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 HIGHLIGHTS

• The latest progress of emerging smart flexible sensing systems driven by brain-inspired artificial intelligence (AI) from both the 
algorithm (machine learning) and the framework (artificial synapses) level is reviewed.

• New enabling features such as powerful data analysis and intelligent decision-making resulting from the fusion of AI technology with 
flexible sensors are discussed.

• Promising application prospects of AI-driven smart flexible sensing systems such as more intelligent monitoring for human activities, 
more humanoid feeling by artificial sensory organs, and more autonomous action of soft robotics are demonstrated.

ABSTRACT The recent wave of the artificial intelligence (AI) revolution 
has aroused unprecedented interest in the intelligentialize of human soci-
ety. As an essential component that bridges the physical world and digital 
signals, flexible sensors are evolving from a single sensing element to a 
smarter system, which is capable of highly efficient acquisition, analysis, 
and even perception of vast, multifaceted data. While challenging from 
a manual perspective, the development of intelligent flexible sensing has 
been remarkably facilitated owing to the rapid advances of brain-inspired 
AI innovations from both the algorithm (machine learning) and the frame-
work (artificial synapses) level. This review presents the recent progress 
of the emerging AI-driven, intelligent flexible sensing systems. The basic 
concept of machine learning and artificial synapses are introduced. The new 
enabling features induced by the fusion of AI and flexible sensing are com-
prehensively reviewed, which significantly advances the applications such 
as flexible sensory systems, soft/humanoid robotics, and human activity monitoring. As two of the most profound innovations in the twenty-first 
century, the deep incorporation of flexible sensing and AI technology holds tremendous potential for creating a smarter world for human beings.
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1 Introduction

The continuous revolution of information technologies such 
as artificial intelligence (AI), big data, cloud computing, 
5G/6G communications, and digital health, has prompted 
human life to become more interconnected and intelligent by 
profoundly redefining our interaction with the physical world 
[1–6]. Central to these transformative technologies is the 
field of flexible sensing, which serves to seamlessly integrate 
digital signals with physical spaces, which is achieved by 
diverse flexible sensors featured by adaptability to irregular 
surfaces, durability under mechanical deformation, as well 
as sensitivity to external stimuli [7–9]. Nowadays, the devel-
opment of flexible devices is moving towards two primary 
trends. The first trend is the transformation from merely data 
acquisition to being a more intelligent system. This para-
digm shift underscores the evolution of flexible sensors from 
single-function elements into smarter sensing systems that 
not only collect sensing information, but also understand 
and interpret the surrounding environment [10–12]. The sec-
ond trend stems from the explosive growth of data volume 
due to the rapid development of big data and cloud com-
puting technologies. As data become increasingly diverse 
and complex, there is an escalating need for the efficient 
processing of vast, multifaceted data [13–15]. The above 
two requirements are creating opportunities for machines 
equipped with advanced algorithms and hardware architec-
tures, and eventually, calling for autonomous and adaptive 
AI that can undertake these tasks. Represented by the rapid 
brain-inspired advances from both the algorithm (machine 
learning) and the framework (artificial synapses) aspect, the 
ongoing wave of the AI technology revolution has made the 
realization of smart flexible sensing systems increasingly 
possible. As stated in the “Technology Roadmap for Flex-
ible Sensors” [4], intelligence is the defining feature of the 
upcoming era of “Sensor 4.0”.

As one of the major subjects within AI, machine learning 
which focuses on the development of algorithms capable to 
perform tasks without explicit programming, is becoming 
increasingly integrated with flexible sensing [5, 16, 17]. It 
allows computers to learn from and make decisions based 
on data, thereby imitating the learning process in humans. 
It uses various techniques, including supervised learning, 
unsupervised learning, and reinforcement learning, to enable 
machines to improve their performance or make accurate 

predictions [18]. By harnessing the power of the machine 
learning technique, efficient post-processing, including 
learning from massive amounts of data, has become achiev-
able. This technology is being preliminarily utilized in vari-
ous applications such as healthcare, environmental monitor-
ing, and human–machine interaction [19–23].

On the other hand, advanced machine learning algorithms 
such as Artificial Neural Networks, which originate from 
mimicking human brain features, are inherently incompatible 
with traditional von Neumann-based frameworks [24, 25]. 
The von Neumann framework, characterized by a separation 
between processing and memory units, leads to high energy 
consumption and limited computational power, which is the 
so-called “von Neumann bottleneck” [15, 26, 27]. Therefore, 
beyond algorithm optimizations, there is a pressing need for 
brain-mimicking innovations at the framework-level to fully 
exploit the potential of machine learning algorithms. The 
computational framework of the human brain offers a vastly 
different but remarkably efficient approach. Unlike conven-
tional computers that process information sequentially, the 
human brain simultaneously processes and integrates a mul-
titude of information streams with low power consumption 
[28, 29]. The essential part of the brain’s computational 
framework is synapses. Synapses are junctions where neu-
rons communicate, playing a crucial role in transmitting sig-
nals and facilitating learning and memory. Each neuron can 
form thousands of synaptic connections with other neurons. 
With billions of neurons interconnected by trillions of syn-
apses, the rapid, simultaneous processing of information is 
enabled. Inspired by the synaptic architecture of the human 
brain, researchers have developed brain-inspired synaptic 
devices [11, 30–32]. These devices offer a range of advan-
tages including low power consumption, high parallelism, 
and real-time processing capabilities. Furthermore, some 
recent synaptic devices have been equipped with additional 
flexible features, which can be integrated with diverse flex-
ible sensing components, contributing to the construction of 
intelligent sensing systems [11, 13, 33].

In light of the rapid advancements of AI technology, cou-
pled with the pressing demand for handling massive, com-
plex data and the need for intelligence in flexible sensing, the 
development of AI-driven smart flexible sensor systems has 
emerged as a significant topic in the realm of flexible elec-
tronics. This trend underlines the transformative potential 
of integrating AI with flexible sensors, promising an avenue 
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toward intelligent systems that can meet the challenges in 
this data-driven era (Fig. 1). This article reviews the recent 
progress of the development of smart flexible sensing driven 
by brain-inspired AI innovations from both the algorithm 
(machine learning) and the framework (artificial synapses) 
level. Although machine learning- or artificial synapses-
involved flexible sensing has been separately introduced in 
some representative reviews [5, 11, 15, 34], we emphasize 
that these two AI techniques are not isolated concepts, which 

are comprehensively elucidated in this review. It is the incor-
poration of both of them that contributes to the more sub-
stantial exploitation of AI for intelligent flexible sensing. In 
Sect. 2, we will present the basics of the above-mentioned 
two AI concepts. Then in Sect. 3, we will introduce the gen-
eral types of current flexible sensors, and comprehensively 
demonstrate the new features when flexible sensing is incor-
porated with machine learning and artificial synapses. In 
Sect. 4, we present in detail the application prospects of 

Fig. 1  An overview of smart flexible sensing systems driven by brain-inspired AI innovations from both the algorithm (machine learning) and 
the framework (artificial synapses) level. Flexible electronics: electromechanical sensors [35] Copyright (2021) American Chemical Society, 
optoelectronic sensors [36] Copyright (2021) Elsevier, and chemical sensors [37] Copyright (2022) American Chemical Society. Brain-inspired 
AI: the algorithm: machine learning, and the framework: artificial synapses [38, 39] Copyright (2019) American Chemical Society, Copyright 
(2022) American Chemical Society. Applications based on AI-driven smart flexible sensing systems: artificial sensory systems [40] Copy-
right (2021) American Chemical Society, soft robotics [41] Copyright (2020) Wiley–VCH, human motion identification [42] Copyright (2022) 
Wiley–VCH, health monitoring [43] Copyright (2022) American Chemical Society, and human–machine interaction [44] Copyright (2022) 
American Chemical Society



 Nano-Micro Lett.           (2024) 16:14    14  Page 4 of 39

https://doi.org/10.1007/s40820-023-01235-x© The authors

AI-driven flexible sensing. Finally, the key challenges and 
future opportunities in this emerging field are summarized 
and discussed.

2  Basic Concepts of AI Techniques

2.1  Principles of Machine Learning Algorithms

Machine learning is a technique that can automatically 
establish non-linear input–output mapping while bypassing 
complex physics or mathematics [45, 46]. The core idea of 
machine learning is to train a surrogate model using a large 
raw dataset, and once the model is successfully trained, its 
target applications such as property prediction, image rec-
ognition, and object detection can be achieved with high 
computational efficiency and accuracy [47]. When apply-
ing machine learning techniques in flexible sensing systems, 
the collected raw data should first be converted into input 
features for machine learning analysis by pre-processing pro-
cesses such as removing outliers, denoising, and normaliza-
tions. Normally, the processed dataset is divided into three 
subsets, which are training, validation, and test sets [5, 18, 
48]. The training dataset is utilized to train a machine learn-
ing model to approximate the input–output relationship as 
possible. The parameters of the machine learning model are 
then optimized and eventually determined by examining the 
validation dataset. The performance of the trained model is 
evaluated on the test dataset, typically with several metrics 
including the accuracy or confidence coefficient. Nowadays, 
machine learning has exhibited a remarkable significance 
in flexible electronics for data analysis, pattern recognition, 
and decision optimization, involving various fields such 
as medical diagnosis, health monitoring, human–machine 
interaction, and smart home [16, 19, 49]. Machine learning 
algorithms for flexible sensor systems mainly include tradi-
tional machine learning algorithms [such as support vector 
machines (SVM) and artificial neural network (ANN)] and 
deep learning (DL) algorithms [such as convolutional neural 
network (CNN) and recurrent neural network (RNN)] [5, 
17, 34, 50].

For example, as a typical representative of traditional 
machine learning algorithms for classification tasks [51], 
SVM can separate different classes of samples by con-
structing an optimal hyperplane in a high-dimensional 

feature space (Fig. 2a). SVM can classify and identify the 
data sets collected by flexible electronics [52, 53]. Spe-
cifically, we can define these data points as eigenvectors. 
These samples are mapped from the original space to a 
higher dimensional feature space, making the data more 
easily separable in that space. Then, an optimal hyperplane 
is determined by some key data points (support vectors) 
located on the boundaries of the different categories. The 
new data points are mapped into the feature space and 
classified into a class on either side of the hyperplane. In 
the linear and separable training sets, the optimal hyper-
plane can be represented by the following equation:

where w is the weight vector, x is the feature vector of the 
data points, and b is the bias term. All points satisfying 
Eq. (1) are on the optimal hyperplane. SVM is very effec-
tive for the classification of high-dimensional datasets and 
can be trained on a small dataset, but it is sensitive to noise, 
outliers, and the selection of parameters. In recent years, the 
development of machine learning based on mimicking the 
human brain has gradually become the research focus. For 
example, ANN, as a popular machine learning algorithm in 
flexible electronics, is a computational model that emulates 
the function and structure of the biological neural network 
(Fig. 2b) [54, 55]. Compared with other machine learning 
algorithms, ANN significantly outperforms the traditional 
machine learning model for nonlinear problems, high adap-
tivity, high fault tolerance, and wide applicability, and thus 
has better performance in several tasks, such as classifica-
tion, regression, clustering, and optimization.

The DL algorithm is a new branch of the machine 
learning algorithm, which is significantly distinguished 
from the traditional machine learning algorithm. Tradi-
tional machine learning algorithms are highly dependent 
on feature engineering and are only applicable to rela-
tively simple problems, while DL algorithms are capable 
of automatically learning feature representations and thus 
are suitable for handling large-scale, complex data and 
tasks. For the emerging DL algorithm, CNN and RNN are 
the two dominant structures at present.

CNN is a DL model commonly used for computer vision 
tasks, which consists of three main layers to accomplish 
the corresponding learning tasks, including the convo-
lutional layer, pooling layer, and fully connected layer 
(Fig. 2c) [56, 57]. The convolutional layer is the core 
component of CNN, where a convolution operation is 

(1)wT ∗ x + b = 0
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implemented on the input image by using a series of learn-
able filters. This convolution operation can extract local 
features of the image (edges, textures), which is expressed 
using the following equation:

where I is the input data, K is the convolution kernel, (I*K)
(i, j) is the value of the i row and j column of the output 

(2)(I ∗ K)(i, j) =
∑

m

∑

n

I(m, n)K(i − m, j − n)

feature map. Pooling layers can reduce the space size of 
the feature map by max pooling or average pooling while 
preserving its key features. The output of the pooling layer 
is flattened into a one-dimensional vector and feeds it into a 
fully connected neural network for the regression or classi-
fication task. In addition, compared with SVM in traditional 
machine learning algorithms, CNN can automatically extract 
features and perform operations based on image pixels. Once 
the training process is completed, the prediction results will 
be accurate and universal without the need for specialized 

Fig. 2  Fundamentals of various machine learning algorithms. a Schematic diagram of the SVM model for binary classification. b Architecture 
of the ANN model. c Architecture of the CNN model. d Architecture of the RNN model
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knowledge. CNN can solve signal processing problems in 
flexible electronics and apply them to a variety of real-world 
scenarios [58].

For the RNN, its working mechanism can be simply 
described as a stepwise iteration through sequential data, 
where each moment takes the state of the current moment 
and the previous moment as inputs, and produces an output 
and a new state, which in turn becomes the input of the next 
moment (Fig. 2d). The state update is achieved by a recur-
rent unit function, which can be expressed by the formula 
as follows:

where xt is the input at the current moment, ht−1 is the state 
at the previous moment, ht is the state at the current moment, 
yt is the output at the current moment, Wxh, Whh and Why 
are the weight matrices, bh and by are the bias vectors, f(x) 
is the activation function [59]. In practice, flexible sensing 
systems with multiple sensor arrays can efficiently process 
and recognize multi-dimensional sensing signals by connect-
ing them to the RNN. In general, CNN is designed to auto-
matically capture spatial features, while RNN is efficient at 
capturing time-series information. In addition to traditional 
machine learning and DL algorithms, other algorithms for 
data pre-processing, such as principal component analysis 
(PCA), linear discriminant analysis (LDA), and t-distributed 
stochastic neighbor embedding (t-SNE), are also involved in 
flexible sensor systems [34]. The typical characteristics of 
these commonly used machine learning algorithms in flex-
ible electronics are systematically summarized in Table 1.

2.2  Brain‑Inspired Synaptic Devices

With the rise of AI and big data, the demand for low-
energy, high-efficiency, and highly adaptive computing is 
gradually increasing. Emerging neuromorphic electronic 
systems can efficiently process massive complex infor-
mation by mimicking the brain-nervous system function, 
which is promising to break the bottleneck of high energy 
consumption and slow computation of the conventional 
von Neumann computer architecture and facilitate the real-
ization of brain-like intelligence [60, 61]. The biological 
synapse is a unique structure in the nervous system, which 
endows neurons to communicate and perform simultane-
ously computing and memory [26, 62]. To simulate this 

(3)ht = f (Wxhxt +Whhht−1 + bh)

(4)yt = f (Whyht + by)
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synaptic property, researchers utilize the analog and hys-
teresis properties of two-terminal (2 T) memristors and 
three-terminal (3 T) transistors to construct biomimetic 
synaptic components. Recently, artificial synapses based 
on different working mechanisms of 2 T memristors and 
3 T transistors have gained great attention, as shown in 
Fig. 3 [11, 14].

2.2.1  Biological Neural Components

The biological synapse, as an essential structure in the 
nervous system, can transmit neural information, which 
consists of a contact point between the axon terminal of 
one neuron (the presynaptic terminal) and the dendritic 
terminal of another neuron (the postsynaptic terminal) 

Fig. 3  Schematic diagram of biological synapse and artificial synaptic devices based on different working mechanisms of 2 T memristors and 
3 T transistors. a Biological synapse. b–e 2 T memristors (b ion migration, c ferroelectric mechanism, d phase change, e redox reactions). f–g 
3 T transistors (f carrier capture/release, g ion channel gating, h ferroelectric polarization)
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(Fig. 3a) [63]. Several complicated synaptic behaviors are 
conducted by precisely controlling synaptic strength, such 
as information processing, learning, and memory func-
tions [64, 65]. When a neuron is stimulated sufficiently, a 
nerve impulse (action potential) occurs. This nerve signal 
travels along the axon of neurons and reaches the axon 
terminal. Then, the neuron releases neurotransmitters to 
the synapses between neurons. Neurotransmitters can bind 
to receptors on the cell membrane of presynaptic neurons, 
leading to excitation or inhibition of the postsynaptic neu-
ron and generating excitatory or inhibitory postsynaptic 
currents (EPSC/IPSC) [66]. This binding of the receptor to 
the neurotransmitter leads to the opening or closing of the 
ion channel, which alters the neuronal membrane poten-
tial and subsequently generates an electrochemical signal 
[67]. In addition, in the nervous system, synaptic weights 
(SW) refer to the connection strength between neurons, 
which has an important impact on the function of the nerv-
ous system by controlling the efficiency of neural signal 
transmission. Synaptic plasticity means the SW change in 
response to interactions between neurons and neural activ-
ity, which is the basis for memory and learning in the nerv-
ous system [68]. Synaptic plasticity can be divided into 
two categories: short-term plasticity (STP) and long-term 
plasticity (LTP) [69]. STP includes short-term potentiation 
and short-term depression, while LTP includes long-term 
potentiation and long-term depression. Ultimately, various 
types of neurons can be connected by synapses to build a 
complex neural network, such as the central and peripheral 
nervous systems [70].

2.2.2  Artificial Synapse Based on 2 T Memristors

Artificial synapse based on 2 T memristors with memory 
capacity and plasticity is used to simulate the synaptic 
connection between neurons, which comprises two con-
ductive electrodes and an active layer of material. The syn-
aptic response of 2 T memristors is achieved by altering 
the conductivity of the active material (synaptic weights). 
The main working mechanisms involve ion or vacancy 
migration, ferroelectric polarization, phase change, and 
redox reactions [71].

For 2 T artificial synapse devices based on ion or vacancy 
migration, the memristor effect is achieved by ion or vacancy 

migration-induced variation in the material conductivity, 
such as the formation and destruction of conductive fila-
ments (Fig. 3b) [72]. Specifically, when a source voltage 
or electric field is applied to both ends of the electrode, the 
metal/halide ions or oxygen vacancies are driven by the elec-
tric field and begin to move through the material. The ion or 
vacancy movement can cause structural changes within the 
material to form conductive filaments, which increase the 
conductivity of the synapse device. In contrast, when the 
applied voltage is reversed, the ions or vacancies migrate 
in the opposite direction and break the conductive filament, 
resulting in a decrease in material conductivity. Such an 
effective conductivity modulation can mimic the function 
of a series of biological synapses, such as EPSC, IPSC, and 
spike-timing/rate/frequency-dependent plasticity (STDP/
SRDP/SFDP) [73].

Ferroelectric materials are capable of spontaneous polari-
zation over a range of temperatures (Fig. 3c) [74]. In 2 T 
memristors, ferroelectric material is commonly used as 
a storage layer for the storage and modulation of synap-
tic weights. The polarity of ferroelectric materials can be 
reversed under an applied voltage. In addition, the polari-
zation state is also regulated by the electric field-induced 
local electrolyte reactions. Most importantly, this polariza-
tion state can be maintained for long periods of time without 
the need for continuous voltage or electric field drive. These 
processes significantly affect the material conductivity, 
which is used to emulate various synaptic functions, includ-
ing STDP and STP/LTP [75]. In recent years, 2 T memristors 
based on ferroelectric materials exhibit a broad prospect in 
fields such as AI and neural network computing [76, 77].

Phase change materials can convert the crystalline struc-
ture from amorphous states to crystalline states in response 
to temperature or other external stimuli (electrical pulses 
and optical pulses) (Fig. 3d) [78, 79]. This structural trans-
formation can lead to a change in the conductivity or other 
electrical properties of the phase change material. The mem-
ristor state can be freely switched between high resistance 
states and low resistance states (HRS/LRS) by varying the 
stimuli level. Therefore, the phase change process is used to 
emulate the SW variations. Nowadays, some phase change 
materials such as 2D materials and metal oxides are used 
for the construction of 2 T flexible synaptic devices, which 
demonstrates great potential in neuromorphic [80].

In the redox 2 T memristor, the memristor effect is real-
ized by the formation of ion migration at the oxide/metal 
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interface in the active material [81]. When a source volt-
age is imposed on the device, metal ions and oxygen ions 
in the material move under the electric field, thus altering 
the material conductivity. Once the source voltage exceeds 
a critical value, a redox reaction occurs between the oxide 
and the metal in the active material, leading to a significant 
modification in the chemical composition and structure at 
the interface (Fig. 3e). This redox reaction is usually revers-
ible, thus 2 T memristors can be switched between different 
resistive states for mimicking biological synaptic function 
[82].

2.2.3  Artificial Synapse Based on 3 T Transistors

Compared with 2 T synapse devices, 3 T synapse devices are 
highly reliable and stable, which allows for multi-point input 
and synergistic control. In general, 3 T transistors for artifi-
cial synapses have a relatively complex structure, which is 
composed of three electrodes (source, drain, gate), a channel 
layer, and a dielectric layer. The gate electrode is responsible 
for regulating the electric field intensity, while the drain and 
source electrodes are used to control the current, similar to 
the role of axons, synapses, and cells in biological neurons. 
In a 3 T synapse device, the input signal from the presyn-
aptic neuron is transmitted to the drain of the postsynaptic 
neuron by regulating the electric field intensity of the gate 
and controlling the magnitude of the source–drain current, 
thus mimicking signal transmission between the presynaptic 
and postsynaptic neurons [83]. The synaptic weight modifi-
cation process is easily achieved by multi-gate modulation. 
The 3 T-based artificial synapse device can be divided into 
three main types according to their different working mecha-
nisms, including carrier capture/release, ion channel gating, 
and ferroelectric polarization [11, 15].

In the 3 T synapse device based on the carrier capture/
release mechanism, the induced carriers can migrate in 
the material during the stimulation by electrical or opti-
cal pulses (Fig. 3f). Some trap centers in the device can 
capture these carriers, which include interface defects, 
dangling bonds at the material surface, and barriers in 
semiconductor heterojunctions [84, 85]. This process can 
effectively regulate the conductance change of synaptic 
device channels. Therefore, various synaptic functions are 
mimicked by carrier capture/release. This mechanism is 

expected to enable low-energy parallel processing in the 
future 3 T synapse device.

Ion-gating effect mainly exploits the migration and 
accumulation effect of ions in the electrolyte to achieve 
the modulation of synaptic plasticity (Fig. 3g) [86]. Spe-
cifically, the applied gate voltage can cause ion migration 
in the electrolyte, resulting in a significant change in the 
channel layer conductivity [87]. Even in some cases, the 
external voltage may induce chemical reactions of oxygen 
ions, which further alters the electrical characteristics of 
the material. On this basis, 3 T synaptic devices based on 
the ion-gating effect are constructed for mimicking various 
biological synapses. Electrostatic modulation and elec-
trochemical doping are two common ion-gating effects, 
which can simulate STP and LTP, respectively [88].

In 3 T synaptic devices, ferroelectric material is usually 
used as the dielectric layer located between the source and 
the drain (Fig. 3h). The external electric field can reverse 
the polarization direction of the ferroelectric material, 
which induces a redistribution of the gate charge and thus 
leads to a significant variation in the source–drain cur-
rent [89]. Therefore, the memory behavior of the synaptic 
device can be realized by varying the gate voltage to regu-
late the source–drain current.

3  AI‑Driven Smart Flexible Sensing

3.1  Common Types of Flexible Sensors

Nowadays, flexible electronics are essential for human 
beings to pursue intelligent life [90, 91]. Various complex, 
dynamic, non-planar service scenarios, such as health-
care, human–computer interaction, signal monitoring, 
and soft robotics, urgently need the participation of wear-
able devices to obtain high-quality data information [92]. 
The booming flexible sensors are divided into three main 
categories according to the type and function, including 
flexible electromechanical sensors, flexible optoelectronic 
sensors, and flexible chemical sensors (Fig. 4), which are 
building blocks for the further development of various 
intelligent sensing systems introduced in the following 
sections.
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Fig. 4  Common types of Flexible sensors. a–c Flexible electromechanical sensors (a flexible strain sensors [99] Copyright (2014) Springer 
Nature, b flexible pressure sensors [113] Copyright (2018) American Chemical Society, c flexible vibration sensors [126] Copyright (2019) The 
Authors). d–f Flexible optoelectronic sensors (d, e UV–Vis sensors [136, 137] Copyright (2017) American Chemical Society, Copyright (2022) 
Elsevier, f infrared sensors [139] Copyright (2020) American Chemical Society). g, h Flexible chemical sensors (g gas sensors [153] Copyright 
(2016) American Chemical Society, h ion sensors [155] Copyright (2020) American Chemical Society)
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3.1.1  Flexible Electromechanical Sensors

Flexible electromechanical sensors transduce mechanical 
stimuli into electrical signals to collect information about 
the corresponding objective. These mechanical stimuli 
involve various pressures, strains, vibrations, and shear 
stresses. For instance, flexible strain sensors can detect 
mechanical stress or strain by measuring the material 
deformation, which is usually composed of flexible sens-
ing materials and substrates, thus allowing them to bend 
and adapt to various surface shapes. These features enable 
flexible strain sensors to be used in a variety of complex 
and dynamic environments, such as human skin, wear-
able devices, and robots [93–95]. Various sensing materi-
als for flexible strain sensors include metal nanoparticles/
nanowires/film, metal oxide, carbon micro/nanomaterial, 
liquid metal, conductive polymer, and transition metal 
dichalcogenides [96–98]. When the sensor is subjected to 
an external mechanical deformation, the electrical char-
acteristics of the sensing material will vary in real time 
and generate the corresponding electrical signal output. 
For the strain sensor with high sensitivity, it usually pre-
sents a high gauge factor (GF > 5000), low detection limit 
(strain < 1%), and fast response time. Therefore, such a 
type of strain sensor is very suitable for detecting small 
strain, including sound vibrations, subtle physiological 
signals, and engineering applications. For example, sev-
eral common physiological signals of pulse and heart rate 
have been successfully captured by Choi’s group and Liu’s 
group utilize this highly sensitive sensor (Fig. 4a) [99, 
100]. Moreover, the speech recognition function for mute 
expression and pronunciation calibration is achieved by 
capturing the vibration of the human throat during speak-
ing [101–103]. For the strain sensor with a relatively large 
working range, a representative application is motion 
monitoring of human joints, including swallowing, blink-
ing, finger bending, wrist bending, elbow bending, and 
knee bending, which is extremely important for obtaining 
human physiological details [104–107]. Based on the mon-
itoring of this information, several interesting functions 
such as information coding [100], sign gesture translation 
[108, 109], and braille recognition [6] can be successfully 
implemented to help disabled people.

In addition to flexible strain sensors, flexible pressure 
sensors are also a common electromechanical sensor, 
which can accurately measure pressure variations on the 

object’s surface. Over the years, several flexible pressure 
sensors have been systematically investigated for mimick-
ing the tactile sensing function of human skin, as illustrated 
in Fig. 4b [110, 111]. For instance, flexible piezoresistive 
sensors include an active material sandwiched between two 
opposing flexible electrodes. The active material generally 
comprises a composite of a conductive material and an elas-
tic matrix to form a porous structure, whose resistance can 
be expressed by the resistivity of the material (ρ), the length 
(L), and the cross-sectional area (A) as: R = ρL/A. Pressure-
induced deformation significantly reduces the resistance of 
the active material by increasing the contact area of the con-
ductive material. To date, several common active materials 
have been used for flexible piezoresistive sensors, including 
conductive materials [metal NPs/NWs (Au, Ag, Pt, Cu), 2D 
materials (MXene, graphene,  MoS2)] [112, 113] and elastic 
matrix (PDMS, Ecoflex, and textiles) [114–116]. Flexible 
piezoresistive sensors with lightweight, high accuracy and 
ease of integration are widely used in healthcare, motion 
monitoring, and robotics. Compared with flexible piezore-
sistive sensors, flexible piezoelectric sensors can respond to 
external pressure by generating a transient electrical signal, 
which consists of a piezoelectric material sandwiched by 
two parallel flexible electrodes. When the sensor is subjected 
to external pressure, the deformation of the piezoelectric 
material can cause electric polarization, inducing charge dis-
tribution and spatial potential difference. Currently, several 
common piezoelectric materials have been developed, such 
as piezoelectric polymers (PVDF) [117, 118], lead zirco-
nium titanate (PZT) [119, 120], gallium nitride (GaN) [121], 
and zinc oxide (ZnO) [122]. Flexible piezoelectric sensors 
with excellent dynamic response, high sensitivity, and reso-
lution are suitable for the detection of dynamic pressure and 
high-frequency vibrations.

Similar to pressure sensors, flexible vibration sensors 
that are sensitive to vibration are primarily used to measure 
the vibration and dynamic strain of machines or structural 
objects. This sensor typically consists of a flexible substrate 
and a sensing element. The sensing element works on the 
principles of capacitance, resistance, piezoelectricity, or 
resonance. In nature, collecting vibration signals with differ-
ent frequencies and amplitudes are extremely important for 
medical diagnosis, motion measuring, and device detection 
[123, 124]. As a demonstration, flexible vibration sensors 
have been used to monitor human movement and physi-
ological signals such as heart rate, respiration, pulse, and 
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posture (Fig. 4c) [125, 126]. These vibration signals have 
a relatively low frequency (0–100 Hz). For the ultra-high 
frequency range (kHz–MHz), the flexible vibration sensor is 
commonly used for ultrasonic-based structural health moni-
toring [127, 128].

3.1.2  Flexible Optoelectronic Sensors

Over the past decade, the booming flexible optoelectronic 
sensors have attracted the attention of many researchers, 
which transduce light energy into electrical signals and 
detect optical information of objects [129, 130]. Flexible 
optoelectronic sensors with lightweight, shape deformability 
and ease of integration are widely applied in various opti-
cal detection, visual perception, and energy field. Currently, 
according to the different detection ranges, flexible optoelec-
tronic sensors mainly include ultraviolet–visible (UV–Vis) 
sensors and infrared sensors (Fig. 4d–f).

UV–Vis sensors, as one of the most common optoelec-
tronic sensors, are mainly suitable for detecting light signals 
in the ultraviolet and visible wavelength ranges [131, 132]. 
For instance, Kim’s group developed an ultrasensitive pho-
todetector with a high photodetectivity (6 ×  1010 Jones) and 
photoresponsivity (1.031 A  W−1) to detect light at wave-
lengths from 350 to 700 nm by utilizing multilayer  MoS2 
as the channel material [133]. Similarly, Nawaz et al. [134] 
reported for the first time a hybrid 1D CdSe nanoribbon/2D 
 PbI2 nanosheet heterojunction device for high-performance 
flexible photodetectors. This device is sensitive to UV–Vis 
light (200–800 nm) and characterized by high responsivity 
(3.98 ×  106 A  W−1), good detectivity (8.62 ×  1016 Jones), 
large linear dynamic range (76 dB), and external quantum 
efficiency (9.83 ×  108%). Wu et al. also demonstrated a flex-
ible perovskite  (MAPbI3) nanowire network (NWN) photo-
detector based on a simple welding strategy for responding 
to ultraviolet and visible light. This NWN-based photode-
tector exhibits ultra-high photoelectric performance due to 
weld-enhanced material crystallinity, including a high on/
off ratio (2.8 ×  104) and detectivity (4.16 ×  1012 Jones) [135]. 
Featuring these excellent performances, such a kind of sen-
sor exhibits a broad prospect in the fields of smart wearable 
devices, biomedical imaging, environmental energy, and 
security. Shen et al. have fabricated a high-performance 
flexible ultraviolet image sensor with a 10 × 10 device pixel 
array, which is extremely beneficial for the development of 

large-area flexible sensing systems (Fig. 4d) [136]. Moreo-
ver, several high-performance UV–Vis sensors have been 
developed as flexible photovoltaic devices, which play a 
key factor in the production of sustainable and environ-
mentally friendly energy. Kumar et al. reported a flexible, 
lightweight, and transparent  Ga2O3/Cu2O heterojunction 
for UV–Vis photodetectors and photovoltaics, as shown in 
Fig. 4e. This device with specific UV shielding function 
and energy production capabilities can be easily integrated 
into various medical devices and smart wearable systems 
and provide energy supply [137]. Notably, the integration of 
these photodetectors and storage devices even allows for the 
development of advanced flexible visual memory systems to 
emulate the human visual memory function [138].

In contrast to UV–Vis sensors, infrared sensors are com-
monly used to detect light signals in the infrared wave-
length range. Infrared light is typically between visible 
light and microwaves, with wavelengths ranging from 750 
to 1 mm. It can be further divided into near-infrared light 
(750–3 μm), mid-infrared light (3–30 μm), and far-infrared 
light (> 30 μm). Great efforts have been made to develop 
various high-performance infrared sensors with ultra-broad 
spectral responses. Xu et al. [139] designed a novel flexible 
SnSe-based photodetector, which can even detect ultravio-
let–visible-mid-infrared light (10.6 μm) by photobolometric 
effect and exhibit ultra-high mechanical stability and fast 
response rate (Fig.  4f). Furthermore, an  In2O3/PTPBT-
ET-based hybrid phototransistor has been developed by 
Li’s group in 2021, which demonstrates high performance 
in near-infrared light sensing, such as high responsivity 
(200 A  W−1), excellent detectivity (1.2 ×  1013 Jones), fast 
rise/fall time (5/120 ms) and outstanding mechanical dura-
bility (1000 bending cycles). This device is further used for 
flexible near-infrared image sensors by constructing 10 × 10 
phototransistor arrays [140]. Nowadays, infrared sensors 
have been widely used in the fields of night vision, thermal 
imagery, security monitoring, and medical analysis [141, 
142]. In addition to UV–Vis sensors and infrared sensors, 
there is a special terahertz (THz) sensor with a frequency 
range of 0.1–10 THz and a wavelength of > 30 μm. This 
THz sensing technology is extremely important for medical 
imaging, non-destructive testing, and 5G/6G communica-
tions [143].
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3.1.3  Flexible Chemical Sensors

In contrast to the previous two flexible sensors, flexible 
chemical sensors that are sensitive to various chemicals 
can convert their chemical information into read-out elec-
trical signals for detection [144–146]. These sensors are 
similar to the olfactory and gustatory organs in the human 
sensory system. Compared with the traditional fluorescent 
and labeled chemical sensing technology, the emerging 
flexible chemical sensors with high sensitivity and speci-
ficity and low detection limit exhibit broad prospects in 
the fields of chemical environmental pollution, sanitary 
surveillance, and medical health, including the detection 
of various gas molecules, organic solvents, volatile organic 
compounds (VOC), ion, bio-enzyme, and virus molecule 
[147–149]. In general, the operating mode of the sensor 
is closely associated with its functional sensing material. 
For flexible gas sensors, the fundamental principle is a 
chemical reaction between the gas sensing material and 
the adsorbed gas molecular, which induces a significant 
variation in the electrical properties of the material. There-
fore, the composition and concentration of the gas can be 
effectively detected based on the output electrical signal. 
Therefore, the composition and concentration of the gas 
can be effectively detected based on the output electrical 
signal. Several common oxide semiconductor materials, 
such as  SnO2, ZnO, and  Fe2O3 are widely used to fabricate 
the flexible gas sensor [150, 151]. Yang et al. [152] have 
demonstrated a transfer-free graphene growth method to 
achieve a fast and simultaneous response to nitrogen diox-
ide  (NO2) and toxic ammonia  (NH3) molecules. Similar 
works to detect the  NO2 gas were completed by a-Fe2O3 
and ZnO-modified reduced graphene oxide nanocompos-
ites (Fig. 4g) [153, 154]. The detection of these pollution 
gases is essential for environmental protection and eco-
logical safety. In addition, ion sensors are also common 
chemical sensors that detect and quantify the presence and 
concentration of various ions by the interaction between 
sensing materials and specific ions. Over the past dec-
ade, various ion sensors have made significant progress in 
environmental monitoring, intelligent medicine, and food 
safety. These sensors can be used to detect heavy metal 
ions and drug residues in water, or ion levels in human flu-
ids. For example, Fan et al. [155] reported a solution-gated 
graphene transistor sensor platform to selectively detect 
 Cu2+ ion in the various interference metal ions based on 

the affinity between the functional amine group of carbon 
quantum dot and the  Cu2+ ion (Fig. 4h). Dahiya’s group 
developed a stretchable wireless system for the pH moni-
toring of human sweat [156].

In addition to gas sensors and ion sensors, there are 
several special chemical sensors, such as biological sen-
sors, VOC sensors, humidity sensors, sweat sensors, blood 
oxygen sensors, and glucose sensors [157, 158]. Biologi-
cal sensors can monitor physiological or chemical indica-
tors inside or outside the organism. These detection tar-
gets include nucleic acids, proteins, pathogens, cells, and 
various small biomolecules (lactate, urea, dopamine, and 
 H2O2), which are closely associated with human health 
[159, 160]. VOC sensors are mainly used for the monitor-
ing of organic compounds with volatile, toxic, and harmful 
characteristics, which are directly relevant to human health 
[161] and ecological safety [162]. Humidity sensors are 
commonly used to measure the water vapor content in the 
air or other gases, which is essential for air quality moni-
toring. The sweat sensor is specifically designed to detect 
the composition and secretion rate of human sweat, while 
the role of the blood oxygen sensor and glucose sensor is 
to monitor human blood oxygen and blood glucose levels. 
These chemical sensors are expected to build future artifi-
cial olfactory and gustatory perception systems.

3.2  Machine Learning‑Driven Smart Flexible Sensors

With the increase in the number of flexible sensors and 
the amount of data, the processing and analysis of sensing 
information become more and more complex and diffi-
cult. Due to the advantages of processing large-scale data, 
adaptive capability, high efficiency, automation, and intel-
ligence, the incorporation of machine learning has had 
a profound impact on the field of flexible electronics in 
recent years, making it more intelligent and connected by 
adding a powerful tool for analyzing and processing data 
from multiple types of sensors [163]. Specifically, machine 
learning plays a key role in three main aspects: sensing 
data analysis and interpretation, multimodal information 
post-processing and decoupling, and intelligent environ-
ment sensing and perception (Table 2).

First, machine learning algorithms can help flexible 
electronics efficiently process massive amounts of sensor 
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information (Fig. 5). Currently, the data collected by flexible 
sensors are becoming larger and more complex, requiring 
processing, filtering, and extraction. Traditional rule-based 
methods face difficulties in handling such large-scale data, 
while machine learning algorithms can process and ana-
lyze the data quickly and efficiently by training models to 
learn features and patterns from the data, thus enabling flex-
ible electronics to make intelligent data decisions. Several 
machine learning algorithms have been successfully used 
to analyze the physiological signals collected by flexible 
electromechanical sensors for health monitoring to further 
understand human health status. Fang et al. [164] designed 
a machine learning-assisted textile triboelectric sensor to 
achieve ambulatory cardiovascular condition assessment 
and high-fidelity pulse monitoring (Fig. 5a). In this sys-
tem, machine learning algorithms are used to extract pulse 
wave features from the data collected by the triboelectric 
sensor, enabling cuffless blood pressure estimation. This 
information is subsequently used as inputs to the trained 
neural network, which generates two outputs correspond-
ing to systolic and diastolic blood pressures. This machine 

learning-assisted estimation of blood pressure is quite reli-
able due to the relatively small mean deviation from com-
mercial cuff-validated values (2.9% and 1.2%, respectively). 
Besides pulse wave feature extraction, machine learning 
algorithms are used for the diagnosis of some medical dis-
eases diagnose, such as respiratory disease classification and 
benign/malignant tumor identification. An air-permeable 
and biodegradable smart face mask has been successfully 
developed, which is composed of a self-powered breath sen-
sor, a mobile readout circuit, and a polylactic acid-made 
mask [43]. This smart mask enables the effective diagnosis 
of chronic respiratory diseases by recording respiratory sig-
nals and combining them with machine learning algorithms 
(Fig. 5b). Specifically, each complete respiratory waveform 
is considered as a dataset, which includes 26 typical features 
based on the frequency and time domains. On this basis, a 
total of 2400 datasets were obtained, of which 80% were 
used as training sets for training the model and 20% were 
used as test sets to complete the validation task. As a typi-
cal example, this smart mask, assisted by the decision tree 
(DT) algorithm based on a bagged ensemble strategy, has 

Table 2  Recent progress in machine learning-driven smart flexible sensors to enable sensing data analysis, multimodal information processing 
and decoupling, and intelligent environment perception

SML supervised machine learning, BSV bioinspired somatosensory-visual, RF random forests, ET extra trees

Category Sensor type Machine learning algorithms Application References

Sensing data analysis and inter-
pretation

Triboelectric sensors SML Ambulatory cardiovascular 
monitoring

[164]

Self-powered breath sensor DT Chronic respiratory disease 
diagnosis

[43]

Triboelectric pressure sensors DL, CNN Gait analysis, VR applications [165]
Piezoelectric acoustic sensors GMM, DNN, CNN, t-SNE Voice communication, speaker 

recognition
[49]

Multimodal information pro-
cessing and decoupling

Skin-like stretchable strain 
sensors

CNN, t-SNE, BSV Gesture recognition [166]

Piezoelectric tactile sensors DL, CNN Tactile Cognition [167]
Transient multifunctional sensor KNN, DT, RF, ET Non-invasive personal care 

diagnostics
[168]

Hybrid electronic system CNN Ambulatory physiological 
monitoring

[169]

Epidermal electronic sensors SVM, KNN, DT Mental fatigue monitoring [170]
Intelligent environment sensing 

and perception
Triboelectric nanogenerator 

sensors
PCA, SVM Digital twin applications [171]

Triboelectric sensors CNN, PCA, DL Sign language recognition and 
bidirectional communication

[172]

Piezoresistive sensors CNN Object recognition and grasping [173]
Piezoresistive sensors ANN, SVM Sitting posture recognition [178]
Triboelectric sensors and image 

sensor
CNN, t-SNE Integrated health monitoring 

system, smart home
[175]
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Fig. 5  Machine learning algorithms enable sensing data analysis and interpretation in different flexible electronic applications. a Ambulatory 
cardiovascular monitoring system [164] Copyright (2021) Wiley–VCH. b Chronic respiratory disease diagnosis [43] Copyright (2022) Ameri-
can Chemical Society. c Gait analysis [165] Copyright (2020) The Authors
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successfully achieved the differentiation between the healthy 
group and three typical chronic respiratory diseases (chronic 
obstructive pulmonary disease, asthma, and bronchitis) with 
an overall accuracy of 95.5%. In addition to health monitor-
ing, the efficient data processing and analysis capabilities 
enabled by machine learning algorithms are also used in 
several human–machine interface situations, such as voice 
communication and speaker recognition, which are com-
monly integrated into a variety of flexible acoustic pressure 
sensors to enhance their functionality. An interface plat-
form for speech users was developed by combining flexible 
piezoelectric acoustic sensors and machine learning tech-
niques [49]. In this platform, the acoustic sensor vibrates in 
response to the speaker’s voice and subsequently transforms 
speech into an electrical signal, which can supply digital 
data for pre-processing. Machine learning models are used 
to train these speech data and extract linguistic information 
from it, which is essential for the development of voice-
activated electronic systems. Furthermore, machine learn-
ing algorithms can also be combined with several flexible 
electromechanical sensors to achieve accurate identification 
and evaluation of human movements and postures by real-
time data processing and analysis, providing support for per-
sonalized motion monitoring and guidance, and enabling 
real-time feedback. Lee’s group developed an intelligent 
sensing system for sophisticated gait analysis by connect-
ing low-cost triboelectric intelligent socks with an optimized 
DL model (Fig. 5c) [165]. The smart sock equipped with 
1D CNN-based DL analysis was capable of distinguishing 
gait patterns with 100% and 93.64% accuracy in 5 and 13 
participants, respectively. It was also able to detect various 
human activities with an accuracy of 96.67% among the 
five predefined actions of the identified users. In short, this 
machine learning-based data analysis capability can improve 
the perception and intelligence of flexible electronics, which 
is significant to better cope with complex environments and 
task requirements.

Moreover, machine learning algorithms can help flex-
ible electronics to perform complex data fusion and mul-
timodal information processing. Some flexible sensors 
generally integrate multiple types of sensors to acquire 
multi-dimensional information, such as vision, sound, and 
pressure. Machine learning algorithms can fuse or decou-
ple these various types of sensor data to extract useful fea-
tures and patterns for the processing and understanding of 
complex multimodal information, which enables flexible 

electronics to perform more comprehensive and accu-
rate data analysis and decision-making in different fields 
such as human–machine interaction, health monitoring, 
and smart home. For instance, a bioinspired data fusion 
architecture was developed by Chen’s group for human 
gesture recognition [166]. This process is implemented 
by combining somatosensory data with visual data. The 
bioinspired learning architecture performs vision process-
ing utilizing a sectional CNN, and then enables sparse 
neural networks for feature-level sensor data fusion and 
recognition, thus achieving a high recognition accuracy 
even under non-ideal conditions of noisy, underexposed or 
overexposed images (Fig. 6a). Similarly, Kim et al. [167] 
reported a tactile avatar system for mimicking human tac-
tile cognition by integrating a multiarray piezoelectric tac-
tile sensor and a DL process. In this system, piezoelectric 
tactile sensors are responsible for dynamically recording 
different tactile information, such as temperature, pres-
sure, hardness, sliding speed, and surface topography. 
Using a hybrid neural network layer, the haptic decision 
system is realized by training multimodal tactile sensory 
information collected by touch or swipe and creating indi-
vidualized histograms of human tactile cognition. CNN 
algorithms were used to generate artificial tactile percep-
tions in 42 different tactile materials with less than 2% 
decision error in each avatar system. In addition, machine 
learning algorithms can help identify various stimuli from 
the signals of complex multifunctional sensors. Sahatiya 
et al. demonstrated a multifunctional sensor for detecting 
physical and chemical stimuli utilizing a water-soluble 
 SnS2 QD/PVA film and further combined with machine 
learning algorithms to achieve accurate classification of 
various sensor data [168]. These multifunctional sensor 
data were processed by various machine learning algo-
rithms (KNN, DT, random forests, extra trees) in which 
the data were trained to decouple and classify strain, pres-
sure, and respiratory stimuli with a maximum accuracy 
of 87.7%. Recently, researchers have also used machine 
learning algorithms to process and analyze various physi-
ological signals and decouple and classify this raw data in 
real time. A wireless, stretchable flexible electronic system 
has been developed to monitor the user’s heart condition in 
real time by continuously evaluating, detecting, and noti-
fying the recorded ECG [169]. In this system, two CNN 
units were used to classify user activities such as idling, 
walking, stairs, running, and falling based on acceleration 
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Fig. 6  Machine learning algorithms help flexible electronics to achieve a, b multimodal information post-processing and decoupling, c, d intel-
ligent environmental sensing and perception in different scenarios. a Fusion of visual and somatosensory information in the BSV-associated 
learning architecture [166] Copyright (2020) The Authors. b Mental fatigue status monitoring system with machine learning algorithms [170] 
Copyright (2020) American Chemical Society. c Digital twin unmanned warehouse system with machine learning algorithms [171] Copyright 
(2020) The Authors. d AI-enabled sign language recognition and communication system [172] Copyright (2021) The Authors
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and angular velocity data, as well as to perform semantic 
segmentation of ECG ectopic beats (ventricular ectopic 
beats, supraventricular ectopic beats, and fusion beat) 
and arrhythmias (myocardial infarction and heart failure) 
for heart disease based on raw ECG data. Furthermore, 
a recent advancement in the field saw the development 
of multimodal epidermal electronic systems, designed to 
monitor multiple physiological signals, including ECG, 
GSR signals, and respiration rate in a nonintrusive way 
[170]. By introducing machine learning algorithms to 
extract the key features of the corresponding physiologi-
cal signals, a mental fatigue classification system is devel-
oped to enable high-precision prediction of fatigue lev-
els (Fig. 6b). SVM, KNN, and DT algorithms were used 
to complete the model training and build the prediction 
model. By utilizing the DT algorithm, a prediction rate of 
89% was realized based on six different physiological char-
acteristics. The complex multimodal information fusion 
and decoupling capabilities endowed by the machine 
learning algorithm bring many advantages to flexible 
electronics, not just simple data processing and decision 
support, but more of an increased level of intelligence.

More importantly, the combination of machine learn-
ing-assisted data processing and flexible electronics 
can endow some inanimate objects such as soft robots, 
smart gloves, and prosthetics with the ability to perceive 
information and interact with the environment, enabling 
them to better understand and respond to user demand, 
thus creating more personalized services and more intel-
ligent interaction experience for human users. Recently, 
a smart soft-robotic gripper system has been designed to 
capture continuous motion and tactile information [171]. 
In this smart system, tactile sensors can sense the contact 
location and area of external stimuli through specially 
distributed electrodes. Subsequently, the tactile sensory 
information collected by operating the soft gripper was 
further trained by an SVM algorithm to recognize dif-
ferent objects with an accuracy of 98.1%, and the digi-
tal twin application demonstration based on the virtual 
assembly line and unmanned warehouse applications was 
successfully created (Fig. 6c). In addition, several intel-
ligent perception systems integrated with machine learning 
algorithms and wearable sensors have been developed to 
achieve comprehensive gesture recognition, thus meeting 
the daily communication needs of sign language users. Lee 
et al. reported an AI system for sign language recognition 

and communication, which is composed of smart sensing 
gloves integrated with triboelectric sensors, DL block, and 
a virtual reality interaction interface (Fig. 6d) [172]. As 
proof, the system successfully achieved the recognition 
of 20 short phrases and 50 words. In this system, CNN 
models were used to enhance the algorithm’s ability to rec-
ognize objects, while DL algorithms are used to identify 
linguistic components and reverse the construction of the 
original phrase, thereby providing an accurate translation 
function by realigning known word units to generate new 
sentences. Finally, a virtual reality interface was designed 
to facilitate communication between disabled people based 
on the DL-assisted glove smart system. Similar work was 
demonstrated by Matusik’s group, who designed a tactile 
glove with an array sensor and used a CNN to analyze 
the array data to recognize individual objects, evaluate 
the weight, and investigate the classic tactile patterns that 
occur when grasping objects [173]. Currently, the intelli-
gent sensing and decision-making capabilities of wearable 
electronics empowered by machine learning algorithms 
also show broad prospects in the smart home. Hu et al. 
[174] reported an intelligent chair sitting recognition sys-
tem that uses six flexible piezoresistive sensors, a machine 
learning algorithm of the two-layer ANN, and an analog-
to-digital converter (ADC) board to classify seven differ-
ent health-related sitting postures. Moreover, an artificially 
intelligent toilet integrated with image sensors and pres-
sure sensor arrays was developed for an integrated health 
monitoring system [175]. Assisted by CNN algorithms, 
the smart toilet can recognize the user information sitting 
on the toilet seat with over 90% accuracy.

In a word, different machine learning algorithms have 
distinct characteristics, which mainly include data pre-
processing algorithms and analysis algorithms. In these 
smart flexible sensing systems, the flexible sensor module 
first acquires massive raw data containing various stimuli 
information. These raw data, differentiated from the data 
format required for machine learning, are pre-processed 
or transformed to extract feature information such as time, 
frequency, amplitude, and polarity. PCA and LDA are com-
monly used data pre-processing algorithms that enable 
dimensionality reduction of high-dimensional datasets in 
flexible electronics. Similar functions can also be achieved 
by the t-SNE algorithm, but it is only suitable for the non-
linear case. These processed data are further used for model 
training. To date, some machine learning models are used to 
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perform different training tasks. For example, several tradi-
tional machine learning algorithms (SVM, ANN) and deep 
learning algorithms (CNN, RNN) can implement classifica-
tion and regression tasks. Other algorithms such as k-means 
and Gaussian Mixture Model (GMM) can accomplish the 
clustering task. The target of these training tasks is to enable 
machine learning models to make analyses and predictions 
about the collected information, and thus achieve a smart 
flexible sensing system with self-learning and decision-mak-
ing capabilities. In the future, machine learning-driven smart 
flexible sensors will certainly inspire more sophisticated and 
intelligent wearable product design, providing convenient 
and comfortable services for humans.

3.3  Artificial Synapse‑Driven Smart Flexible Sensors

In the human sensory organs, various types of receptors 
are important components of the human sensory system. 
These sensory receptors can detect and transform different 
stimulus signals from the surrounding environment, which 
in turn send interpretable sensory information to the brain 
for cognitive processing, thus achieving communication and 
socialization. This physiological process is accomplished 
through biological sensory organs combined with biologi-
cal synapses. On this basis, five traditional sensory systems, 
including sight, hearing, smell, taste, and touch, are devel-
oped for humans to perceive the external world. With the 
rapid development of AI technology, intelligent flexible 
sensing systems that mimic bio-sensory organs are gradu-
ally needed to dynamically capture much of the physical 
information that describes the real world. Along with the 
explosive growth of information data, the signal processing 
and data analysis algorithms based on the traditional von 
Neumann architecture are no longer able to meet the increas-
ing demand in terms of speed and efficiency, which triggers 
the burgeoning developments of brain-inspired synaptic 
devices. Artificial synapse is developed by mimicking the 
biological synaptic architecture, which can transmit and pro-
cess sensory information in a manner similar to the biologi-
cal neural networks responding to neural signals. Therefore, 
the incorporation of artificial synapses with flexible sensing 
elements can enable high-speed, efficient, low-energy paral-
lel processing at multiple spatial and temporal scales, which 
will contribute to the design of intelligent flexible sensory 

systems, such as tactile, visual, auditory, olfactory, and gus-
tatory sensory systems (Fig. 7 and Table 3).

The tactile perception system greatly facilitates 
human–environment interaction by receiving and processing 
external tactile information. Recently, several flexible elec-
tromechanical sensors have been proposed to achieve simple 
tactile perception in soft robotics and human–machine inter-
action. However, the large area of sensing signal processing 
will inevitably lead to high power consumption, heat gen-
eration, and delay. To solve these issues, artificial synapses 
based on memristors and transistors have been developed 
to mimic the parallel processing capabilities of the human 
brain [176]. Several studies have been conducted by com-
bining different types of flexible electromechanical sensors 
with artificial synapses to build intelligent artificial sensory 
systems that can automatically perform data acquisition, 
processing, and analysis, and execute decisions and feed-
back actions based on learned knowledge. These artificial 
sensory systems consist of three main stages: sensing, signal 
processing, and perceptual decision-making. In general, the 
design and material selection of flexible sensors can mimic 
the soft and deformable features of human skin, allowing 
for a comfortable fit when in contact with the human body. 
In the sensing stage, flexible electromechanical sensors, as 
an important module of artificial tactile sensory systems, 
can perceive various tactile information (pressure, strain, 
and shape) by contacting objects and subsequently convert 
them into electrical signals. These acquired electrical signals 
are pre-processed and then transmitted to the brain-inspired 
synaptic device for further processing. This synaptic device 
is capable of processing perceptual information and adap-
tive learning, which can even be adjusted and optimized for 
various tactile environments and task requirements based 
on the pattern and frequency of the input signal. Specifi-
cally, the brain-inspired synaptic device can identify and 
extract key features in tactile information, such as object 
shape, hardness, and surface texture, by using pattern rec-
ognition and learning algorithms. Based on these features, 
the tactile sensory system can make appropriate decisions, 
such as object classification and texture evaluation. These 
decisions are further feedback to the device, endowing it 
with the ability to adapt and respond to external tactile stim-
uli. In recent research, a biomimicking sensory electronic 
skin system has been developed by integrating a flexible 
ferroelectret nanogenerator with a high-performance syn-
aptic transistor (Fig. 7a) [31]. Several biological synaptic 
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Fig. 7  Various artificial sensory systems based on artificial synapse-driven smart flexible sensors. a Tactile sensory systems [31] Copyright 
(2020) American Chemical Society. b Auditory sensory systems [177] Copyright (2023) Elsevier. c Visual sensory systems [178] Copyright 
(2022) Elsevier. d Olfactory sensory systems [180] Copyright (2021) Wiley–VCH. e Gustatory sensory systems [181] Copyright (2023) Ameri-
can Chemical Society. f Multimodal sensory systems [179] Copyright (2021) American Chemical Society
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neurological functions based on the flexible synaptic tran-
sistor were successfully implemented, including temporal 
synaptic behaviors (STP/LTP), high-pass filtering charac-
teristics, paired-pulse facilitation, and long-term learning 
and memory (STDP/SADP/SWDP). In this neurological 
electronic skin, flexible nanogenerators can serve as sensory 
mechanoreceptors, converting tactile inputs (both the ampli-
tude and frequency of force) into pulsed electrical signals. 
These signals are then transmitted to the gates of synaptic 
transistors to render changes in their postsynaptic currents, 
mimicking synaptic weight modulation in biological syn-
apses. In this manner, real human skin tactile perceptual 
behavior is successfully emulated through the biological 
synaptic transmission, processing, and memory of tactile 
signals. This bionic sensory electronic skin system can even 
be connected to an actuator unit for neuroprosthetic control. 
Similar to tactile sensory systems, several electromechanical 
sensors can detect sound waves of various frequencies and 
amplitudes, which can be combined with artificial synapses 
to create artificial auditory sensory systems (Fig. 7b) [177]. 
In this combination, flexible electronics serve as auditory 
receptors, converting sound waves into electrical signals. 
These signals are further transmitted to the synaptic device 

for processing, thus enabling the perception and understand-
ing of auditory information.

Unlike tactile and auditory perception, the human visual 
system mainly relies on the perception of light signals to 
obtain visual information about the external environment 
and transmit it to the brain. To mimic this process, some 
researchers have developed artificial visual neuromorphic 
systems based on a combination of flexible optoelectronic 
sensors and artificial synapses, which provides a new direc-
tion for AI vision applications. In such a visual system, flex-
ible optoelectronic sensors are responsible for sensing and 
collecting visual information, while synaptic devices are 
responsible for information processing and pattern recog-
nition, working together to achieve perception and under-
standing of the visual world. Flexible optoelectronic sen-
sors can perceive visual features such as light, color, and 
texture, and convert this information into electrical signals 
to artificial synapse modules. These artificial synaptic units 
can process and analyze the received visual information to 
extract advanced visual features as visual output, which are 
further used to develop several vision applications such as 
image recognition, scenario analysis, and motion tracking. 
Recent research on all-in-one artificial synapses has been 
proposed, which use metal-oxide ZnO/In2O3 heterojunction 

Table 3  Summary of artificial sensory systems

STM short-term memory, LTM long-term memory, PPF paired-pulse facilitation, HRS high resistance states, LRS low-resistance states

Category System architecture Basic function Application References

Tactile sensory systems Flexible ferroelectret nano-
generator, synaptic thin-film 
transistor

STP/LTP, STDP/SADP/SWDP Neuroprosthetic control [31]

Pressure sensor clusters, ring 
oscillators, synaptic transistors

Artificial afferent nerve, synaptic 
reflex arc

Neurorobotics, neuroprosthetics [182]

Pressure sensor, threshold con-
trol unit, actuator

Artificial reflex arc Soft robot, neuroprosthetics [183]

Visual sensory systems Metal-oxide heterojunction artifi-
cial synapses

STP/LTP, EPSC Neuromorphic computing, visual 
sensory nervous

[178]

Multifunctional sensors, flexible 
synaptic transistors

STM/LTM Cyborg systems and neuropro-
sthetics

[179]

Auditory sensory systems Triboelectric nanogenerator, bi-
stable resistor

SNN, spiking output Pitch classification, sound 
recognition

[177]

triboelectric acoustic sensor, 
synaptic transistor

STP/LTP, PPF, SNDP/SDDP/
SFDP/ SVDP

Neural prosthetics, bio-interface 
devices

[32]

Olfactory sensory systems Gas sensors, memory unit HRS/LRS Artificial electronic nose [180]
Gas sensor, resistor electrochem-

ical actuator
Sensing, memory and self-

protection
Artificial nose, humanoid robot [184]

Gustatory sensory systems Ion-gel sensors, synaptic devices, 
execution unit

Salt-taste perception, excessive-
intake warning

Taste health monitoring [181]
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to integrate visual sensory and central nerve functions 
(Fig. 7c) [178]. Various synaptic plasticity functions such 
as long-term and short-term memory behaviors have been 
realized by modulating parameters such as the amplitude, 
width, frequency, and the number of electrical stimuli. This 
emulation of synaptic plasticity, along with the sustained 
synaptic weight state, enables the application of artificial 
synapses in neuromorphic computations, such as ANN-
based image recognition of the Covid-19 chest (> 85%). In 
addition, such artificial synapses are capable of respond-
ing to optical and UV stimuli, thus mimicking biological 
visual sensory functions. This all-in-one artificial synapse 
combining neuromorphic computing and visual perception 
functions demonstrates a broad promise in future AI sys-
tems. Notably, the fusion of flexible multifunctional sensors 
with artificial synapses can even achieve multimodal artifi-
cial sensory-memory systems (Fig. 7f) [179]. The system 
is made up of multifunctional sensors for tactile, auditory, 
and visual inputs and flexible synaptic transistors with sig-
nal processing and memory behavior. In such a system, the 
physical stimuli are converted into electrical impulses con-
taining various information, which are then transmitted to 
an artificial nervous system based on flexible CNT synaptic 
transistors for processing and storage. On this basis, biologi-
cal receptor-like perception and synaptic memory behavior 
were successfully achieved. Several scenarios such as the 
“multistore memory” model (Atkinson–Shiffrin memory 
model) and the classical conditioned reflex experiment (Pav-
lov’s dog experiment) were also demonstrated.

Olfactory and gustatory perceptions endow organisms 
with sensitivity and adaptability to the external environ-
ment by perceiving and discriminating odors and chemi-
cal substances, which are extremely important for survival, 
evolution, and self-protection. Nowadays, the combination 
of flexible chemical sensors and artificial synapses opens a 
new possibility for the development of artificial olfactory 
and gustatory sensory systems, such as an electronic nose 
for smell and an electronic tongue for taste (Fig. 7d, e). In 
these systems, flexible chemical sensors sensitive to specific 
gas or chemicals enable olfactory and gustatory informa-
tion acquisition, while artificial synapses are responsible for 
signal processing to achieve understanding and analysis of 
olfactory and gustatory information. Specifically, functional 
sensing materials can react chemically with a target gas or 
chemical to generate a specific electrical signal or resistance 
change. Then, the brain-inspired synaptic device utilizes 

neural networks and algorithms to recognize and analyze 
these signals and output the corresponding feedback results 
based on the learning and memory functions. For example, 
Choi et al. reported an artificial olfactory memory system 
to mimic human olfactory memory by combining gas sen-
sors with resistive switching memory (Fig. 7d) [180]. This 
gas sensor with high sensitivity to VOC molecules can con-
vert the VOC signal into an electrical signal to trigger the 
memory device to provide smell sensation retention and per-
form gas information identification tasks. Moreover, a smart 
robot equipped with this artificial olfactory memory system 
was utilized to demonstrate the visualization of gas-sensing. 
In short, the collaboration between flexible electronics and 
artificial synapses will further advance the development of 
artificial perception systems and enable more intelligent and 
personalized services and experiences for humans.

3.4  Fusion of Flexible Sensors with Machine Learning 
and Artificial Synapse

More importantly, in addition to simple machine learning-
driven or artificial synapse-driven smart flexible sensors, the 
fusion of flexible sensors with machine learning and artificial 
synapses will lead to more sophisticated intelligent wearable 
applications with the integrated functions of recognition, 
sensing, memory, computing, and feedback. However, the 
present research work on the fusion of the three is relatively 
limited. For example, in several advanced artificial auditory 
systems, artificial synapse modules that integrate a series 
of neural networks and machine learning algorithms can 
perform the recognition, analysis, and processing of sound 
signals collected by various auditory sensors. These artificial 
synapses are able to extract auditory features from massive 
perceptual data and perform tasks such as sound localization 
and recognition, speech analysis, and environmental noise 
suppression. As a demonstration, Choi et al. demonstrated an 
artificial auditory neuron module that integrates a bi-stable 
resistor (biristor) and a triboelectric nanogenerator (TENG) 
[177]. In this system, the TENG works as a power harvester 
and sound sensor, while the neuronal resistor takes on the 
role of a spiking neuron to implement data processing by 
combining machine learning algorithms. The TENG can 
perceive acoustic pressure to generate electrical signals as 
inputs to the collectors of biristor neurons, yielding a spiking 
output voltage for the spiking neural network (SNN). This 
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SNN-based self-aware artificial auditory system was further 
applied for instrument pitch classification in piano or sound 
recognition in cello and violin. Similar work was also exhib-
ited by Xu’s group in 2022, who developed a stretchable 
neuromorphic transistor with the capabilities of visual and 
tactile information perception and neuromorphic processing 
[185]. Therefore, several biological synaptic functions are 
successfully simulated, including SFDP, SNDP, EPSC, and 
PPF. This artificial synapse with strain sensing function can 
be further used as a tactile afferent nerve and combined with 
a machine learning model of ANN to realize gesture recog-
nition function with an accuracy of up to 96.3%. Although 
these studies are in their infancy and achieve less neural 
function than biological systems, it points a key direction to 
the more complex fusion of flexible sensors with machine 
learning and artificial synapses.

4  Applications Based on AI‑Driven Smart 
Flexible Sensing Systems

4.1  More Intelligent Monitoring for Human Activities

In the era of AI and big data, various smart sensing systems 
with intelligent perception, autonomous decision-making, 
and self-adaptive capabilities are developed based on flex-
ible electronics, which play an irreplaceable role in the field 
of human activities and services. These devices can provide 
more natural and intuitive interaction, personalized and cus-
tomized services, achieving intelligent environmental inter-
action, and enhanced virtual reality experience. For instance, 
flexible tactile sensors can be directly attached to the skin 
surface or integrated into clothing to detect human motion, 
thus enabling posture adjustment and human–machine inter-
action. Matusik et al. reported a tactile learning platform 
based on coaxial piezoresistive fibres that combine t-distrib-
uted stochastic neighborhood embedding (t-SNE) and CNN 
algorithms to classify human sitting, movements, and other 
human–environment interactions [186]. Using their full-size 
sensing vest, various postures such as sitting, standing, and 
reclining can be distinguished based on the characteristic 
pressure distribution of various actions. Similarly, Fink’s 
group developed a scalable flexible fiber that contains hun-
dreds of scattered temperature sensors and storage devices 
[187]. This digital fiber can be incorporated into shirts to 
collect and store multiple days of body temperature data and 

infer the wearer’s activity (sitting, standing, walking, and 
running) in real time with an accuracy rate of up to 96% by 
using a trained neural network model (Fig. 8a). Moreover, a 
novel ultra-sensitive skin sensor has also been proposed to 
decode the epicentral human motions (Fig. 8b) [188]. This 
sensor can measure small skin deformation signals away 
from the joints and combine them with DNN algorithms 
to monitor the motion of the corresponding body part. As 
proof, when attached to the wrist or pelvis, the sensor is 
capable of extracting signals corresponding to multiple 
finger movements or generating dynamic gait movements. 
Based on the capability of human motion detection and pos-
ture recognition, these wearable sensors are further used to 
develop sign language translation functions aimed at help-
ing disabled people overcome communication barriers. Zhu 
et al. combined stretchable yarn-based sensor arrays with 
printed circuit boards to build wearable sign-to-speech trans-
lation systems [108]. This system can achieve accurate trans-
lation from hand gestures to speech based on the assistance 
of machine learning algorithms and standard American Sign 
Language (ASL).

Additionally, in healthcare and disease diagnosis, wear-
able sensors are urgently needed for monitoring various 
physiological signals, such as blood pressure, blood oxy-
gen, pulse, breathing, EMG, and ECG. Wu et al. [189] 
designed a triode-mimicking flexible graphene pressure 
sensor with a broad working range and an ultrahigh sen-
sitivity. This device with a mechanical triode-like signal 
amplification characteristic can be used to accurately 
detect a variety of human movements and subtle physi-
ological signals, including plantar pressure/gait, breathing, 
and pulse detection. On this basis, AI-based integrated gait 
monitoring and arterial blood pressure detection systems 
are developed. Rogers et al. have implemented mechanical 
acoustic sensing of body movements and physiological 
processes by designing a wearable wireless device and 
combining it with a hidden Markov model algorithm for 
data analysis and processing [126]. This soft wireless 
device is attached to the suprasternal notch to collect mul-
timodal information in connection with various physiolog-
ical processes, including heart rate, speaking time, num-
ber of swallows, and energy expenditure. Subsequently, 
these raw physiological data are analyzed and classified 
by machine learning algorithms using the time and fre-
quency domains. In addition, human–machine interaction 
based on wearable sensor systems is gradually becoming 
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Fig. 8  AI-driven smart flexible sensing systems for more intelligent monitoring of human activities. a Fabric with incorporated neural network 
capabilities for inferring wearer activity [187] Copyright (2021) The Authors. b A deep-learned skin-like sensor system decoding the human 
hand movements from detected skin deformation [188] Copyright (2020) The Authors. c Multimodal sensing and augmented haptic feedback 
soft modular glove for human–machine interaction [44] Copyright (2022) American Chemical Society



Nano-Micro Lett.           (2024) 16:14  Page 25 of 39    14 

1 3

an important component of daily life, such as smart homes, 
virtual reality, games and entertainment, and public trans-
port. Recently, a modular soft glove with augmented hap-
tic feedback and multimodal sensing functions has been 
designed by Lee’s group (Fig. 8c) [44]. Combined with 
machine learning algorithms, this smart glove not only 
detects dexterous hand movements in real time, but also 
enables accurate object recognition and enhanced feed-
back, significantly enhancing the perception and commu-
nication of more comprehensive information. As a demon-
stration, the glove was further used for bi-directional and 
multimodal communication between humans, robots, and 
virtual worlds. Similarly, Zi et al. reported a porous-struc-
ture-promoted self-powered tactile sensor to construct a 
programmable optoelectronic dual-mode human–machine 
interaction system that can remotely control smart vehicles 
and operate computer games by recognizing finger-touch 
trajectories [190]. In a word, the wave of AI and informa-
tion technology will certainly inspire more sophisticated 
and smarter flexible electronic design, driving revolu-
tionary progress in healthcare, education, transportation, 
human life, and many other fields.

4.2  More Humanoid Feeling by Artificial Sensory 
Organs

Nowadays, five artificial sensory systems with more human-
oid feelings developed by artificial synapse-driven smart 
flexible sensors are becoming an indispensable element for 
human life, as illustrated in Fig. 9. Among biological sen-
sory systems, tactile perception relies on various sensory 
receptors on the skin surface to interact with the external 
environment. Recently, artificial tactile systems that mimic 
human skin perception have been developed for various 
fields such as smart wear, medical monitoring, prosthetics, 
intelligent robotics, and artificial tactile sensory memory 
[11, 94]. As proof, Bao’s group developed a skin-inspired 
digital tactile system by combing a pyramid-shaped tactile 
sensor with an organic oscillator, which can convert pressure 
into a digital frequency signal for direct output [191]. These 
devices can be further integrated into a wearable glove 
to exhibit the variation of the voltage frequency with the 
applied pressure in the wearable system. Similar work was 
also demonstrated by Lee’s group in 2018 (Fig. 9a) [182]. 
They reported a flexible organic artificial sensory nerve by 

a combination of pressure sensor clusters, ring oscillators, 
and synaptic transistors. This biomimetic nerve structure can 
distinguish braille characters based on simultaneous pressure 
inputs and even be used to construct hybrid bioelectronic 
reflex arcs in neurorobotics and neuroprosthetics. In addi-
tion, the design of the multimodal flexible tactile sensory 
system laid the foundation for achieving intelligent robot 
interaction. Wang’s group fabricated a skin-inspired flex-
ible multifunctional sensor array based on the stacked and 
distributed layouts for constructing intelligent prostheses, 
demonstrating its implementation for temperature estima-
tion and spatial pressure mapping [192]. For the develop-
ment of artificial tactile sensory memory, researchers prefer 
to develop complete information acquisition, memory, and 
feedback execution systems to design more advanced intel-
ligent robotic systems. Chen et al. developed an artificial 
somatic reflex system to mimic the reflex arc function of 
humans and higher animals [183]. Besides the pressure 
sensor and threshold control unit, this system includes an 
electrochemical actuator based on the multi-wall CNT for 
feedback of external pressure stimuli. This artificial reflex 
arc is further integrated into a 3D-printed robot to emulate 
infant grasp reflexes, demonstrating their promise in the 
development of neuroprosthetics and intelligent soft robots. 
In short, these artificial tactile sensory systems that simulate 
perception and memory may inspire more integrated and 
connected wearable devices in the future.

In visual perception, mimicking human light perception 
behavior based on biological synaptic function is essential 
for the development of artificial vision systems. Seo et al. 
[193] reported an artificial optic-neural synapse system to 
successfully mimic several synaptic functions by regulat-
ing the light conditions, such as long-term potentiation/
depression and STDP (Fig. 9b). This synaptic system is 
also used for mixed-color and color pattern recognition in 
the human visual system. Currently, artificial vision sys-
tems based on different types of optoelectronic sensors and 
synaptic devices have been advanced in many fields, such 
as retinal bionic chips, flexible optoelectronic skins, artifi-
cial electronic eyes, and imaging sensors. Liu’s group inte-
grated the ferroelectric/electrochemical modulated organic 
synaptic device with the light-sensitive electronic element 
to construct a light-triggered organic neuromorphic device 
(LOND) as a conceptual demonstration for artificial visual 
sensory systems [194]. The LOND can mimic retinal func-
tionalities by converting photostimuli signals with various 
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intensities, wavelengths, and frequencies into different types 
of synaptic signals. With the rapid development of artificial 
vision sensory systems, a biomimetic visual adaptation that 

can automatically adjust retinal sensitivity is proposed to 
construct advanced image-sensing systems with more accu-
rate recognition and a wide detection range. Park’s group 

Fig. 9  AI-driven smart flexible sensing systems for more humanoid feeling by artificial sensory organs. a A bioinspired flexible organic arti-
ficial sensory nerve for movement recognition and braille reading [182] Copyright (2018) The Authors. b An artificial optic-neural synapse 
system for pattern recognition [193] Copyright (2018) The Authors. c An artificial optoelectronic neuromorphic circuit array for mimicking 
environment-adaptable artificial visual sensory system [195] Copyright (2019) Wiley–VCH. d A planar acoustic fabric for bidirectional com-
munications [198] Copyright (2022) The Authors. e A complete artificial olfactory system for odor perception, recognition, memory, and self-
protection [184] Copyright (2021) Elsevier
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reported an artificial neuromorphic circuit array to mimic 
the light-adaptable function of the biological retina, exhib-
iting the environment-adaptable artificial visual sensory 
system (Fig. 9c) [195]. This artificial visual sensory system 
with photopic and scotopic adaptation behavior can enhance 
the accuracy and efficiency of the image recognition process. 
Furthermore, flexible photoelectronic skin based on artificial 
vision sensors is widely used in healthcare and medical diag-
nosis. Koo et al. [196] designed a wearable cardiac monitor 
by integrating the p-MOS CNT signal amplifier with the 
color-tunable OLED, which can continuously detect ECG 
signals based on the OLED corresponding color change 
from dark red to pale red, white, sky blue, and deep blue.

The auditory sensory system allows creatures to acquire 
the external environment information by perceiving sound 
waves of different frequencies and amplitudes. Nowadays, 
researchers are working to develop a lightweight, stable, and 
low-power artificial auditory sensory system to help hearing-
impaired people communicate with each other. For example, 
intelligent robots integrated with artificial auditory systems 
can generate high-complex communication capabilities by 
locating and tracking sounds, such as simultaneous sound 
source separation and speech recognition [197]. In addi-
tion, several other scenes were also demonstrated. Fink 
et al. reported a planar acoustic fabric that can serve as a 
sensitive audible microphone (Fig. 9d) [198]. This acoustic 
fabric can monitor the wearer’s breathing in real time and 
even be used in maternity wear to monitor the heart rate of 
the fetus. Lee’s group also reported an artificial auditory 
sensory nerve by integrating the triboelectric acoustic sensor 
with the ion gel-gated organic synaptic transistor, enabling 
several sound wave-induced synaptic functions (STP/LTP 
and EPSC) [32]. Furthermore, Wang et al. [199] successfully 
performed sound localization utilizing the STP behavior of 
 HfOx-based memristors. The sound source azimuth was 
accurately identified for the interaural time difference simu-
lation by evaluating the internal potential difference between 
two postsynaptic neurons.

Compared with the other three perception systems, 
research works on artificial olfactory and gustatory sensory 
systems are relatively simple. Recently, several flexible 
chemical sensors have been used to design artificial olfac-
tory and taste perception systems for food quality/safety 
assessment, pharmaceutical analysis, disease diagnosis, 
environmental monitoring, and bioelectronic nose [200]. 
For example, Liu’s group developed a conformable and 

flexible artificial organ-damage memory system to simulate 
the process of inhalation and cumulative organ damage in 
humans during hazardous gas  (NO2) leakage, which was 
implemented using an organic field effect transistor to com-
bine gas sensing detection with information storage func-
tions [201]. Similarly, Shen et al. also designed a complete 
artificial olfactory system to perform odor perception, recog-
nition, memory, and protection action behavior by combin-
ing a flexible gas sensor, a memory resistor, and an artificial 
muscle actuator, as shown in Fig. 9e [184]. As a demonstra-
tion, this system not only senses, recognizes, and real-time 
memorizes  NH3, but also mimics self-protective actions that 
induce muscle movements. Moreover, Xu et al. reported an 
artificial neuromorphic gustatory system that can perform 
taste perception, and information processing functions, and 
make immediate responses and warning against the highly 
concentrated salt solution [181]. Although the current explo-
ration of artificial olfactory and gustatory sensory systems is 
still in its infancy, it offers a promising strategy for mimick-
ing and restoring biological smell and taste.

In brief, with the continuous progress and innovation 
of flexible electronics, artificial sensory systems based on 
the mimicking of human sensory organs will become more 
intelligent, flexible, and integrated, advancing science and 
technology society progress.

4.3  More Autonomous Action of Soft and Humanoid 
Robots

Soft robots with great flexibility and variability allow 
comfortable physical contact for operation and thus are 
widely used in many dynamic, non-planar scenarios, such 
as gripping, manufacturing, manipulation, locomotion, and 
human–machine interaction. The integration of artificial sen-
sory systems and soft robots can endow robots with human-
like perception and interaction functions, which enhances 
the adaptability, flexibility, and safety of robots, enabling 
them to better understand and adapt to the surrounding 
environment. For example, soft robots based on tactile sen-
sory systems can flexibly manipulate objects and perform 
high-precision assembly tasks. In order to achieve conveni-
ent autopositioning and a multimodal cognition capability 
of soft robots, Lee et al. developed a soft robotic percep-
tion system by integrating ultrasonic sensors with flexible 
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Fig. 10  AI-driven smart flexible sensing systems for more autonomous action of soft and humanoid robots. a A soft robotic perception sys-
tem for remote object positioning and multimodal sensory intelligence [202] Copyright (2023) American Chemical Society. b An SLiR-based 
untethered centipede with integrated perception and motion capabilities for directional movement, multisensory to wireless human–environ-
ment interaction [41] Copyright (2020) Wiley–VCH. c The humanoid robot integrated with an intelligent tactile system and AI technology for 
dynamic pressure sensing, data storage and analysis, and motion feedback [209] Copyright (2023) Elsevier
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tactile sensors on a robotic manipulator (Fig. 10a) [202]. The 
manipulator is moved to the right position for object grasp-
ing based on the object shape, height, and distance informa-
tion feedback from the ultrasonic sensor. This process also 
includes the acquisition of multimodal sensory information 
such as object shape, size, hardness, and material by flex-
ible triboelectric and tactile sensors. Combined with the 
training and optimization of DL networks for data analysis, 
the perception system can achieve 100% accuracy in object 
classification. This multimodal sensing and positioning 
system based on soft robots demonstrates great potential in 
unmanned stores, automatic sorting, smart manufacturing, 
and healthcare assistance. Similar work for object recogni-
tion and perception was also demonstrated by Zhu’s group 
and Duan’s group. Zhu’s group reported a robotic hand with 
an integrated quadruple tactile sensor that can simultane-
ously and independently perceive multiple stimuli such as 
contact pressure, material thermal conductivity, object, and 
ambient temperature to accurately recognize various objects 
[203]. Further incorporating machine learning, this intelli-
gent robotic hand demonstrated 94% classification accuracy 
in a garbage sorting task. Duan et al. developed a multi-
functional soft finger by embedding a built-in pressure and 
temperature tactile sensor [204]. With high sensitivity and 
low cross-sensitive interference, this smart soft finger can 
identify four metals and 13 other materials.

Soft robots with closed-loop control systems can achieve 
self-manipulation and movement, which is extremely 
important for safety protection, accident rescue, and infor-
mation acquisition in complex environments. Wang et al. 
[41] reported a somatosensory light-driven robot (SLiR) by 
using a smart thin-film composite with tightly integrated 
actuation and multiple sensing, which can simultaneously 
and independently perceive its body temperature and actu-
ated deformation state by using a photoactuator transducer. 
This SLiR with coordinated actuation, proprioception, and 
communication is suitable for a variety of complex sce-
narios, including feedback on walking gait and evaluation 
of terrain texture. A SLiR-based anthropomorphic hand is 
designed to provide similar somatosensory reception, such 
as specific finger movements, hot and cold sensations, and 
soft and hard perceptions. Furthermore, SLiR-based centi-
pede can perform different, localized bodily functions rang-
ing from directional movement and multisensory to wire-
less human–environment interaction (Fig. 10b). Zhou et al. 
[205] also developed a 3D-printed multifunctional wearable 

sensor to endow a snake-like soft robot with the ability to 
distinguish tensile and bending deformation. As an exam-
ple, this snake-like robot can provide feedback on the endo-
scope position by measuring finger curvature, exhibiting 
good practicality in posture detection. Moreover, soft robots 
based on various artificial perception systems have demon-
strated undeniable value in the medical fields, including drug 
delivery, minimally invasive surgery, disease diagnosis, and 
rehabilitation training. In a recent study, Stoyanov’s group 
designed a fluid-driven soft robot with an integrated visual 
perception system for positioning and tracking, which can 
actively manipulate the inserted needle to reduce the risk 
of intratympanic injections [206]. By detecting the desired 
injection point to avoid unnecessary movement, the inte-
grated visual perception system further reduces the proce-
dure risk by controlling the image guidance function of the 
robot. Several types of artificial electronic eyes based on 
visual sensory systems have also been developed to emulate 
the visual function of the human eye, which is essential for 
robotics and visual prostheses. Gu et al. [207] reported a 
biomimetic eye based on an artificial vision system. Similar 
to the human eye structure, this biomimetic eye possesses 
a hemispherical retina consisting of high-density nanow-
ire arrays that mimic the photoreceptors in the retina of 
humans, thus enabling high-resolution image sensing. Yan 
et al. reported a multifunctional robotic vision system that 
is able to recognize, memorize, and initiate self-protection 
functions by integrating two memristor units with an electro-
chemical actuator [208]. When the human eyes are damaged 
by bright light, it can simulate the self-protective action of 
closing the eyes.

In addition to several soft robots such as prosthetics and 
manipulators, flexible electronics combined with AI technol-
ogy can ensure that humanoid robots with more complex 
environmental adaptability and interaction capabilities are 
closer to the level of human perception and intelligence, 
inspiring more possibilities for future intelligent robot 
applications. For instance, artificial tactility that mimics 
human tactile sensory functions has been realized through 
the combination of humanoid robots and AI. Bao et al. 
[209] designed an intelligent tactile system with a closed-
loop control characteristic to endow humanoid robots with 
human-like tactile perception, which is composed of a 
high-performance tactile sensors array, a real-time infor-
mation acquisition/interpretation chip, and a feedback con-
trol module (Fig. 10c). By combining AI technology with 
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this intelligent tactile system, humanoid robots can easily 
achieve dynamic pressure sensing, data storage and analy-
sis, and real-time motion feedback, exhibiting great prom-
ise in space manipulators, home entertainment, and smart 
home. Similar work to achieve stable tactile perception and 
mechanical endurance in humanoid robots was accomplished 
by Ling’s group [210]. They developed an ionotronic skin 
to endow humanoid robots with smart object recognition by 
finger touching or tapping. This ionotronic skin can accu-
rately sense triboelectric signals. Further by combining the 
trained recurrent neural network model, the humanoid robot 
can recognize spherical objects of various materials with a 
success rate of 97.2% and transport them to the specified 
location. Therefore, this intelligent humanoid robot can be 
used for automated sorting and assembly in smart factories. 
Moreover, Massari et al. [211] developed a large-area sensi-
tive bionic skin embedded with grating sensors and mecha-
noreceptors, which can cover the whole body of a humanoid 
robot with modular patches and be combined with a CNN 
algorithm to predict the magnitude of the contact force. With 
the continuous development of flexible electronics, various 
complex flexible sensing systems will play a more important 
role in soft robots, humanoid robots, and human–machine 
interfaces in the future.

5  Conclusion and Outlook

The past few years have witnessed significant advance-
ments in AI-incorporated smart flexible sensor systems. In 
this review, we summarized recent developments regard-
ing this topic.

With the advantage of highly efficient information pro-
cessing and high-quality feature recognition, machine 
learning is well-suited for large-scale sensing data analysis, 
interpretation, and mode determination. Besides, the capa-
bility of machine learning to decouple multimodal/types of 
information contributes to a more accurate understanding of 
comprehensive sensing data obtained in complex practical 
environments. On the other hand, mimicking the working 
mechanism of the human brain, artificial synapses feature 
low power consumption, high parallelism, and real-time pro-
cessing capabilities, which are highly promising as next-
generation computing devices that are beyond traditional 
von Neumann architectures. This emerging neuromorphic 

framework inspires the design of various intelligent artificial 
sensory systems. It can be witnessed that the deep incorpora-
tion of these two AI technologies will trigger a more signifi-
cant evolvement of traditional flexible sensors into smarter 
flexible sensing systems, which not only collects information 
from the external environment, but also intelligently ana-
lyzes and interprets the data to achieve “self-perception” of 
the environment. These new enabling features are essential 
for broad applications such as intelligent soft robotics, elec-
tronic glove/skins, human–machine interface, etc.

Despite remarkable advancements achieved, the devel-
opment of AI-driven smart flexible sensor systems still 
presents substantial challenges. For the better incorpora-
tion of machine learning, (1) it should be noted that the 
acquisition of massive experimental data with high con-
sistency is still time-consuming and challenging for many 
flexible electronic applications. More advanced algorithms 
should be developed to alleviate the requirements of data 
acquisition for model training. (2) Besides, flexible elec-
tronics are often operated in diverse dynamic or even harsh 
applications scenarios, which in turn gradually changes the 
physical/chemical properties of the constituted materials 
of the devices. The adaptability of the as-trained models 
to flexible electronics with changing properties remains a 
question. (3) Another doubt aroused by this issue is that: 
due to unavoidable variation in material properties and 
fabrication process, can a well-trained machine learning 
model on one flexible device be smoothly transferred/
applied on another one of the same kind? (4) Currently, 
the computational power of flexible electronics is inferior 
to common computer hardware, while the model train-
ing of machine learning requires massive computational 
capacity. It remains a long way to go to realize real-time 
model updating on the deployed flexible devices. As for 
the fusion of artificial synapses for smart flexible sensing, 
(1) although many synaptic and flexible devices have been 
developed in recent years, the flexibility of such devices 
should be continuously improved, especially the synaptic 
behavior and performance durability in harsh scenarios 
such as twisting and stretching. (2) Synaptic-based intel-
ligent sensory system relies on integration of the flexible 
sensors with synaptic components, where the interfacing 
and communication between them made of diverse or 
even distinct materials remains a challenge. (3) From a 
system-design level, the construction of intelligent flex-
ible sensing requires more cooperative developments of 
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flexible sensors, machine learning algorithms, and artifi-
cial synapses. In conclusion, with the increasingly deeper 
engagement between AI technology and flexible sensing, 
we are approaching a new era of smart society.
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