Supporting Information for

Atomic Cu Sites Engineering Enables Efficient CO₂

Electroreduction to Methane with High CH₄/C₂H₄ Ratio

Minhan Li^{1, 2, #}, Fangzhou Zhang^{1, #}, Min Kuang¹, Yuanyuan Ma^{1, *}, Ting Liao³, Ziqi Sun³, Wei Luo¹, Wan Jiang¹, and Jianping Yang^{1, *}

¹ Institute of Functional Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

² College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

³ School of Mechanical, Medical and Process Engineering, School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia

[#]Minhan Li and Fangzhou Zhang contributed equally to this work.

*Corresponding authors. E-mail: <u>yyma@dhu.edu.cn</u> (Yuanyuan Ma); jianpingyang@dhu.edu.cn (Jianping Yang)

Supplementary Figures and Tables

Fig. S1 TEM images of CN and Cu_x-CN catalysts. (**a-b**) CN. (**c-d**) Cu_{0.01}-CN. (**e-f**) Cu_{0.05}-CN. (**g-h**) Cu_{0.2}-CN. (**i-j**) Cu_{0.5}-CN

Fig. S2 The HAADF-STEM images of the $Cu_{0.2}$ -CN (**a**) and $Cu_{0.5}$ -CN catalysts (**b**). The aberration-corrected HAADF-STEM image of the $Cu_{0.5}$ -CN catalyst

Fig. S3 Nitrogen sorption-desorption isotherms (**a**) and the corresponding pore size distribution (**b**)

Fig. S4 The original HAADF-STEM image (a) and EDS spectra (b) for Fig. 1d

Fig. S5 The characterization of Ni and Fe doped g-C₃N₄ materials. (**a**) XRD patterns of Ni_x-CN materials. (**b**) XRD patterns of Fe_x-CN materials. (**c**) Aberration-corrected HAADF-STEM images of Fe_{0.2}-CN. (**d**) TEM image of Fe_{0.01}-CN. (**e**) TEM image of Fe_{0.05}-CN. (**f**) TEM image of Fe_{0.2}-CN. (**g**) TEM image of Ni_{0.01}-CN. (**h**) TEM image of Ni_{0.05}-CN. (**i**) TEM image of Ni_{0.2}-CN

Fig. S6 (a) XPS survey spectra of Fe_{0.2}-CN. (b) Fe 2p spectra of Fe_{0.2}-CN. (c) XPS survey spectra of Ni_{0.2}-CN. (d) Ni 2p spectra of Ni_{0.2}-CN. Inserts in (b) and (d) depict the atomic ratio of Fe_{0.2}-CN and Ni_{0.2}-CN, showing a slightly lower metal content than Cu_{0.2}-CN (Cu: 1.75 at%)

Fig. S7 (a) The first derivatives of the Cu K edge XANES spectra of the Cu_x-CN and reference samples in Figure 2d. (b) The estimated average oxidation state of Cu in Cu_{0.05}-CN and Cu_{0.5}-CN catalysts

Fig. S8 XPS spectra of different catalysts

Fig. S9 (a) Cu 2p spectra of different Cu_x-CN catalysts. Peak fitting of Cu 2p spectrum of (b) Cu_{0.01}-CN, (c) Cu_{0.05}-CN, (d) Cu_{0.2}-CN, and (e) Cu_{0.5}-CN catalyst. (f) Cu LMM spectra of Cu_x-CN catalysts

Fig. S10 (a) N 1s spectra of different catalysts. Peak fitting of N 1s spectrum of (b) CN, (c) $Cu_{0.01}$ -CN, (d) $Cu_{0.05}$ -CN, (e) $Cu_{0.2}$ -CN, and (f) $Cu_{0.5}$ -CN catalyst

Fig. S11 (a) C 1s spectra of different catalysts. Peak fitting of C 1s spectrum of (b) CN, (c) Cu_{0.01}-CN, (d) Cu_{0.05}-CN, (e) Cu_{0.2}-CN, and (f) Cu_{0.5}-CN catalyst

Fig. S12 The C 1s spectra of commercial CuO nanoparticle (c-CuO), Cu(acac)₂, and different Cu_x -CN catalysts

Fig. S13 The product distribution on different catalysts. (a) CN. (b) $Cu_{0.01}$ -CN. (c) $Cu_{0.05}$ -CN. (d) $Cu_{0.2}$ -CN. (e) $Cu_{0.5}$ -CN

Fig. S14 The ¹H NMR spectra of the electrolyte for $Cu_{0.05}$ -CN catalysts at different potentials. (a) At -0.9 V_{RHE}. (b) At -1.0 V_{RHE}. (c) At -1.1 V_{RHE}. (d) At -1.2 V_{RHE}. (e) At -1.3 V_{RHE}

Fig. S15 To determine whether the Cu atoms would agglomerate after CO_2RR electrolysis, a working electrode prepared by coating 2 mg of the $Cu_{0.05}$ -CN catalyst (without carbon black) on a piece of carbon paper (1 cm²) is tested under CO₂RR condition at -1.2 V_{RHE} for 2 hours. (**a**) The photographs of the working electrode before and after CO₂RR electrolysis. (**b**) The XRD and grazing incidence X-ray diffraction (GIXRD) of the working electrode before and after CO₂RR electrolysis. The XRD patterns show no crystalline Cu species (CuO or metallic Cu) form after CO₂RR electrolysis. Further, we also perform GIXRD with an incident angle of 1 degree, which is sensitive to the surface catalyst layer on the electrode. It can be seen that the diffraction peaks of the carbon paper substrate are largely decreased. Similarly, there is

still no crystalline copper species can be detected. (c) The TEM image of the $Cu_{0.05}$ -CN catalyst peeled off from the electrode after CO₂RR electrolysis. Although the TEM image is less clear than that of the as-prepared Cu_{0.05}-CN catalyst due to the addition of Nafion binder, the layered structure of the Cu_{0.05}-CN catalysts without crystalline Cu species can be observed.

Fig. S16 The CO-TPD measurement and control samples. (a) CO-TPD curves of CN and $Cu_{0.05}$ -CN catalysts. (b) The GC signal of the hydrocarbon products on $Cu_{0.05}$ -CN catalyst and control samples, including 0.05-CN and carbon black. (c) FEs and current density of 0.05-CN catalyst. (d) FEs and current density of carbon black

Fig. S17 The Nyquist plots of CN and Cu_x -CN catalysts in CO₂-saturated 0.1 M KHCO₃

Fig. S18 The comparison of CO₂RR performance and FE ratios of CH₄/C₂H₄ with the reported literatures [S1-S5]

Fig. S19 The electrochemical cell for in situ ATR-FTIR measurement

Fig. S20 The fitting curve of k^3 -weighted EXAFS spectra in R space of Cu_{0.05}-CN, using the Artemis module of IFEFFIT. The corresponding model is shown as insert. The fitting for Cu_{0.05}-CN was done on the k^3 -weighted EXAFS function $\chi(k)$ data from 2.7 to 11 Å⁻¹ in the *R*-range of 1.0–2.0 Å. The fitting parameters are listed in Table S2

Fig. S21 The optimized structure and the differential charge densities of Cu_1 -g- C_3N_4 . Yellow represents electron accumulation and cyan denotes electron depletion. It is clear that the electrons transfer from Cu atoms to the coordinated N atoms

Fig. S22 The models of pristine $g-C_3N_4$ (I), $Cu_1-g-C_3N_4$ (II), $Cu_2-g-C_3N_4$ (III), and $Cu_2-d-C_3N_4$ (IV). Based on the experimental results, four models were first built, namely the pristine carbon nitride ($g-C_3N_4$), one Cu atom incorporated in the nitrogen cavities of $g-C_3N_4$ ($Cu_1-g-C_3N_4$), two Cu atoms incorporated in the nitrogen cavities of $g-C_3N_4$ ($Cu_2-g-C_3N_4$), and the damaged $g-C_3N_4$ framework hosted two adjacent atomic Cu sites with different coordination structures ($Cu_2-d-C_3N_4$)

Note: Based on the structural and compositional characterizations, the C-N heterocycles of $g-C_3N_4$ are partially damaged and the defects increase in the Cu_x-CN catalysts with high Cu loads, including the Cu_{0.2}-CN and Cu_{0.5}-CN catalysts. Meanwhile, the increasing O and Cu content and the emergance of Cu²⁺ species indicate the formation of Cu sites with O-coordination in the Cu_{0.2}-CN and Cu_{0.5}-CN catalysts. Therefore, the Cu₂-d-C₃N₄ structure is proposed to investigate the CO₂RR on the Cu_{0.2}-CN and Cu_{0.5}-CN catalysts.

Fig. S23 The free energy diagram of CO₂ to CH₄ and C₂H₄ on Cu₂-d-C₃N₄

Catalysts	CN	Cu _{0.01} -CN	Cu _{0.05} -CN	Cu _{0.2} -CN	Cu _{0.5} -CN	0.05-0	CN
Cu (wt.%)	/	0.210 %	0.954 %	2.554 %	3.811 %	0.003	%
Table S2 EXAFS fitting parameters for Cu _{0.05} -CN							
Sample	Path	Ν	R (Å)	c) (10 ⁻²		$(E_0 eV)$	R factor
Cu _{0.05} -CN	Cu-N	3.33	1.92	2 8.	05	1.1	0.016

Table S1 The Cu content in CN and Cu_x-CN catalysts determined by ICP-AES

Supplementary References

- [S1] A. Guan, Z. Chen, Y. Quan, C. Peng, Z. Wang, T.-K. Sham, C. Yang, Y. Ji, L. Qian, X. Xu, G. Zheng. Boosting CO₂ electroreduction to CH₄ via tuning neighboring single-copper sites. ACS Energy Lett. 5(4), 1044-1053 (2020). <u>https://doi.org/10.1021/acsenergylett.0c00018</u>
- [S2] Y. Hori, I. Takahashi, O. Koga, N. Hoshi. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. A: Chem. 199(1), 39-47 (2003). <u>https://doi.org/10.1016/S1381-1169(03)00016-5</u>
- [S3] A. Loiudice, P. Lobaccaro, E. A. Kamali, T. Thao, B. H. Huang, J. W. Ager, R. Buonsanti. Tailoring copper nanocrystals towards C₂ products in electrochemical CO₂ reduction. Angew. Chem. Int. Ed. 55(19), 5789-5792 (2016). <u>https://doi.org/10.1002/anie.201601582</u>
- [S4] R. Reske, M. Duca, M. Oezaslan, K. J. P. Schouten, M. T. M. Koper, P. Strasser. Controlling catalytic selectivities during CO₂ electroreduction on thin cu metal overlayers. J. Phys. Chem. Lett. 4(15), 2410-2413 (2013).

https://doi.org/10.1021/jz401087q

[S5] S. B. Varandili, J. Huang, E. Oveisi, G. L. De Gregorio, M. Mensi, M. Strach, J. Vavra, C. Gadiyar, A. Bhowmik, R. Buonsanti. Synthesis of Cu/CeO_{2-x} nanocrystalline heterodimers with interfacial active sites to promote co₂ electroreduction. ACS Catal. 9(6), 5035-5046 (2019). https://doi.org/10.1021/acscatal.9b00010