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Supplementary Figures and Tables 

 

Fig. S1 The Tyndall effect of Ni/Mn-Cs colloidal dispersion 

 

Fig. S2 Zeta potential 
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Fig. S3 FT-IR of xerogel before and after adding metal ions 

 

Fig. S4 Chitosan-derived xerogel before and after adding metal ions 

 

Fig. S5 XPS spectra of Ni/MnO-CA, a C 1s. b O 1s. c Ni 2p and d Mn 2p 
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Fig. S6 BET surface area and pore size distribution. a Ni-CA and b MnO-CA 

 

Fig. S7 The field emission scanning electron microscope (FE-SEM). a1 CA. b1–2 Ni-

CA and c1–2 MnO-CA, the inset was parallel to the direction of ice crystal. EDS 

mappings, a2 CA. b3 Ni-CA and c3 MnO-CA 

According to the weight loss in TGA curves, the carbon contents in aerogels could be 

calculated by the following equations, where M was the relative molecular mass of the 

corresponding substance. 
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Fig. S8 The 3D RL plots. a CA. The 2D contours of RL values versus frequency and 

thickness. b CA 

 

Fig. S9 The 3D RL plots. a Ni/MnO-CA-1.5 and b Ni/MnO-CA-2.0. The 2D contours 

of RL values versus frequency and thickness. c Ni/MnO-CA-1.5 and d Ni/MnO-CA-

2.0 
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Fig. S10 a C0 values. b Dielectric loss tangent and c Magnetic loss tangent 

 

Fig. S11 2D impedance matching plots 

Electromagnetic Formulas 

According to transmission line theory, the reflection loss (RL) in this work is calculated 

by the followed formulars:  
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where Zin and Z0 represent the impendence of the absorbing coating and air. In addition, 
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μr, εr, f, d and c refer to complex permeability, complex permittivity, frequency, 

thickness and velocity of light, respectively. 

In generally, the polarization-relaxation process of electromagnetic wave absorption is 

evaluated by the Cole–Cole plot. The plot based on modified Debye theory is 

introduced by the following equations: 
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where εs, ε∞ and ε0 represent permittivity at electrostatic field, permittivity at high 

frequency limit and permittivity of vacuum, respectively; τ, f and σ are the polarization 

relaxation time, frequency and conductivity, respectively. The above two equations can 

be combined and simplified as below: 
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In the Cole–Cole plot, the semicircle indicates the presence of polarization relaxation, 

while the tail-like straight line represents the conductivity.  

The loss capacity is calculated by the attenuation coefficient (α): 

2 22
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Radar cross section (RCS) simulation by CST microwave studio: 

RCS is used to simulate the far-field response of absorber to illustrate the actual stealth 

performance of the material. Herein, the model construction and excitation 

configuration are as follows: The model width of the perfect electric conductor (PEC) 

plate is 200.0 mm × 200.0 mm, and the thickness is 2.0 mm. The thickness of coating 

(the aerogel-paraffin layer, as a absorber) is 3.0 mm. The far field, the incident 

electromagnetic wave and the position of the model are shown below (Fig. S12). What 

needs to be explained in the figure is that the incident electromagnetic wave is vertically 

polarized wave. For the setting of polarized wave, the incident azimuth angles are 

restricted within the condition of “–60° ≤ phi ≤ 60°, theta = 90°”. In addition, we chose 

the 6 GHz (C band), 9 GHz (X band) and 15 GHz (Ku band) as the frequency of the 

far-field monitor. The RCS values are described by the formular: 
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where S is the area of the simulated plate and λ is the wavelength of incident wave; Ei 

and Es represent the electric field strength of the incident and scattered waves, 

respectively.  

 

Fig. S12 Illustration of the CST simulation model 

 

Fig. S13 The 3D far-field response of RCS simulations at 5 GHz of a PEC, b CA, c Ni-

CA, d MnO-CA and e Ni/MnO-CA 
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Fig. S14 The 3D far-field response of RCS simulations at 15 GHz of a PEC, b CA, c 

Ni-CA, d MnO-CA and e Ni/MnO-CA 

 

Fig. S15 Infrared thermal images of CA on a constant temperature heating plate of 90 ℃ 
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Fig. S16 Infrared thermal images of Ni-CA on a constant temperature heating plate of 

90 ℃ 

 

Fig. S17 Infrared thermal images of MnO-CA on a constant temperature heating plate 

of 90 ℃ 
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Table S1 Detailed information for the performance comparison with other absorbers 

Materials 
EAB 

(GHz) 

RLmin 

(dB) 

Thickness 

(mm) 

Filler Rate 

(wt%) 
Refs. 

MnO/Co/C 5.30 –68.89 2.64 50  [S1] 

Ni/TiO2/C 6.70 –74.50 2.00 15  [S2] 

Cu-NC-10 5.25 –63.80 2.01 35  [S3] 

MoO2/CoNi/NPC 4.72 –54.00 1.97 35  [S4] 

NCFs@WS2 6.24 –81.10 3.5 10  [S5] 

Co/MnO/CNTs 5.36 –58.00 2.65 35  [S6] 

MXene/graphene oxide/Co3O4 6.88 –71.87 2.07 17  [S7] 

NiCo/C/CNT/rGO 7.6 –58.80 1.80 20  [S8] 

NRGO/MWVNTs 5.20 –53.30 3.46 15  [S9] 

NiO/NiFe2O4@N-rGA 6.58 –57.70 2.13 15  [S10] 

Cu/CuO/C 5.5 –44.00 2.40 50  [S11] 

ZnCo2O4@ZIF-67 5.79 –59.18 1.97 30  [S12] 

Fe3O4-SnO2 5.60 –66.50 3.00 30  [S13] 

Ni/MnO-CA 7.36 –64.09 2.53 10 
This 

work 
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