nickel and cobalt co-substituted spinel ZnMn₂O₄@N-rGO for increased capacity and stability as a cathode material for rechargeable aqueous zinc-ion battery. Electrochim. Acta 331,135296 (2020). https://doi.org/10.1016/j.electacta.2019.135296
- [S14] C. Shen, X. Li, N. Li, K. Xie, J. G. Wang et al., Graphene-boosted, highperformance aqueous Zn-ion battery. ACS Appl. Mater. Interfaces 10, 25446-25453 (2018). <u>https://doi.org/10.1021/acsami.8b07781</u>
- [S15] Y. Xue, Y. Chen, X. Shen, A. Zhong, Z. Ji et al., Decoration of nickel hexacyanoferrate nanocubes onto reduced graphene oxide sheets as highperformance cathode material for rechargeable aqueous zinc-ion batteries. J. Colloid Interface Sci. 609, 297-306 (2022). https://doi.org/10.1016/j.jcis.2021.12.014
- [S16] F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu et al., Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 9, 1656 (2018). <u>https://doi.org/10.1038/s41467-018-04060-8</u>
- [S17] X. Shi, G. Xu, S. Liang, C. Li, S. Guo et al., Homogeneous deposition of zinc on three-dimensional porous copper foam as a superior zinc metal anode. ACS Sustain. Chem. Eng. 7, 17737-17746 (2019). <u>https://doi.org/10.1021/acssuschemeng.9b04085</u>
- [S18] Y. Zeng, X. Zhang, Y. Meng, M. Yu, J. Yi et al., Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO₂ battery. Adv. Mater. 29, 1700274 (2017). <u>https://doi.org/10.1002/adma.201700274</u>