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Multiphase Interfacial Regulation Based 
on Hierarchical Porous Molybdenum Selenide 
to Build Anticorrosive and Multiband Tailorable 
Absorbers
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HIGHLIGHTS

• The hierarchical porous structure is regulated by various species of PVP to achieve impedance matching.

• Interfacial engineering boosts conductivity and constructs a multiband (C, X, Ku) tunable electromagnetic wave absorber.

• Hierarchical porous molybdenum selenide/epoxy coating exhibits marine anticorrosion capability.

ABSTRACT Electromagnetic wave (EMW) absorbing materials have an irre-
placeable position in the field of military stealth as well as in the field of electro-
magnetic pollution control. And in order to cope with the complex electromag-
netic environment, the design of multifunctional and multiband high efficiency 
EMW absorbers remains a tremendous challenge. In this work, we designed a 
three-dimensional porous structure via the salt melt synthesis strategy to optimize 
the impedance matching of the absorber. Also, through interfacial engineering, 
a molybdenum carbide transition layer was introduced between the molybdenum 
selenide nanoparticles and the three-dimensional porous carbon matrix to improve 
the absorption behavior of the absorber. The analysis indicates that the number and components of the heterogeneous interfaces have a 
significant impact on the EMW absorption performance of the absorber due to mechanisms such as interfacial polarization and conduction 
loss introduced by interfacial engineering. Wherein, the prepared  MoSe2/MoC/PNC composites showed excellent EMW absorption per-
formance in C, X, and Ku bands, especially exhibiting a reflection loss of − 59.09 dB and an effective absorption bandwidth of 6.96 GHz at 
1.9 mm. The coordination between structure and components endows the absorber with strong absorption, broad bandwidth, thin thickness, 
and multi-frequency absorption characteristics. Remarkably, it can effectively reinforce the marine anticorrosion property of the epoxy 
resin coating on Q235 steel substrate. This study contributes to a deeper understanding of the relationship between interfacial engineering 
and the performance of EMW absorbers, and provides a reference for the design of multifunctional, multiband EMW absorption materials.
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1 Introduction

With the rapid development of wireless communication 
technology, especially the booming growth of 5G and human 
over-reliance on various intelligent devices, electromagnetic 
radiation is ubiquitous, and the electromagnetic pollution 
problem we are facing is becoming increasingly serious 
[1–3]. In one way, overabundance electromagnetic waves 
may provoke electromagnetic disturbance, impairing signal 
communication and even hindering the normal functioning 
of electronic and intelligent facilities [4–6]. More worry-
ingly, researches indicate that exposure to high densities of 
electromagnetic waves negatively damages health and raises 
the threat of disease [7–9]. Developing electromagnetic 
wave (EMW) absorption materials is widely regarded as a 
direct and effective way to alleviate electromagnetic pollu-
tion [10–12]. EMW absorption materials are materials that 
are sensitive to EMWs and can absorb EMWs to a certain 
extent [13–15]. They can not only mitigate electromagnetic 
interference on equipment and the potential harm to human 
health but also play a crucial role in improving stealth tech-
nology in the military [16–18]. Regrettably, designing effi-
cient, multifunctional, and multiband EMW absorbers to 
cope with complex electromagnetic environments remains 
a tremendous challenge [19–21].

Undoubtedly, microstructure design is a crucial factor 
in the development of high-performance electromagnetic 
absorbers [22, 23]. For example, reasonable microstruc-
tures such as cavities or shell layers can adjust the complex 
permittivity while achieving lightweight material [24–26]. 
Moreover, the existence of internal voids can introduce mul-
tiple reflections and scattering effects, which can improve 
the electromagnetic attenuation capability and impedance 
matching of the absorber [27–29]. Researchers have long 
been devoted to designing and fabricating special structure 
absorbers, such as hollow, core–shell, yolk-shell, multi-shell, 
and porous structures [30–32]. Among them, porous carbon 
materials based on porous structure have been widely used 
in the field of EMW absorption due to their excellent elec-
trical conductivity, adjustable dielectric performance, low 
density, light mass, and other factors that have been more 
profoundly studied [33]. In general, porous carbon materials 
can be fabricated by chemical/physical activation methods 
and various template methods [34]. For instance, porous 

carbon can be derived from biomass materials, ZIF, MOF, 
etc., and prepared using templates such as polymers and sil-
ica. However, the disadvantages of these typical methods are 
also obvious, such as high cost, complicated process, time-
consuming, harsh conditions, and difficult recovery. Fortu-
nately, salt melt synthesis (SMS) can overcome the above 
disadvantages to a large extent [35]. First, salt templates are 
more readily available due to their large reserves and variety 
compared to typical template methods. Moreover, since most 
of the salts are water soluble, the products are easily sepa-
rated. Furthermore, many salts are environmentally friendly, 
non-toxic, and can be recycled and reused [36]. Inspired 
by this, designing porous structures using the SMS strategy 
may be a more sensible choice.

Transition metal dichalcogenides (TMDCs) are two-
dimensional materials with a layered structure that have the 
advantages of unique morphology, a narrow band gap, and 
outstanding dielectric properties and are popular materi-
als for building EMW absorbers [37]. As typical TMDCs, 
 MoSe2 exhibits more metallic character and stability com-
pared to the extensively studied  MoS2 and possesses a nar-
rower bandgap (1.33–1.72 eV) and higher conductivity [38]. 
In addition, and more importantly, the strength of the Mo-Se 
bond is weaker due to the weaker binding of selenium atoms 
to electrons, which makes it easier for  MoSe2 to form dis-
sipative currents to attenuate EMWs. For instance, Ji et al. 
precisely tuned the morphological structure of flower-like 
 MoSe2 to implement favorable absorption performance in 
multiple frequency bands [39].

Interfacial engineering can introduce various defects 
into materials, such as vacancies, heteroatom doping, dis-
locations, and twinning [40]. More critically, the interfa-
cial polarization induced by the heterogeneous interface 
enhances the dielectric loss capability of the absorber, 
which further promotes the efficient absorption of EMWs. 
Jia et al. introduced multiple heterogeneous interfaces via 
subtly manipulating the  MoO2/C sulfidation level, attesting 
to interfacial engineering as effective strategy to improve 
the EMW absorption capacity [41]. Previous experiments 
and theoretical calculations have evidenced that interfacial 
coupling between  MoSe2 and carbon substrates can be per-
formed through Mo–C or Mo–O–C chemical bonds, which 
effectively enhance electrical conductivity and structural 
stability [42, 43]. Therefore, interfacial engineering is a 



Nano-Micro Lett.            (2024) 16:6  Page 3 of 21     6 

1 3

promising avenue for enhancing the EMW absorption capac-
ity and stability of absorbers.

Herein, we have successfully synthesized a series of 
molybdenum-based hierarchical porous nitrogen-doped 
carbon (PNC) composites with different heterogeneous 
interfacial structures by freeze drying, high-temperature 
pyrolysis, and washing using the SMS strategy. The optimi-
zation of the performance of EMW absorbers by interfacial 
engineering is explored in depth through multifaceted char-
acterization as well as testing of the three-electrode system 
and electromagnetic parameters. Typically, by introducing a 
highly conductive and stable MoC transition layer between 
 MoSe2 particles and PNC, the prepared  MoSe2/MoC/PNC 
composites have significantly improved EMW absorption 
performance and stability, resulting in superior reflection 
loss (RL) and effective absorption bandwidth (EAB) in C, X, 
and Ku bands. In particular, the composite obtained − 59.09 
dB RL and 6.96 GHz EAB at a thickness of 1.9 mm, and 
more importantly, it also effectively reinforces the marine 
corrosion protection of the epoxy composite coating based 
on Q235 steel, thus effectively dealing with complex elec-
tromagnetic environments.

2  Experimental

2.1  Chemicals and Materials

A m m o n i u m  h e p t a - m o l y b d a t e  t e t r a h y d r a t e 
((NH4)6Mo7O24·4H2O), sodium chloride (NaCl), polyvi-
nylpyrrolidone ((C6H9NO)n, PVP), selenium powder, epoxy 
resin, polyamide curing agent, xylene, n-butanol, and etha-
nol  (C2H5OH) were purchased from Aladdin. All reagents 
are of analytical grade (AR) and can be used directly without 
further purification.

2.2  Preparation of Precursors

First, 0.3 g NaCl, 0.4 g  (NH4)6Mo7O24·4H2O and 1.0 g PVP-
Kx (x = 30, 60, 90) were added to 25 mL distilled water, 
which was stirred and sonicated to fully dissolve and obtain 
a clear solution. Next, the resulting solution was rapidly fro-
zen with liquid nitrogen. Finally, it was vacuum freeze-dried 
for at least 48 h to obtain the precursors.

2.3  Preparation of Hierarchical Porous Molybdenum 
Selenide Composites

Firstly, 0.3 g of precursor was thoroughly mixed with 0.06 
g of selenium powder, and the mixture was transferred to a 
porcelain boat. Then, it was heat treated at 600 °C for 3 h 
under Ar atmosphere at a heating rate of 4 °C  min−1 and a 
gas flow rate of 80 mL  min−1 to obtain NaCl@MoSe2/MoO2/
PNC-x composites. Next, the NaCl@MoSe2/MoO2/PNC-x 
composites were added to ultrapure water and stirred vigor-
ously for 0.5 h. The resulting solutions were then washed by 
filtration with ethanol and ultrapure water for several times, 
and finally dried in a vacuum oven at 65 °C for 12 h to obtain 
 MoSe2/MoO2/PNC-x composites with three-dimensional 
porous structure. By varying the heat treatment tempera-
ture to 700 and 800 °C,  MoSe2/PNC-x and  MoSe2/MoC/
PNC-x can be obtained eventually. In addition, without add-
ing selenium powder,  MoO2/PNC-x and  Mo2C/PNC-x can 
eventually be obtained at heat treatment temperatures of 600 
and 800 °C, respectively.

2.4  Preparation of Composite Coatings

Five g of epoxy resin was completely dissolved with 10 mL 
of ethanol, and then 50 mg of sample was added as filler. 
The mixture was homogeneously dispersed by ultrasonic 
stirring. The ethanol is then removed by stirring at 50 °C. 
A solvent mixture containing xylene and n-butanol is added 
to the epoxy resin containing the filler and stirred until well 
mixed. Then, polyamide curing agent is added and stirred 
for 30 min. To remove the air bubbles generated during the 
coating preparation, the well-mixed solution was transferred 
to a vacuum drying oven and placed. Finally, the obtained 
mixture was evenly coated on the clean Q235 steel surface 
and left at room temperature for 3 days. Ultimately, the cor-
responding composite coating can be obtained depending 
on the filler. In addition, a pure epoxy resin coating was 
prepared as a comparison.

2.5  Characterization

Powder X-ray diffraction (XRD, Rigaku Ultima IV, Cu-Ka 
radiation (λ = 0.15418)). Raman spectra of the samples 



 Nano-Micro Lett.            (2024) 16:6     6  Page 4 of 21

https://doi.org/10.1007/s40820-023-01212-4© The authors

were acquired using a Renishaw InVia Plus micro-Raman 
spectroscopy system equipped with a 50 mW 532 mm 
DPSS laser. The morphology and elemental mapping of 
the samples were observed with a field emission scanning 
electron microscope (SEM, JEOL JSM-7800F), and the 
lattice spacing of the samples was observed with a trans-
mission electron microscope (TEM, JEOL JEM-2100). 
Thermogravimetric analysis (TGA) was performed on 
an SDT Q600 analyzer under an atmosphere of air with 
a ramp-up rate of 10 °C  min−1 from room temperature to 
800 °C. The porous structure was characterized by adsorp-
tion–desorption of  N2 on a Quantachrome Autosorb iQ3. 
The specific surface area was calculated according to the 
Brunauer–Emmett–Teller (BET) method, and the pore size 
distribution was estimated by the density functional theory 
(DFT) method. The distribution of elements on the surface 
of the composites was characterized by X-ray photoelec-
tron spectroscopy (XPS) on a Thermo Fisher ESCALAB 
250Xi energy spectrometer using an Al Ka X-ray source 
(1486.6 eV).

2.6  Electromagnetic Parameters and Anticorrosion 
Performance Test of Coatings

The prepared sample powder was uniformly mixed with 
paraffin wax (sample powder mass ratio of 27.5 wt%), and 
the mixed sample was pressed into a circular shape with a 
thickness of about 2 mm through a cylindrical mold with 
an outer diameter of 7 mm and an inner diameter of 3.04 
mm. The electromagnetic parameters complex permittivity 
εr (εr = ε′–jε″) and complex permeability μr = (μr = μ′–jμ″) 
were measured by the coaxial line method on a vector net-
work analyzer (VNA, Agilent N5222A) in the frequency 
range of 2–18 GHz. the RL values can be calculated accord-
ing to transmission line theory by the following equation 
[44–46]:

(1)Zin = Z0

�
�r

�r
tanh

�
j
2�fd

c

√
�r�r

�

(2)RL (dB) = 20 log
Zin − Z0

Zin + Z0

where Zin and Z0 denote the input impedance and free-space 
characteristic impedance of the standard absorbing material, 
respectively, f denotes the frequency of the EMW, d denotes 
the thickness of the sample, and c denotes the speed of the 
EMW in free-space [47, 48].

The electrochemical corrosion experiments of all samples 
were measured with an electrochemical workstation CHI 
760E in seawater solution through a typical three-electrode 
system. Where a platinum sheet was used as counter elec-
trode, Ag/AgCl as reference electrode and coated electrodes 
as working electrodes. (The seawater solution used was 
taken from the local coastal area of Qingdao). The open 
circuit potential (OCP) behavior was recorded and electro-
chemical impedance spectroscopy (EIS) measurements were 
performed in the frequency range of  10–2–105 Hz.

3  Results and Discussion

3.1  Characterization

The preparation process of a series of PNC composites with 
different molybdenum-based doping is shown in Fig. 1a. 
The main experimental procedure is divided into three 
parts. First, NaCl was used as the salt template in the SMS 
strategy, ammonium molybdate tetrahydrate as the molyb-
denum source, and different PVP as the nitrogen-rich carbon 
skeleton source. Meanwhile, PVP was used as a nonionic 
surfactant to polymerize with the molybdate ion  (MoO4

2−) in 
solution. After freeze drying, the NaCl in solution recrystal-
lizes and forms precursors with a three-dimensional struc-
ture under the encapsulation of PVP-MoO4

2−. During the 
subsequent heat treatment, PVP is transformed into a nitro-
gen-doped carbon skeleton. And due to the presence of sele-
nium powder, the molybdenum precursors were transformed 
into molybdenum selenide nanoparticles, which were grown 
on the carbon matrix. Finally, the NaCl salt template was 
removed by washing and its hierarchical porous structure 
was finally formed.

Typically, PVPs with different molecular weight sizes dif-
fer in solubility, viscosity, stability, hydrophilicity, and inter-
molecular forces [49]. Therefore, by using different species 
of PVP, the final hierarchical porous structure obtained also 
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differs, which affects the impedance matching performance. 
As shown in Figs. S1–S3, the prepared  MoSe2/MoC/PNC-x 
composites have typical hierarchical porous characteristics, 
and the uniform distribution of Mo, Se, C, N, and O ele-
ments across the PNC as observed in their EDS element 
mapping. The presence of N elements in them proves that N 
atoms are successfully doped into the carbon matrix. More 
importantly, it can be observed that the final PNC skeleton 
obtained using PVP-K30 as the carbon source is thicker and 
the porous structure is mostly formed only on the surface 

without penetrating deep into the carbon matrix. In contrast, 
the PNC skeleton finally obtained by using PVP-K60 as the 
carbon source was significantly optimized, and dense and 
deep pores could be observed to be uniformly distributed 
on the carbon matrix. In addition, the PNC skeleton formed 
using PVP-K90 as the carbon source was thinner and the 
distribution of holes was more intensive. This strongly dem-
onstrates that the specie of PVP has a modifying effect on 
the porous structure of PNC.

Fig. 1  a Schematic diagram of preparation of hierarchical porous molybdenum selenide, b1–d1 XRD patterns of  MoSe2/MoO2/PNC-x,  MoSe2/
PNC-x, and  MoSe2/MoC/PNC-x, b2–d2 SEM images, b3–d3 TEM images, b4–d4 HRTEM images, b5–d5 SAED images of  MoSe2/MoO2/PNC-
60,  MoSe2/PNC-60, and  MoSe2/MoC/PNC-60
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Figure 1b1–d1 shows the XRD patterns of a series of 
selenized samples obtained using different species of PVP 
and under different heat treatment conditions. As shown 
in Fig. 1b1, several diffraction peaks belonging to  MoSe2 
(JCPDS No. 29-0914) can be observed near 17.8°, 31.8°, 
37.9°, and 56.0°. In addition, a peak of lower intensity can be 
observed near its 26.1°, which corresponded to the (− 111) 
crystal plane of  MoO2 (JCPDS No. 73-1807), indicating 
the presence of trace amounts of  MoO2 in the sample. The 
results indicate that the sample is incompletely selenized 
at 600 °C and the material formed is  MoSe2/MoO2/PNC-x. 
When the heat treatment temperature was 700 °C, the sam-
ple was completely selenized and it was observed that all 
the diffraction peaks corresponded perfectly to the standard 
PDF card of  MoSe2, generating  MoSe2/PNC-x, as shown in 
Fig. 1c1. And when the heat treatment temperature is 800 
°C, two weak peaks near 36.0° and 48.9° can be observed 
in the XRD pattern of its product (Fig. 1d1), corresponded 
to the (100) and (101) crystal planes of the γ-phase molyb-
denum carbide (MoC, JCPDS No. 45-1015), indicating the 
generation of a small amount of MoC, implying that the 
 MoSe2/MoC/PNC-x was successfully prepared. In Fig. S4, 
it is clearly observed that the intensity of the correspond-
ing diffraction peak of  MoSe2 decreased with increase in 
heat treatment temperature. In particular, the intensity of the 
peak located at 17.8° is significantly reduced, which indi-
cates an increase in the number of defects along the [002] 
direction in its (002) crystal plane [42]. As a comparison, 
 MoO2/PNC-x and  Mo2C/PNC-x were also prepared in the 
absence of selenium powder (their corresponding XRD pat-
terns are shown in Figs. S5 and S6). It is worth noting that 
the  Mo2C generated at this time is of the β-phase (JCPDS 
No. 35-0787), which is a different phase from the MoC in 
 MoSe2/MoC/PNC-x. The above results revealed that molyb-
denum-based nanoparticles with different components can 
be grown on PNC substrates by modulating the heat treat-
ment conditions. With the increase in selenization, all  MoO2 
was gradually converted to  MoSe2 and MoC was generated 
at high temperature. The obtained EDS data can also sup-
port this result (Fig. S7). As shown in Table S1, the mass 
ratio of each element was obtained, and the atomic ratio 
of Mo and Se elements (Mo/Se at.%) could be obtained by 
conversion. Among them, Mo/Se at.% in both  MoSe2/MoO2/
PNC-60 and  MoSe2/MoC/PNC-60 are slightly higher than 
50%, indicating the presence of a few other compounds of 
Mo in addition to  MoSe2. And the Mo/Se at.% of  MoSe2/

PNC-60 was 50.23%, which again proved that the sample 
was completely selenized.

The morphology of  MoSe2/MoO2/PNC-60,  MoSe2/
PNC-60 and  MoSe2/MoC/PNC-60 is almost indistin-
guishable from the SEM images (Fig. 1b2–d2) and EDS 
elemental mapping (Figs. S2, S8, and S9) of the samples 
obtained under different annealing conditions, all show-
ing a uniform dense porous structure and the presence of 
molybdenum selenide nanoparticles on the surface. Simi-
lar porous structures can also be observed in the SEM 
images of  MoO2/PNC-60 and  Mo2C/PNC-60 (Figs. S10 
and S11), but the surfaces are smoother compared to the 
selenized samples. This revealed that the heat treatment 
temperature has little impact on the morphology of PNC, 
but the molybdenum selenide nanoparticles have a signifi-
cant modifying effect on its surface morphology.

It is well known that the higher the temperature during 
annealing, the more easily the nanoparticles are agglomer-
ated [50]. As shown in Fig. 1b3, c3, the  MoSe2 nanoparti-
cles in  MoSe2/PNC-60 are significantly larger in size and 
exhibit a significant tendency to agglomerate compared to 
 MoSe2/MoO2/PNC-60. Surprisingly, it can be seen from 
the TEM image of  MoSe2/MoC/PNC-60 (Fig. 1d3) that 
its  MoSe2 nanoparticles become smaller in size, more dis-
persed in distribution, and more uniform in both size and 
degree of dispersion. This can prove that the MoC inter-
layer has an immobilizing effect on  MoSe2 nanoparticles, 
which can both prevent their agglomeration and inhibit 
their overgrowth during high-temperature heat treatment. 
The uniformly distributed  MoSe2 nanoparticles are more 
beneficial to the dissipation of EMWs. Their high-resolu-
tion TEM (HRTEM) images are shown in Fig. 1b4–d4. In 
Fig. 1b4, lattice spacing of 0.322 and 0.285 nm, represent-
ing to the (004) and (100) crystal planes of  MoSe2, can 
be observed from where the carbon and  MoSe2 nanopar-
ticles adjoined. There are also 0.281 and 0.243 nm lattice 
spacing, corresponding to the (− 102) and (− 211) crystal 
planes of  MoO2. The fast Fourier transform (FFT) cor-
responding to the two lattices has been given in the inset, 
demonstrating the generation of  MoSe2 and  MoO2 hetero-
structures  (MoSe2/MoO2) and that  MoSe2/MoO2/PNC-60 
is incompletely selenated. And in the HRTEM image of 
 MoSe2/PNC-60 (Fig. 1c4), only the lattice belonging to 
 MoSe2 can be observed at the junctions of carbon and 
molybdenum selenide nanoparticles. The lattice spacing 
of 0.324 and 0.736 nm, respectively, corresponding to 



Nano-Micro Lett.            (2024) 16:6  Page 7 of 21     6 

1 3

the (004) and (002) crystal planes, proves that  MoSe2/
PNC-60 is fully selenated. Significantly, in the HRTEM 
image of  MoSe2/MoC/PNC-60 (Fig. 1d4), in addition to 
the corresponding lattice of  MoSe2, 0.254 and 0.276 nm 
crystal plane spacing belonging to MoC can be observed, 
representing to the (100) and (001) crystal planes, respec-
tively. And its FFT inset also demonstrates the generation 
of  MoSe2 and MoC heterostructures  (MoSe2/MoC). Fig-
ure 1b5–d5 provides the electron diffraction patterns of the 
three samples. In addition to a series of typical diffraction 
rings of  MoSe2, the (− 212) crystal plane belonging to 
 MoO2 and (101) crystal plane belonging to MoC are also 
observed in Fig. 1b5, d5, respectively, further demonstrat-
ing the successful synthesis of the three composites.

The porous characteristic can be further illustrated from 
the  N2 adsorption–desorption isotherms of  MoSe2/MoC/
PNC-60 (Fig. 2h). The hysteresis loop in the high pressure 

region indicates the presence of abundant mesopores. In 
addition, the specific surface area (SBET) calculated accord-
ing to the Brunauer–Emmett–Teller (BET) method and the 
major pore size and total pore volume (Vpore) calculated 
according to the BJH theory are also presented in the figure. 
The three-dimensional conductive network structure formed 
by the porous structure of PNC can greatly enhance the elec-
tron transport performance and contribute to the enhance-
ment of the conductive loss mechanism of EMW absorption. 
The TG and DTG analysis of  MoSe2/MoC/PNC-60 (Fig. 2i) 
is divided into four main stages. First, a slight weight loss 
can be observed with the increase in temperature, caused by 
the vaporization of water in air atmosphere adsorbed by the 
sample as the temperature increases. After the temperature 
reaches 260 °C,  MoSe2 is oxidized to  MoO3 and  SeO2, and 
an increase in the sample mass can be observed. After about 
370 °C, it comes to the third stage, which is also a weight 

Fig. 2  a, b Raman spectra of each sample (x = 60), c–g XPS spectra of  MoSe2/MoO2/PNC-60,  MoSe2/PNC-60, and  MoSe2/MoC/PNC-60, h  N2 
adsorption–desorption isotherms and i TGA and DTG of  MoSe2/MoC/PNC-60
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loss stage. According to the two distinct peaks of the DTG 
curve, it is possible to demonstrate the presence of two types 
of material weight loss, respectively, sublimation of  SeO2 
and the oxidation of the carbon matrix [51]. Finally, after 
the temperature comes to 580 °C, the weight remains almost 
constant, leaving only the presence of  MoO3 [52]. The 
Raman spectra of each sample are shown in Fig. 2a, b. In 
the Raman patterns of the  MoO2/PNC-60 and  MoSe2/MoO2/
PNC-60 samples, the Raman peak at 820  cm−1 represents 
the presence of  MoO2 [53]. Moreover, in the Raman patterns 
of the three hierarchical porous molybdenum selenide sam-
ples, there is a distinct Raman peak at 238  cm−1 attributable 
to the out-of-plane mode  (A1g) of  MoSe2, which represents 
that the generated  MoSe2 nanoparticles are in the 2H phase 
(2H-MoSe2) [54]. It further illustrates the successful synthe-
sis of hierarchical porous  MoSe2 with different components. 
Furthermore, it is evident that all samples have peaks near 
1350 and 1600  cm−1, which can be attributed to the D peak 
signifying the disordered carbon structure and the G peak 
signifying the graphitized carbon structure, respectively. 
Crucially, the ratio of the intensity of D peak to G peak 
(ID/IG) is a reflection of the degree of carbon graphitization 
[55]. As can be seen, the ID/IG values for each sample show 
a tendency to depending on the increase in heat treatment 
temperature. However, they both have values around 1, indi-
cating that about half of the carbon is graphitized and the 
degree of graphitization is relatively similar.

For a more accurate and in-depth analysis of the elemental 
components and chemical status of the hierarchical porous 
molybdenum selenide surface, the sample was character-
ized by XPS. The characteristic peaks belonging to Mo, Se, 
C, N, and O elements as well as the auger peak of Se can 
be easily observed in its corresponding XPS total spectrum 
(Fig. 2c), which proves the successful synthesis of the sam-
ple [39]. The Mo 3d patterns of the three samples (Fig. 2d) 
differ in their decomposition forms. Specifically, the Mo 3d 
pattern of  MoSe2/MoO2/PNC-60 can be decomposed into 
five peaks, with peaks located at 228.8 and 231.9 eV cor-
responding to  MoSe2 and peaks located at 229.6 and 232.4 
eV corresponding to  MoO2 [56]. Furthermore, Mo 3d of 
 MoSe2/PNC-60 can be decomposed into three peaks, with 
peaks located at 229.0 and 232.1 eV attributed to  MoSe2 
[57]. Finally,  MoSe2/MoC/PNC-60 can also be decomposed 
into five peaks, where the peaks at 228.6 and 231.8 eV cor-
respond to MoC, while the peaks at 229.2 and 232.2 eV can 
be assigned to  MoSe2 [42, 58]. Also, the micropeaks in three 

samples near 235.6 eV attributed to the presence of small 
amounts of  Mo6+ are due to oxidation during XPS tests in air 
[39]. The Se 3d patterns of the three (Fig. 2e) can be decom-
posed into two peaks,  Se2− 3d5/2 at 54.4 eV and  Se2− 3d3/2 
at 55.2 eV, respectively [59]. In the corresponding C 1s pat-
terns (Fig. 2f), all samples can decompose peaks near 284.5 
eV (C–C), 285.3 eV (C–N), 286.8 eV (C–O), 288.5 eV 
(O–C=O), and more remarkably, only  MoSe2/MoC/PNC-
60 can decompose peaks belonging to Mo-C at 283.4 eV. 
Nitrogen-rich PVP introduces N atoms in the carbon matrix 
when carbonized at high temperatures, as evidenced by the 
corresponding N 1s patterns (Fig. 2g). The N 1s patterns 
of all samples can be decomposed into four peaks, namely 
Mo 3p, pyridine N, pyrrole N, and graphitized N located at 
394.8, 398.2, 399.6, and 400.9 eV, respectively [60]. Multi-
species N atom doping can enhance the absorption of EMWs 
in several ways [61]. The O 1s patterns (Fig. S12) can be 
decomposed into two peaks, the peaks at 530.8 and 532.7 
eV are attributed to lattice oxygen (OL) and adsorbed oxygen 
(OA), respectively. All samples carry OL due to inevitable 
surface oxidation in air. The OA and OL ratios were cal-
culated, apparently  MoSe2/MoO2/PNC-60 has a higher OL 
content due to the  MoO2 heterostructure. By XPS analysis, 
we further determined the rationality of the synthesis strat-
egy and, more importantly, demonstrated the formation of 
Mo-C bonds. This implies that after the carbonization of 
PVP, MoC is grown in situ on PNC. Combined with the for-
mation of  MoSe2/MoC heterogeneous structure confirmed 
by the previous TEM characterization, it can be reasonably 
inferred that a small amount of MoC acts as an intermediate 
layer in  MoSe2/MoC/PNC-60, connecting  MoSe2 nanopar-
ticles with PNC to form a  MoSe2-MoC-C multiple hetero-
geneous interfacial structure (as shown in Fig. 2j).

3.2  EMW Absorption Performance

The sample powder prepared was homogeneously mixture 
with paraffin wax (sample powder weight ratio of 27.5 wt%) 
in order to investigate the EMW attenuation properties of the 
sample. Two important parameters: the complex permittivity 
(εr = ε′–jε″) and the complex permeability (μr = μ′–jμ″) can 
be measurable with vector network analyzer, and they are of 
key importance to determine the EMW absorption perfor-
mance of the material. The real and imaginary parts of the 
complex permittivity (ε′ and ε″) represent the storage and 
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consumption ability for electrical energy, respectively. The 
real and imaginary parts of the complex permeability (μ’ and 
μ") are used to describe the stored and consumed capacity 
for magnetic energy, respectively [62, 63]. As the prepared 
samples are non-magnetic, the research on magnetic loss can 
be ignored in this work.

Impedance matching is the primary principal to be con-
sidered when devising a high-performance absorber. Simply 
put, when the EMW propagates from the air to the absorbers 
surface, the impedance of the absorber should be approach-
ing to the impedance of the air. At this time, the EMW tend 
to enter internal of the absorber rather than being reflected, 
that is, the impedance match, otherwise it is impedance mis-
match. The impedance values can be deduced as follows 
[64, 65]:

The Z value is related to frequency (f) and thickness (d). 
When the Z value approaching 1, which means that the 
impedance matching of the absorber is good at this time, 
and the EMW can enter the absorber, so as to carry out the 
energy absorption and conversion.

As mentioned above, hierarchical porous molybdenum 
selenide with different structures was prepared by using 
different species of PVP. In order to nuance this study, the 
impedance matching characteristics of hierarchical porous 
molybdenum selenide with different structures were first 
investigated. Figure 3 indicates the 2D plots of impedance 
matching performance of  MoSe2/MoO2/PNC-x,  MoSe2/
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Fig. 3  normalized input impendence Z of a–c  MoSe2/MoO2/PNC-x, d–f  MoSe2/PNC-x, and g–i  MoSe2/MoC/PNC-x
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PNC-x, and  MoSe2/MoC/PNC-x, respectively. The white 
region between Z = 0.8 and Z = 1.2 is marked with black 
lines, the larger the region circled, the better the impedance 
matching performance. It can be evidently observed that the 
impedance matching of the final prepared samples using 
PVP-60 as the carbon source is the most superior when the 
components of the hierarchical porous molybdenum selenide 
are the same (in  MoSe2/MoC/PNC-x, the regions have the 
same area when x = 30 and 60).

The trend of the complex permittivity parameters (Fig. 4) 
tends to be consistent for the different structures of hier-
archical porous molybdenum selenide as the composition 
changes. According to the previous SEM results, since the 
PNC skeleton formed with PVP-K90 as the carbon source 
is thinner and has a denser distribution of holes, this may 
provide more abundant conductive paths and thus enhance 

the dielectric loss of the material [66]. And too high permit-
tivity parameters can cause impedance mismatch in EMW 
absorption [67]. This explains the poor impedance match-
ing performance of the sample with stronger dielectric loss 
capability (x = 90). And when x = 60, the stronger dielectric 
loss coexists with the better impedance matching property, 
strongly demonstrating the optimization of the impedance 
matching property by this structure. Therefore, a more in-
depth study of the EMW absorption performance of the sam-
ple with x = 60 is chosen subsequently.

According to a previous study, MoC can promote ion and 
electron transport as well as structural stability in compos-
ites [42]. This can also be demonstrated by electrochemi-
cal tests performed with a three-electrode system in a 3.5 
wt% NaCl solution simulating a marine environment. From 
the Nyquist plots of each sample (Fig. 5a), it can be seen 

Fig. 4  Real part of permittivity constant, imaginary part of permittivity constant, and tangent of permittivity constant of a–c  MoSe2/MoO2/
PNC-x, d–f  MoSe2/PNC-x, and g–i  MoSe2/MoC/PNC-x
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that  MoSe2/MoC/PNC-60 has a smaller capacitive arc than 
 MoSe2/PNC-60, indicating that it has a smaller impedance 
and is more conductive [68].

When x = 60, the values of ε′, ε″, dielectric loss factor 
(tanδε), and average tanδε for each sample with different 
components are shown in Fig. 5b–e, and it can be clearly 
seen that  Mo2C/PNC-60 has the most superior complex per-
mittivity parameters. According to the results of the previous 
Nyquist plots, this may be attributed to the high conduction 
loss due to its higher conductivity. It is noteworthy that the 
conduction loss and interfacial polarization are simultane-
ously enhanced due to the MoC that both enhances the con-
ductivity of  MoSe2/MoC/PNC-60 and introduces multiple 
heterogeneous interfaces. Therefore, its complex permittiv-
ity parameters are significantly superior to those of  MoSe2/
PNC-60. In addition, although the conductivity of  MoSe2/
MoO2/PNC-60 is weaker than that of  MoSe2/PNC-60, it has 
enhanced dielectric loss by virtue of the interfacial polariza-
tion introduced by the  MoSe2/MoO2 heterostructure, giv-
ing it a similar level of complex permittivity parameters as 
 MoSe2/PNC-60 (Fig. S13).

In order to further reveal the dielectric loss mechanism, 
the Debye theory is introduced here to describe the polariza-
tion relaxation behavior, which is given by [69]:

where εs is the static dielectric constant, ε∞ is the optical 
dielectric constant, f is the frequency, and t is the polariza-
tion relaxation time. The Cole–Cole formula is expressed by 
this equation [70, 71]:

If the sample suffers a polarization relaxation process, 
then curves plotted from ε′ and ε″ will shape a semicircle, 
with each semicircle representing a Debye relaxation pro-
cess. The Cole–Cole curves of each sample (Fig. 5f1–f5) 
clearly indicate multiple distorted semicircular shapes, 
which indicates the presence of additional polarization 
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Fig. 5  Electrochemical characterization in 3.5 wt% NaCl solution and electromagnetic parameters. a Nyquist plots, b Real part of permittivity 
constant, c imaginary part of permittivity constant, d tangent of permittivity constant, e attenuation constant of each sample (x = 60). Cole–Cole 
plots (f1–f5) and the relationship between ε′ and ε″/f (g1–g5) of  MoO2/PNC-60,  MoSe2/MoO2/PNC-60,  MoSe2/PNC-60,  MoSe2/MoC/PNC-60 
and  Mo2C/PNC-60
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relaxation processes. On the one hand, the defective car-
bon and N atom doping on the PNC leads to the genera-
tion of defective polarization. On the other hand, multiple 
interfacial polarizations are introduced for the material 
between the porous structure and the air medium, as 
well as between different components  (MoSe2 and PNC, 
 MoSe2 and  MoO2,  MoSe2 and MoC, etc.). Apparently, the 
Cole–Cole curves of  MoSe2/MoO2/PNC-60 and  MoSe2/
MoC/PNC-60 show more semicircular shapes due to the 
presence of additional heterogeneous interfaces in them. 
This proves that the interface engineering brings more 
interfacial polarization relaxation process for them, which 
contributes to enhance their dielectric loss capability and 
improve the attenuation ability to EMWs.

The correlation between ε′ and ε″/f also allows further 
proof of the polarization behavior of the sample. According 
to Eqs. (4) and (5), the following equations result [72, 73]:

If polarization relaxation presence in dielectric loss, ε′ 
and ε″/f will linearly correlate and the slope is available to 
calculate the polarization relaxation time [74]. A linear fit 
reveals that the relationship between ε′ and ε″/f curves for 
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each sample are fitted as two straight lines with different 
slopes (Fig. 5g1, g2). This result further proves the presence 
of multiple polarization processes (defect polarization and 
interfacial polarization) for each sample [75].

The attenuation constant (α) is a vital element to be aware 
of when designing a high-performance absorber, which 
represents the capability of the absorber to convert EMW 
energy into other energy, meaning the ability to absorb and 
attenuate EMWs. α can be deduced from the next equation 
[76, 77]:

The α curves of each sample are shown in Fig. 5e, and it is 
evident that the attenuation ability of  MoSe2/MoC/PNC-60 
far exceeds that of  MoSe2/PNC-60, while reaching a high 
loss level similar to that of  Mo2C/PNC-60. In addition, the 
attenuation ability of  MoSe2/MoO2/PNC-60 is similar to that 
of  MoSe2/PNC-60. This is coherent with the results of the 
previous findings on dielectric loss and further demonstrates 
the importance of the interfacial polarization induced by the 
heterogeneous interface for enhancing the EMW absorption 
of the material.
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Fig. 6  The normalized input impendence Z (a1–e1), 2D RL (a2–e2) and 3D RL (a3–e3) images of each sample (x = 60)
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Figure 6a1–e1 indicates the corresponding impedance 
matching plots. It can be seen that the impedance matching 
is weakened with the increase in dielectric performance. 
With similar structures, this coincides with the relation-
ship between complex permittivity parameters and imped-
ance matching as mentioned before. In order to assess 
more intuitively the EMW absorption performance of the 
absorber, the RL value and EAB are calculated according 
to the line transmission theory (Eqs. (1) and (2)). Gener-
ally speaking, the absorption of incident EMWs is up to 
90% for RL < − 10 dB. The range of frequencies at which 
this requirement is achieved at a certain thickness is the 
EAB. In Fig. 6a2–e2 2D RL plots and Fig. 6a3–e3 3D RL 
plots, this region is marked with black lines. As can be 
seen that the EMW absorption performance of  MoSe2/
MoC/PNC-60 is the most superior among a group of sam-
ples, especially showing an  RLmin of − 59.09 dB and an 
 EABmax of 6.96 GHz at 1.9 mm. Figure 7a, b indicates 
the visualized comparison of  RLmin and  EABmax for each 

sample, respectively (the yellow plane in the figure rep-
resents the plane with RL = − 10 dB). It can be seen that 
 MoSe2/MoC/PNC-60 can obtain lower RL and wider EAB 
at thinner thicknesses than other samples, and its EMW 
absorption behavior shows a trend toward lower frequency. 
From the previous section, although the overall imped-
ance matching performance of  MoSe2/MoC/PNC-60 is 
relatively average, it benefits from the continuous imped-
ance matching region at thin thickness and the strong die-
lectric loss performance brought by the MoC interlayer, 
which creates the characteristics of thin thickness, strong 
absorption, and wide frequency band. Additionally, RL 
performance images at x = 30 and 90 (Figs. S14 and S15) 
obviously demonstrate that they have difficulty satisfying 
the multifaceted EMW absorption characteristics index.

Notably, three strong RL peaks of  MoSe2/MoC/PNC-60 
were observed in Fig. 6d3, and this was used as a focus 
for further analysis of the absorption behavior of  MoSe2/
MoC/PNC-60 at different thicknesses. Surprisingly, besides 

Fig. 7  The comparison of each sample (x = 60) a  Rlmin and b  EABmax , EMW absorption performance of  MoSe2/MoC/PNC-60 in c different 
thickness and d different frequency bands. e Comparison of  MoSe2/MoC/PNC-60 and other works, f–i EMW absorption mechanism
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at 1.9 mm, strong RLs of − 57.98 and − 54.49 dB are also 
obtained at two relatively thin thicknesses of 2.4 and 4.1 
mm, respectively, with corresponding EABs of 4.4 and 2.08 
GHz (Fig. 7c). The corresponding RL curves at these three 
thicknesses are shown in Fig. 7d. At a thickness of 1.9 mm, 
the EAB covers almost the entire Ku-band (12–18 GHz). At 
a thickness of 2.4 mm, the EAB covers 80% of the X-band 
(8–12 GHz). At a thickness of 4.1 mm, the EAB covers 54% 
of the C-band (4–8 GHz). The superior multiband perfor-
mance can be easily achieved by simply adjusting the thick-
ness in a thin range, showing satisfactory band tunability.

Furthermore, in order to reveal the EMW absorption 
behavior more deeply, the quarter wavelength matching 
theory is employed to further investigate the relationship 
among the matching thickness of  MoSe2/MoC/PNC-60 and 
the reflection loss and frequency. Its equation is as follows 
[78, 79]:

where tm is the thickness of the match, c is the velocity of 
the EMW in vacuum, fm is the frequency of the match, and 
|εr| and |μr| are the modulus of εr and μr, respectively. As 
soon as the phase difference from the reflected and absorbed 
EMW is 180° (π/2), tm and fm fulfill the above equation 
and the two EMWs offset each other. At this time, the RL 
of the absorber will reach the minimum, meaning  RLmin. 
According to Fig. S16, RL gradually moves toward lower 
frequencies as the thickness grows. As the results indicate, 
the RL attains its minimum value at 14.24 GHz when the 
thickness of the sample is the same as Eq. (8). The experi-
mental results are coherent with the simulated results of the 
tm–fm curves, proving that the quarter wavelength matching 
model can precisely describe the behavior of the absorber. 
More significantly, it can be found that impedance matching 
(Z = 1) is achieved at 1.9, 2.4, and 4.1 mm thicknesses. Com-
bined with the above study, this explains to some extent why 
 MoSe2/MoC/PNC-60 can achieve excellent EMW absorp-
tion in multiple frequency bands and further demonstrates 
the extent to which impedance matching is critical for the 
absorber.

Typically, dielectric loss mechanisms include and origi-
nate from conduction loss, interfacial polarization, defect-
induced polarization, etc. As the current transmits along the 
absorber, the intrinsic resistance generates Joule heat, which 
consumes the energy of the EMW. Additionally, defect sites 
in the absorber capture the carriers generated in the external 
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alternating electromagnetic field, leading to the propagation 
of negative carriers, and ultimately the occurrence of defect 
polarization processes and the associated EMW energy 
dissipation. Moreover, during alternating electromagnetic 
fields, owing to the differences in charge retention ability 
and conductivity of different components, carrier will accu-
mulate at heterogeneous interfaces, evoking intense interfa-
cial polarization and relaxation processes.

Undoubtedly, the loss mechanism of the prepared sam-
ples is dominated by dielectric loss, and the included EMW 
absorption mechanism is illustrated in Fig. 7f–i. First, by 
changing the carbon precursors, a porous structure with 
excellent impedance matching properties is achieved, 
which contributes to the entry of EMWs into the interior 
of the material, allowing  MoSe2/MoC/PNC-60 to suffi-
ciently exploit its attenuation capability for EMWs. Then, 
the porous carbon skeleton constructs a three-dimensional 
conductive network structure, which results in a rich con-
duction path that facilitates electron migration and hopping, 
which dramatically strengthens its conduction loss capabil-
ity. In addition, the intrinsic defects on the carbon substrate 
with nitrogen atom doping introduce a huge number of zero-
dimensional defects, and these defect sites can trap charge 
carriers and disrupt the balance of charge distribution, thus 
causing abundant defect polarization also contributes to the 
attenuation of EMWs. Finally, the presence of the critical 
MoC interlayer boosts the conductivity and stability. The 
rational design of the  MoSe2–MoC–C heterogeneous interfa-
cial coupling reinforces the conduction loss while introduc-
ing multiple interfacial polarizations. With the synergistic 
effect of multiple mechanisms, the EMW absorption perfor-
mance of  MoSe2/MoC/PNC-60 has been comprehensively 
optimized, especially its absorption performance at multiple 
frequency bands is particularly remarkable.

3.3  Anticorrosion Property

Applied in the marine environment, the microwave absorber 
must not only have excellent microwave absorption per-
formance, but also need to have anticorrosion properties. 
Usually, the anticorrosion ability of coating is assessed by 
electrochemical measurement techniques using a three-elec-
trode system. The corrosion behavior of different coating 
was investigated by immersing the working electrodes in 
seawater solution.
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Generally, a higher OCP value represents a lower corro-
sion trend [80]. The OCP values of each sample (Fig. 8a) 
gradually stabilized with the measurement time. The Q235 
bare steel can be observed to have the lowest OCP values, 
followed by the pure epoxy coating, indicating that it pro-
vides some protection to the bare steel. After introducing 
hierarchical porous molybdenum selenide as a filler into 
the epoxy coating, the OCP values were further increased, 
which indicates that its corrosion resistance was effectively 
enhanced. Figure 8b indicates the polarization kinetic poten-
tial curves of each sample, in which bare steel has the low-
est corrosion potential (Ecorr), followed by the pure epoxy 
coating, and all composite coatings have a higher level 
(Table S2). Furthermore, hierarchical porous molybdenum 
selenide/epoxy composite coating generally exhibited lower 
corrosion current density (Icorr). When Ecorr is higher or Icorr 
is lower, it means that the sample is more difficult to be 
oxidized (corroded) and has better corrosion resistance [81]. 
Figure 8c illustrates the Nyquist curves for bare steel and 
various coatings. From its inset, it can be observed that the 

radius of the circle of bare steel is much smaller than that of 
the other coatings, indicating that it is highly susceptible to 
corrosion. More significantly, all composite coatings have 
larger impedance arc than the pure epoxy coating, indicat-
ing that the composite coating provides enhanced corrosion 
protection to bare steel [82]. In the Bode plot, the imped-
ance modulus at 0.01 Hz ( |Z|0.01 Hz ) can be used as a basis 
for judging the corrosion resistance [83]. Figure 8d demon-
strates that the |Z|0.01 Hz of the all coatings is much higher 
than that of bare steel, and the composite coating is slightly 
higher than the pure epoxy coating, further proving the supe-
rior anticorrosion performance of the composite coating. In 
addition, all coatings have large phase angles as shown in 
Fig. 8e, it indicates that the coating has typical capacitive 
properties and can effectively isolate the corrosive medium 
[84]. Notably, the peak of the phase angle curve for bare 
steel is closer to the low frequency region  (10–2–100 Hz) 
compared to all coatings, which corresponds to the corro-
sion response of the metal matrix, indicating that corrosion 
occurred during immersion [85]. This is due to the lack of 

Fig. 8  Electrochemical characterization in seawater solution and electromagnetic parameters. a OCP curves, b polarization kinetic potential 
curve, c Nyquist plots, d Bode plots, and e phase angle plots of Q235 bare steel, pure epoxy coating, and hierarchical porous molybdenum sele-
nide/epoxy composite coating. f, g The equivalent electrical circuit for coating in different stages and h schematic of the corrosion protection 
mechanism
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protection by the coating, and the bare steel is easily cor-
roded in the seawater environment. The above results indi-
cate that the introduced hierarchical porous molybdenum 
selenide effectively reinforces the anticorrosion performance 
of the epoxy resin coating.

Figure 8f, g shows the equivalent circuit diagram fitted 
for the coating during immersion. In the initial stage of 
coating immersion, the corrosive medium  (Cl−,  H2O,  O2) in 
seawater does not penetrate into the coating/Q235 substrate 
interface, and the fitted equivalent circuit is shown in Fig. 8f. 
And when seawater penetrates the coating and the corrosive 
medium reaches the surface of the Q235 substrate, the fitted 
equivalent circuit is shown in Fig. 8g [86]. In the equivalent 
circuit model, RS represents the solution (seawater) resist-
ance, RC represents the layer resistance, CC represents the 
coating capacitance, Rct represents the charge transfer resist-
ance, and Cdl represents the double layer capacitance [87]. 
Figure 8h is a schematic diagram of the corrosion protection 
mechanism of the composite coating. Normally, due to the 
existence of more defects and micropores in the pure epoxy 
coating, affecting the densification of the coating, causing 
the epoxy coating poor physical barrier properties, corrosive 
media prone to penetrate into coating via defects, leading 
to rapid coating deterioration. Pure epoxy coating offered 
limited protection to the metal substrate, whereas coating 
filled with hierarchical porous molybdenum selenide exhib-
ited noticeable modification in corrosion protection. On the 
one hand, carbon skeleton of hierarchical porous molyb-
denum selenide has a high degree of graphitization after 
high-temperature heat treatment, which greatly obstructs 

the electrochemical corrosion reaction. On the other hand, 
three-dimensional porous structure has abundant tortuous 
corridors, facilitating the prolongation of diffusion route 
of corrosive medium and generating “maze effect,” which 
features reinforce the physical shielding performance of the 
coating. In summary, hierarchical porous molybdenum sele-
nide chemically and physically robustens the anticorrosion 
ability of epoxy resin coating.

Compared with other works with porous structure or 
 MoSe2 derived materials (Fig. 7e and Table 1), the absorber 
prepared in this work not only has the characteristics of thin 
thickness, strong absorption, and wide frequency band, but 
also, more critically, has multiband tunability and marine 
corrosion resistance [39, 65, 88–97]. Such comprehensive 
EMW absorption performance contributes to effective work 
in a variety of complex electromagnetic environments and 
is expected to have a broad development after practical 
application.

4  Conclusions

In summary, a series of hierarchical porous molybdenum 
selenide samples with different structures and components 
were prepared in this work using the SMS strategy. With 
the optimized impedance matching, the EMW absorption 
performance of each sample was sufficiently investigated 
in comparison, and the crucial role played by interface 
engineering in this work was explored in depth. The results 
reveal that the impacts of heterogeneous interfaces on the 

Table 1  EMW absorption performance of different materials

Sample RLmin/dB TRL/mm EABmax/GHz TEAB/mm Multiband Anticorrosion References

NiCo2S4@C/PC − 59.36 2.1 6.8 2.1 None None [65]
NiFe2S4/PC − 51.41 1.8 4.08 1.9 None None [88]
Ni/NiO@PC − 51.1 2.4 5.12 2.7 Yes None [89]
Fe3O4@FC − 47.3 1.9 5.68 2.2 None None [90]
CeO2/PC − 56.04 1.9 5.28 2.1 None None [91]
MoSe2 − 60.23 2.56 5.68 2.56 None None [92]
CoNi/MoSe2 − 48.6 1.8 3.76 1.4 None None [93]
MoSe2@RGO − 56.9 8.9 4.12 8.9 Yes None [94]
MoS2/MoSe2 − 61.71 1.88 6.00 2.16 None None [95]
MoSe2/ZCNF − 62.30 2.05 5.10 2.05 Yes None [96]
MoSe2/FeSe2 NPs − 52.26 1.71 4.06 1.71 Yes None [97]
Flower-like  MoSe2 − 57.2 2.7 4 2.7 Yes None [39]
MoSe2/MoC/PNC-60 − 59.09 1.9 6.96 1.9 Yes Yes This work



Nano-Micro Lett.            (2024) 16:6  Page 17 of 21     6 

1 3

EMW attenuation performance are not negligible. The sam-
ples will inherit the characteristics of heterogeneous com-
ponents to some extent, and more heterogeneous interfaces 
will induce more interfacial polarization relaxation pro-
cesses. Therefore, the rational design of interface engineer-
ing contributes to optimize the indexes of EMW absorption 
performance by boosting the dielectric loss. Typically, the 
samples prepared in this work achieve multiband tunabil-
ity. Thin thickness, strong absorption, and wide bandwidth 
EMW absorption characteristics can be obtained in C, X, 
and  Ku bands by adjusting the thickness, and additionally 
have marine corrosion resistance. Such comprehensive 
EMW absorption performance promises to achieve sufficient 
exploitation in complex electromagnetic environments. This 
research provides an important reference and support for 
the design of multifunctional, multiband absorbers through 
interfacial engineering.
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