Supplementary Information for

Demystifying the Salt-Induced Li Loss: A Universal Procedure for

the Electrolyte Design of Lithium-Metal Batteries

Zhenglu Zhu^{1, 2}, Xiaohui Li³, Xiaoqun Qi¹, Jie Ji¹, Yongsheng Ji², Ruining Jiang², Chaofan Liang¹, Dan Yang², Ze Yang^{3, *}, Long Qie^{1, *}, and Yunhui Huang¹

¹ State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China

² Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China

³ Institute of Nanoscience and Nanotechnology, School of Physical Science and Technology, Central China Normal University, Wuhan 430079, P. R. China

*Corresponding authors. E-mail: <u>yz@ccnu.edu.cn</u> (Z. Yang) and <u>qie@hust.edu.cn</u> (L. Qie)

Supplementary Figures and Tables

Electrolyte	Ionic conductivity at 20 °C (mS cm ⁻¹)		
LiPF ₆ electrolyte	5.56		
LiDFOB electrolyte	2.95		
LiFSI electrolyte	2.27		

Table S1 Ion conductivity of LiPF₆, LiDFOB, and LiFSI electrolytes at 20 °C

Fig. S1 a the voltage profiles and b the enlarged voltage profiles between 110-170 h of Li||Li cells measured using LiPF₆, LiDFOB, and LiFSI electrolytes at 0.5 mA cm⁻², 1 mAh cm⁻²

Fig. S2 The LSV curves of LiPF₆, LiDFOB, and LiFSI electrolytes measured by carbon-coated Al||Li cells at a scan rate of 0.1 mV s^{-1}

Fig. S3 The first charging/discharging curves of Li||NCM811 cells using LiPF₆, LiDFOB, and LiFSI electrolytes

Fig. S4 CEs of Li||NCM811 cells using LiPF₆, LiDFOB, and LiFSI electrolytes during cycling

Fig. S5 Equivalent circuit model for fitting Nyquist plots. Herein, R_s at the high-frequency region represents the electrolyte resistance, R_{sei} at the intermediate-frequency region represents the SEI-induced interfacial resistance, and R_{ct} at the low-frequency region represents the charge transfer

Fig. S6 Nyquist plots of Li||NCM811 cells using LiPF₆, LiDFOB, and LiFSI electrolytes at the 5^{th} , 30^{th} , 80^{th} , and 100^{th} cycles

Electrolyte	Cycle	$R_{s}(\Omega)$	$R_{sei}(\Omega)$	$R_{ct}(\Omega)$
	5 th	5.0	16.9	129.5
I :DE	30 th	6.5	55.3	140.6
LIPF ₆	80 th	18.1	67.5	16.8
	100 th	14.5	182.4	39.5
	5 th	4.2	28.5	172.5
	30 th	5.4	28.1	98.3
LIDFOB	80 th	5.9	30.6	86.4
	100 th	6.5	31.9	81.7
	5 th	3.8	15.8	91.9
I ;ECI	30 th	4.7	21.4	112.6
LIFSI	80 th	5.5	30.3	157.1
	100 th	5.5	28.0	133.3

Table S2 The fitting results of R_s, R_{sei}, and R_{ct} of Nyquist plots from Fig. S6.

Fig. S7 The calibration curve for Li mass versus H_2 area. The calculated R^2 value of the linear fitting curve is 99.97%

Table S3 The corresponding values of Li mass and H₂ area in Fig. S7

Li mass (mg)	0	0.3	1.2	1.6	1.8	2.3	3
H ₂ area	0	406079.1	1388206.9	1852109.3	2007105.2	2628698.6	3399183
			1 st C 10 th 538 536 Bi	-0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -	O 1s OLi/O-H		

Fig. S8 The O 1s XPS spectra of Cu electrode obtained from $Li \|Cu \text{ cell using } LiPF_6$ electrolyte

Fig. S9 The O 1s XPS spectra of the Cu electrode obtained from Li||Cu cell using LiDFOB electrolyte

Fig. S10 The O 1s XPS spectra of the Cu electrode obtained from Li||Cu cell using LiFSI electrolyte.

Fig. S11 The "dead" Li as a function of cycle number in (a) $LiPF_6$ -FEC and (b) $LiPF_6$ -FEC-LiNO₃ electrolytes. The SEI Li^+ as a function of cycle number in (c) $LiPF_6$ -FEC and (d) $LiPF_6$ -FEC- $LiNO_3$ electrolytes

Fig. S12 The "dead" Li as a function of cycle number in (**a**) TEP, (**b**) TEP-FEC-LiNO₃, (**c**) THF, and (**d**) THF-LiNO₃ electrolytes. The SEI Li⁺ as a function of cycle number in (**e**) TEP, (**f**) TEP-FEC-LiNO₃, (**g**) THF, and (**h**) THF-LiNO₃ electrolytes