Supporting Information for

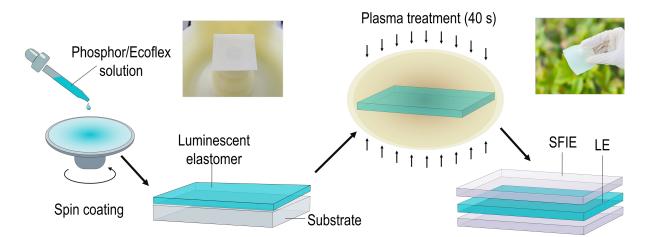
Humanoid Intelligent Display Platform for Audiovisual

Interaction and Sound Identification

Yang Wang^{1,†}, Wenli Gao^{1,†}, Shuo Yang¹, Qiaolin Chen², Chao Ye³, Hao Wang¹, Qiang Zhang⁴, Jing Ren¹, Zhijun Ning¹, Xin Chen², Zhengzhong Shao², Jian Li^{1, 5}, Yifan Liu^{1, 5}, Shengjie Ling^{1, 5, *}

¹School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China

²State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China


³School of Textile & Clothing, Yancheng Institute of Technology, Jiangsu 224051, P. R. China

⁴School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China

⁵Shanghai Clinical Research and Trial Center, 201210, Shanghai, P. R. China

[†] Yang Wang and Wenli Gao contributed equally to this work.

*Corresponding author. E-mail: <u>lingshj@shanghaitech.edu.cn</u> (Shengjie Ling)

Supplementary Figures

Fig. S1 Fabrication of HIDPs includes spin-coating of phosphor/ecoflex solution, plasma treatment of luminescent elastomer and assembling of SFIE with luminescent elastomer

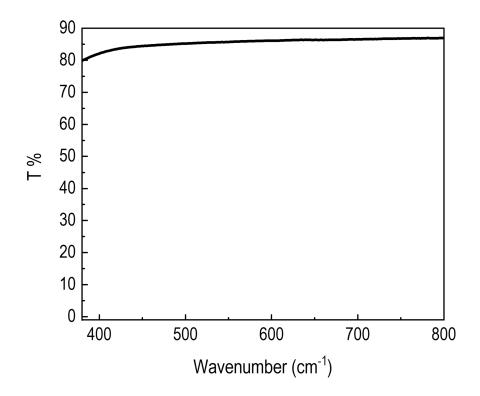


Fig. S2 The optical transmittance of SFIE when the mass ratio of SF/LiCl was 5:2

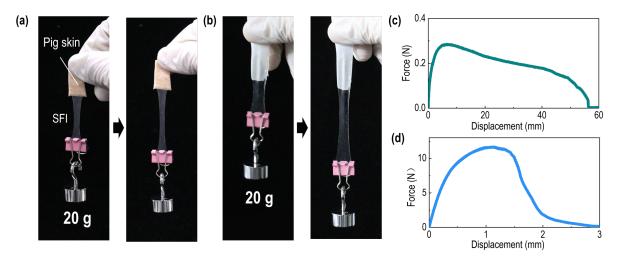
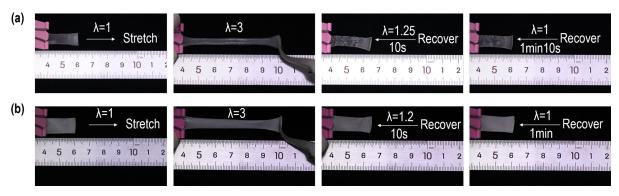
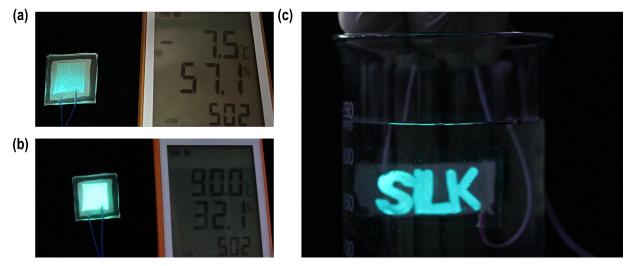




Fig. S3 a, b Photographs of adhered joint between SFIE and pig skin (a) or EL layer (b) that can hold a weight of 20g, which is 200 times its own weight. And the bonding interface can keep stable during the stretching process caused by the gravity of the weight. c, d Force-displacement curve of peeling test between pig skin and SFIE without (c) and with (d) rigid PS substrate

Nano-Micro Letters

Fig. S4 a Photographs showing the elasticity of SFIE, which recovered 87.5% within 10 s and fully recovered after 70s. **b** Photographs showing the elasticity of HIDP, which recovered 90 % within 10 s and fully recovered after 60 s

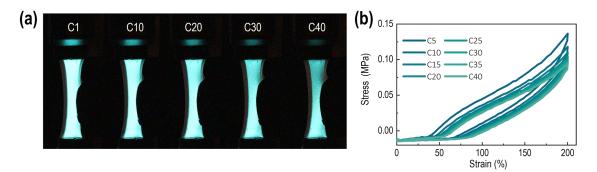

Fig. S5 Photographs showing HIDPs encapsulated by VHB glue can work at low temperature (-7.5 $^{\circ}$ C), high temperature (90 $^{\circ}$ C) and underwater

Fig. S6 a The brightness (L)-strain curve of HIDP during the stretching process with an excitation voltage kept at 492 V. **b** The brightness (L)-cycles curve of HIDP during 100 stretch cycles with stretch amplitude of 200% and an excitation voltage kept at 492 V

Fig. S7 Comparison of Young's modulus and toughness of the HIDP, and other representative ionotronics material. The Ashby plot of representative ionotronics materials has been adapted with permission [S1]. Copyright 2022, Royal Society of Chemistry

Fig. S8 a Snapshots of the pre-notched HIDP during 40 stretching cycles with a stretch amplitude of 200%. **b** Cyclic stress–strain curve of the pre-notched HIDP with a stretch amplitude of 200%

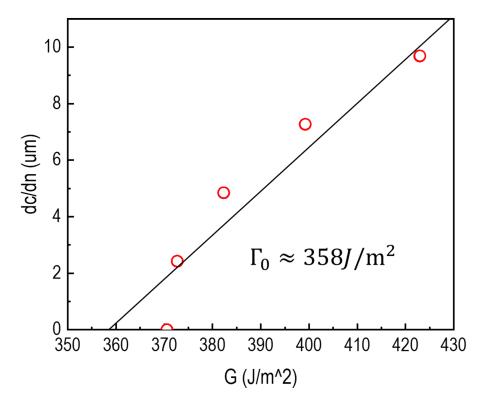
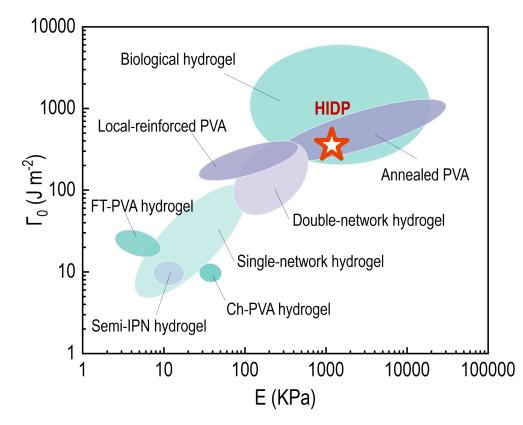



Fig. S9 Fatigue threshold Γ_0 of HIDP

Fig. S10 Comparison of the Young's modulus E and $\Box 0$ for SSIFs, and other representative soft materials. The Ashby plot of other elastomers has been adapted with permission [S2]. Copyright CC BY-NC 4.0

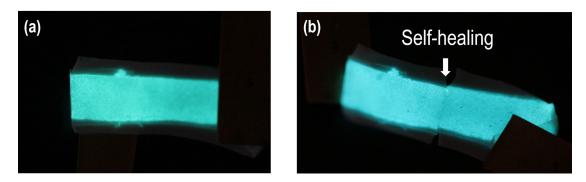


Fig. S11 Photographs showing self-healed HDIP can still emit with the same brightness (a) as before cutting (b)

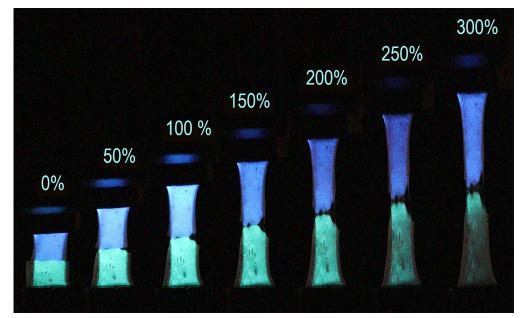
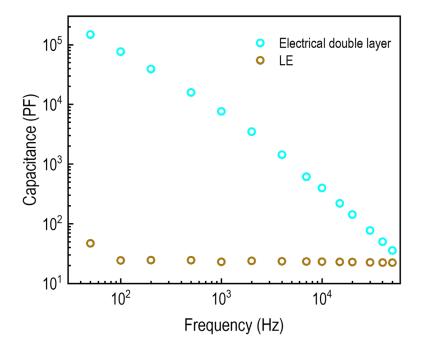



Fig. S12 Snapshots of the dual-color HIDP during the stretching process

Fig. S13 The capacitance-frequency curve of electrical double layer formed by the copper electrode and SFIE, and luminescent elastomer (LE) layer

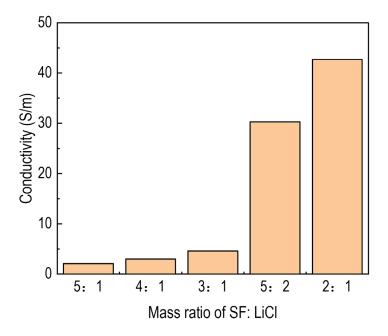


Fig. S14 The conductivity of SFIE versus mass ratio of SF: LiCl at a relative humidity of 44%

Supplementary References

- [S1]C. Dai, Y. Wang, Y. Shan, C. Ye, Z. Lv et al., Cytoskeleton-inspired hydrogel ionotronics for tactile perception and electroluminescent display in complex mechanical environments. Mater. Horiz. 10, 136-148 (2023). <u>https://doi.org/10.1039/D2MH01034H</u>
- [S2]S. Lin, X. Liu, J. Liu, H. Yuk, H.-C. Loh et al., Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2019). <u>https://doi.org/10.1126/sciadv.aau8528</u>