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S1 Supporting Methods 

S1.1 Calculation of Herman’s Order Parameter 

Wide-angle X-ray scattering (WAXS) measurement was conducted on a Xenocs Xeuss 2.0 

System by using an incident Cu−Kα X-ray beam that is parallel to film plane. X-ray wavelength, 

spot size, and distance between specimen and detector were 0.1542 nm, 172 × 172 μm2, and 88 

mm, respectively. Samples were square slices with a side length of 10 mm. Scattering patterns 

were collected by a Pilatus 300 k detector. Orientation factor (𝑓) was calculated to describe 

orientation degree of GNS. Its value ranges from 0 to 1, where the former corresponds to an 

isotropic structure and the latter corresponds to a perfect orientation structure along the director. 

A Maier−Saupe distribution function was used to fit the azimuthal profile. 

𝐼 =  𝐼0 +  𝐴exp[𝜔cos2 (𝜑 −  𝜑0)] 

where I0 is the free baseline, φ is the azimuthal angle, φ0 is the azimuth at the position of 

maximal intensity, and ω is a parameter that determines the width of the distribution. After the 

fitting, parameter ω was obtained, and the orientation factor 𝑓 can be determined using the 

following formula 

𝑓 =
∫ 𝑃2(cos 𝜑) exp(𝜔 cos2 𝜑) d(cos 𝜑)

1

−1

∫ exp(𝜔 cos2 𝜑) d(cos 𝜑)
1

−1

 

where the function P2(cos φ) is the second-order Legendre polynomial of cos φ and often 

referred to as the Herman’s order parameter function: 

𝑃2(cos 𝜑) =
1

2
 (3 cos2 𝜑 − 1) 
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S1.2 Phonon Density of States (PDOS) Analysis 

The first-principles calculations are performed using the Vienna Ab initio Simulation 

Package (VASP) based on the density functional theory (DFT). The generalized gradient 

approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) form is used for the exchange-

correlation functional. The second-order harmonic interatomic force constants (IFCs) are 

calculated through the Hessian matrix using the density functional perturbation theory (DFPT). 

The phonon frequencies are then obtained using the PHONOPY package. To calculate the IFCs, 

a 4×4×1 supercell with a 3×3×1 q-point mesh is employed for graphene, and a 1×1×2 supercell 

with a 1×1×3 q-point mesh is employed for ANF. 

For graphene, the kinetic energy cutoff is set to 500 eV and a 12 × 12 × 1 Monkhorst-Pack 

k-point mesh is adopted. The structure is fully relaxed until the force on each atom is less than 

10-4 eV/Å. The calculated lattice constant of graphene is 2.46 Å. For the aramid nanofiber 

(ANF), the lattice constants of the primitive cell for the p-phenylene terephthalamide (PPTA) 

are set to a=15.74 Å, b=15.54 Å, and c=12.9 Å. Then the one-dimensional ANF is constructed 

by a 2×3×1 supercell and the chain orientation is the z-axis. A vacuum space of 15 Å is used to 

avoid interaction between two adjacent supercells. The kinetic energy cutoff is set to 450 eV 

and a 1 × 1 × 3 Γ-centered k-point mesh is adopted. The structure is fully relaxed until the force 

convergence threshold of 0.02 eV/Å is satisfied. 

S1.3 Finite Element Mode 

The heat transfer processes of spontaneously dried and constrained dried GNS/ANF-60 wt% 

films are modeled in COMSOL multiphysics software, which used a transient simulation model. 

Herein, the in-plane and out-of-plane thermal conductivity of GNS/ANF-0 % films are set to 

be 81.0 W m-1 K-1 and 0.41 W m-1 K-1. The in-plane and out-of-plane thermal conductivity of 

GNS/ANF-15% films are set to be 146.0 W m-1 K-1 and 0.79 W m-1 K-1. The ambient 

temperature is 25 °C. 

S2 Supplementary Figures 

 

Fig. S1 Characterization of graphene nanosheets. a SEM and b TEM images of graphene 

nanosheets. c Raman spectra and d XPS spectra of graphene nanosheets 
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Fig. S2 Characterization of aramid nanofiber. a SEM and b TEM images of ANF. c Statistical 

data showing the diameter of ANF 

 

Fig. S3 SEM images for GNS/ANF composite aerogel with different in-plane stretching ratio. 

a-c 15%, d-f 0% 

 

Fig. S4 Characterization of GNS/ANF composite films. a SEM image of aerogel. b, c Surface 

SEM image. d Cross-sectional SEM images along with elemental mapping images. e XRD 

patterns. f XPS spectra 
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Fig. S5 Tensile stress-strain curves of GNS/ANF-60 wt% films by different in-plane stretching 

ratio. a 0%, b 5%, c 10%, and d 15% 

 

Fig. S6 Strength and modulus of GNS/ANF-60 wt% films by different in-plane stretching ratio 

 

Fig. S7 Comparison of thermal conductivity and tensile strength of composite films assembled 

by in-plane stretching and previously reported spontaneous assembly thermal management 

materials 
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Fig. S8 Fracture behavior of GNS/ANF-60 wt% films by different in-plane stretching ratio. a-

d 15%, e-h 0% 

 

Fig. S9 Electrical conductivity of GNS/ANF-60 wt% films by different in-plane stretching ratio 

 

Fig. S10 High-resolution XPS spectra of C 1s for GNS/ANF-60 wt% films by different in-plane 

stretching ratio. a 0%, b 5%, c 10%, d 15% 
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Fig. S11 Temperature evolution curves of smartphones with working time 

 

Fig. S12 TGA curves of GNS, GNS/ANF-60 wt% and ANF 
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Supplementary Tables 

Table S1 Fillers, nanosheets conformation, matrix, in-plane thermal conductivity (K) and 

tensile strength () of GNS/ANF composite films with eliminated nanosheets wrinkles were 

compared with those of thermally conductive composite films with nanosheets wrinkles 

Fillers 
Nanosheets 

conformation 
Matrix 

In-plane K 

(W m-1 K-1) 
  

(MPa) 
Refs. 

73.3 wt% GF wrinkles PVA 21.6 84.4 [S1] 

93 wt% GF wrinkles PVA 61.3 28 [S1] 

40 wt% GF wrinkles ANF 48.2 188 [S2] 

70 wt% CPGO wrinkles CNF 12.8 33.5 [S3] 

30 wt% RGO wrinkles CNF 6.2 90 [S4] 

32.8 wt% GNS wrinkles PVA 45.8 177.8 [S5] 

55.7 wt% GNS wrinkles PVA 71.2 229.4 [S5] 

61 wt% GNS wrinkles PVA 82.4 259 [S5] 

10 wt% GNS wrinkles PVA 13.8 84 [S6] 

50 wt% GNS wrinkles PI 65 102 [S7] 

80 wt% GNS wrinkles ANF 87.1 55 [S8] 

50 wt% GNS wrinkles ANF 76.9 145.1 [S9] 

60 wt% GNS wrinkles ANF 85.6 134.5 [S9] 

60 wt% GNS wrinkles ANF 85.3 266 [S10] 

75 wt% GNS wrinkles CNF 58 50.7 [S11] 

61 wt% GNS wrinkles CNF 134.1 51.9 [S12] 

75 wt% GNS wrinkles CNF 59.5 46.4 [S13] 

40 wt% GNS wrinkles PBONF 87.2 188.9 [S14] 

50 wt% GNS wrinkles PBONF 98.7 194.7 [S14] 

30 wt% MXene@Ag wrinkles CNF 22.4 71.4 [S15] 

60 wt% MXene wrinkles CNF 14.9 114.4 [S16] 

60 wt% GNS 
Eliminated 

wrinkles 
ANF 146 207 This work 

GF: Fluorinated graphene; CPGO: Casein phosphopeptide-biofunctionalized graphene oxide 

nanoplatelets; RGO: Reduced graphene oxide; GNS: Graphene nanosheets; PVA: Poly(vinyl 

alcohol); PI: Polyimide; ANF: Aramid nanofiber; CNF: Cellulose nanofiber; PBONF: poly(p-

phenylene benzobisoxazole) nanofiber 

 

Table S2 Thermal conductivity of constrained dried GNS/ANF-60 wt% films by different in-

plane stretching ratio at 25 °C 

 

 

 

 

In-plane stretching ratio 
Thermal conductivity (W m-1 K-1) 

In-plane Out-of-plane 

0% 81.0 ± 3.0 0.41 ± 0.02 

5% 93.9 ± 3.4 0.46 ± 0.02 

10% 125.1 ± 3.1 0.58 ± 0.03 

15% 146.0 ± 3.5 0.79 ± 0.05 
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Table S3 Strength at break (), Young’s modulus (E), strain at break () and toughness (U) of 

GNS/ANF-60 wt% films by different in-plane stretching ratio 

in-plane stretching ratio  (MPa) E (GPa)  (%) U (MJ m-3) 

0% 99.4 ± 5.5 2.3 ± 0.3 15.4± 0.9 11.2 ± 0.3 

5% 122.4 ± 5.6 3.5 ± 0.2 12.6 ± 0.7 10.8 ± 0.6 

10% 174.5 ± 5.9 5.5 ± 0.2 9.1 ± 0.5 9.2 ± 0.3 

15% 207.0 ± 4.7 8.2 ± 0.5 6.3 ± 0.3 9.1 ± 0.6 

Table S4 Assembly, fillers, matrix, in-plane thermal conductivity (K) and tensile strength () 

of GNS/ANF composite films prepared by in-plane stretching constrained dried strategy were 

compared with those of thermally conductive composite films prepared by spontaneous dried 

strategies such as vacuum-assisted filtration, sol-gel-film conversion, layer-by-layer and 

casting 

Assembly Fillers Matrix 
In-plane K 

(W m-1 K-1) 
  

(MPa) 
Refs. 

VAF 93 wt% GF PVA 61.3 28 [S1] 

VAF 80 wt% GNS ANF 87.2 55 [S8] 

VAF 75 wt% GNS CNF 58 50.7 [S11] 

VAF 75 wt% GNS CNF 59.5 46.4 [S13] 

VAF 83 wt% BNNS CNF 67.6 13 [S17] 

VAF 30 wt% BNNS ANF 46.7 167 [S18] 

VAF 50 wt% BNNS ANF 19.1 59.3 [S19] 

VAF 70 wt% BNNS CNF 30.3 66 [S20] 

VAF 60 wt% BNNS CNF 24.3 45.5 [S21] 

Sol-Gel-Film Conversion 40 wt% GF ANF 20.5 188 [S2] 

Sol-Gel-Film Conversion 60 wt% GNS ANF 85.6 134.5 [S9] 

Sol-Gel-Film Conversion 50 wt% BNNS ANF 64.1 65.6 [S22] 

Sol-Gel-Film Conversion 10 wt% BNNS PBONF 21.3 206 [S23] 

Layer-by-Layer 55.7 wt% GNS PVA 71.2 229.4 [S5] 

Layer-by-Layer 32.8 wt% GNS PVA 45.8 177.8 [S5] 

Casting 50 wt% GNS PI 65 102 [S7] 

In-plane stretching 60 wt% GNS ANF 93.9 122.4 This work1 

In-plane stretching 60 wt% GNS ANF 125.1 174.5 This work2 

In-plane stretching 60 wt% GNS ANF 146 207 This work3 

VAF: Vacuum-assisted filtration; This work1, this work2 and this work3: Constrained dried 

GNS/ANF-60 wt% films by in-plane stretching for (1) 5%, (2) 10%, and (3) 15%. 
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