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S1 Synthesis 

All chemicals, unless otherwise specified, were purchased from Aldrich or other 

commercial resources and used as received. The starting material (3-Fluoro-4-

methoxybenzoicAcid and BTP-BO-CHO) is commercially available. Toluene and THF 

were distilled from sodium benzophenone under nitrogen before using. 1H NMR 

spectra were recorded on a Bruker AV-400 MHz NMR spectrometer. Chemical shifts 

are reported in parts per million (ppm, δ). 1H NMR spectra were referenced to 
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tetramethylsilane (0 ppm) for CDCl3. Mass spectra were collected on a MALDI Micro 

MX mass spectrometer, or an API QSTAR XL System. The synthesis steps of the end 

group of IC-FOMe and the SMAs are similar as our previous report, the corresponding 

synthesis information are shown below. 

 

Scheme S1 Synthesis of IC-FOMe, BTP-2BO-SFO, BTP-2BP-3FO 

Synthesis of Compound 1 

Compound 1 (10 g, 58.8 mmol) was dissolved in distilled THF (50 mL), and then 2.0 

M lithium diisopropylamide in hexane (59 mL, 118 mmol) was added dropwise under 

N2. The reaction was stirred at -78℃ for 3 h and then CO2 gas was added, The reaction 

mixture was returned to room temperature and stirred overnight. The mixture was 

poured into water, and acidified to pH 1–2 by addition of the diluted HCl and extracted 

with EA for three times. The combined organic phase was washed with water followed 

by brine. Then the solution was dried over Na2SO4 and concentrated under reduced 

pressure. The residue as light yellow solid was used directly without further purification.  

Synthesis of Compound 2 

Compound 2 (2.5 g, 4.31 mmol) was dissolved in acetic anhydride (15 mL), the 

reaction was stirred at 145 °C refluxed for 2.5 h. Then reaction mixture was cooled to 

room temperature, triethylamine (8 mL) and tert-butyl acetoacetate (1.22 g, 7.75 mmol) 

were added dropwise and the reaction was stirred at 75 °C overnight. The reaction 

mixture was poured over ice with HCl and extracted with DCM, The combined organic 

phase was washed with water followed by brine. Then the solution was dried over 

Na2SO4 and concentrated under reduced pressure. The Compound 2 as brown solid 

was used directly without further purification.  

Synthesis of IC-FOMe 

Compound 2 (1 g, 5.15 mmol), malononitrile (0.690 g, 10.4 mmol) were dissolved in 
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25 mL absolute ethanol, and then anhydrous sodium acetate (852.8 g, 10.4 mmol) was 

added while stirring under room temperature. After 12 h, the mixture was poured into 

water, and acidified to pH 1–2 by addition of the hydrochloric acid. Then reaction 

mixture was extracted by DCM three times and dried over Na2SO4. The crude product 

was purified by silicon chromatography with DCM to get pure product IC-FOMe (0.73 

g, 59%) . 1H NMR (400 MHz, CDCl3) δ 7.76 (d, J = 8.3 Hz, 1H), 7.42 (t, J =7.6 Hz, 

1H), 4.06 (s, 3H) , 3.74 (s, 2H). MS (CI) [M] calcd. for (C13H7FN2O2): 242.21. Found: 

243.06. 

Synthesis of BTP-2BO-SFO 

BTP-2BO-CHO (300 mg, 0.257 mmol), IC-FO (155.54 mg, 0.642 mmol) were 

dissolved in absolute chloroform (20 mL), and pyridine (2 mL) were added. The 

mixture was deoxygenated with nitrogen for 30 min and then refluxed for 6 h. After 

cooling to room temperature, the mixture was poured into methanol (150 mL) and 

filtered. The residue was purified by column chromatography on silica gel using 

petroleum ether/DCM (1:2) as eluent, yielding a dark blue solid and recrystallization 

through MeOH/DCM for two times to obtain BTP-2BO-SFO (270 mg, 65%).  1H 

NMR (400 MHz, CDCl3) δ 9.14 (s, 2H), 8.53 (d, J = 8.7 Hz, 2H), 7.31 – 7.27 (m, 2H), 

4.76 – 4. (m, 4H), 4.06 (s, 6H), 3.20 (d, J = 7.3 Hz, 4H), 2.21 – 2.08 (m, 4H), 1.49 – 

0.53 (m, 88H). MS (CI) [M] calcd. for (C94H112F2N8O4S5): 1616.28. Found: 1616.76. 

Synthesis of BTP-2BO-3FO 

BTP-2BO-CHO (300 mg, 0.257 mmol), IC-FO (63 mg, 0.257 mmol), IC-2F (59 mg, 

0.257 mmol) were dissolved in absolute chloroform (20 mL), and pyridine (2 mL) were 

added. The mixture was deoxygenated with nitrogen for 30 min and then refluxed for 

6 h. After cooling to room temperature, the mixture was poured into methanol (200 mL) 

and filtered. The residue was purified by column chromatography on silica gel using 

petroleum ether/dichloromethane (1:2) as eluent, yielding a dark blue solid and 

recrystallization through MeOH/DCM for two times to obtain BTP-2BO-3FO (145 mg, 

35%). 1H NMR (400 MHz, CDCl3) δ 9.14 (d, J = 9.9 Hz, 2H), 8.78 (s, 1H), 8.52 (d, J 

= 8.6 Hz, 1H) , 7.95 (s, 1H), 7.30 – 7.24 (m, 1H), 4.78 (d, J = 7.5 Hz, 4H), 4.06 (s, 

3H), 3.17 (d, J = 4.6 Hz, 4H), 2.07 (dd, J = 26.6, 15.0 Hz, 4H), 1.51 – 0.58 (m, 88H). 

MS (CI) [M] calcd. for (C93H109F3N8O3S5): 1604.24. Found: 1603.73. 

S2 Characterization 

UV-vis absorption spectra were measured using a Shimadzu UV-2500 recording 

spectrophotometer. AFM measurements were obtained by using a Dimension Icon 

AFM (Bruker) in a tapping mode. The grazing incidence small/wide angle X-ray 

scattering (GISAXS/GIWAXS) measurements were carried out with a Ganesha 

SAXSLAB laboratory instrument using a CuKα X-ray source (8.05 keV, 1.54 Å) and a 

Pilatus 300K detector. The samples for GIWAXS/GISAXS measurements were 

fabricated on silicon substrates using the same recipe as for the devices. The incident 
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angle was 0.4° for GISAXS and 0.2° for GIWAXS measurements, respectively. The 

sample to detector distance (SDD) was set to 1045 and 95 mm for GISAXS and 

GIWAXS measurement. For the GISAXS images, the DPDAK software was applied to 

extract the polymer scattering signals. The transformation to q-space, radial cuts for the 

in-plane and out-of-plane analysis and azimuthal cuts for the orientation analysis were 

processed by the MATLAB-based package GIXSGUI. 

S3 SCLC Measurements 

The electron and hole mobility were measured by using the method of space-charge 

limited current (SCLC) for electron-only devices with the structure of ITO/ZnO/active 

layer/PFN-Br-MA/Ag and hole-only devices with the structure of ITO/PEDOT:PSS-

TA/active layers/MoOx/Ag. The charge carrier mobility was determined by fitting the 

dark current to the model of a single carrier SCLC according to the equation: J = 

9ε0εrμV2/8d3, where J is the current density, d is the film thickness of the active layer, μ 

is the charge carrier mobility, εr is the relative dielectric constant of the transport 

medium, and ε0 is the permittivity of free space. V = Vapp –Vbi, where Vapp is the applied 

voltage, Vbi is the offset voltage. The charge carrier mobility was calculated from the 

slope of the J1/2 ~ V curves. The thickness of target layer is well controlled identical to 

that of PV’s active layer.  

S4 Analysis of Jph vs Veff Relationships 

  The definition of Jph is the current density under illumination (JL) minus the dark 

current density (JD), and V0 refers to the voltage value when Jph = 0. Accordingly, Veff 

= V0 - Vappl, where Vappl represents applied voltage, has a clear meaning. Importantly, 

when Veff reaches a high value (> 2V) it is normally believed that generated excitons 

are fully collected, in which Jph is equal to saturated current density (Jsat). Then, we can 

calculate JSC/Jsat and Jmax/Jsat to describe exciton dissociation (ηdiss) and charge 

collection (ηcoll) efficiency. Jmax is the Jph at the maximal output point. 

S5 UV-vis and PL Spectra Fitting Method 

  UV–vis and PL spectra are modelled as linear superpositions of basis spectra from 

individual absorbers: 

A =Σi bi×i                                                   (S1) 

where A = f(E) is the decadic absorbance, bi = f(E) is the (unitless) basis spectrum of 

material i, which depends on the irradiated energy E, and si is the spectral weight (in 

units of eV). The index i ∈ {D, A} comprises the donor and acceptor materials, 

respectively, if applicable. The basis spectra for each material are given as linear 

superpositions of sub-bands whose shapes are given by hyperparameters that contain 

morphology information: 

bi =Σj bi,j (ai,j, wi,j, ci,j, dc,i,j, hi,j, ni,j),                             (S2) 

where the index j ∈ {1o, 1a, 2, 3} comprises contributions from the three lowest 

energetic-allowed optical transitions. For j = 1, we distinguish between contributions 
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from an ordered phase and an amorphous phase (suffixes ‘o’ and ‘a’, respectively). This 

picture has been shown to yield good results in P3HT (refs. 55, 56), PM6 (ref. 32) and 

Y6 (ref. 33). We model electron–phonon coupling by assuming one effective vibronic 

progression as a superposition of Gaussian bands of same width wi,j and fixed energy 

offset dci,j against the energy ci,j of the (0–0) vibronic transition57 for a given 

electronic transition and the individual spectral weight given by the Huang–Rhys factor, 

hi,j, of this effective progression. For donor polymers, we adopt the model of weak H 

aggregates (‘Spano model’)58 in which the (0–0) vibronic transition is suppressed by a 

factor ni,j with respect to the other vibronic transitions of the given progression. We use 

nonlinear regression (function curve_fit of the Python library scipy) to fit the 

experimental absorption spectra by tuning the hyperparameters in equation (2) and 

Penrose pseudo matrix inversion (using scipy function lsq_linear) to obtain the overall 

spectral weights in equation (1). However, because there is linear dependence between 

si and ai,j, we need to fix at least one of these parameters. Thus, we follow the 

convention that the ordered region of the lowest energetic electronic transition of each 

material has unity spectral weight: 

ai,1o ≡ 1                                                         (3) 

Furthermore, due to spectral congestion in the absorption spectra, we reduced the 

number of free hyperparameters by fixing nD,1a = nD,1o = 0.5, which is a typical value 

for donor polymers, and by fixing nA,1a = nA,1o = 1 because the acceptor systems of 

this work are dominated by strong J aggregates rather than weak H aggregates as would 

be required by the Spano model. 

S6 Transient Absorption Spectroscopy 

Transient absorption spectroscopy (TAS) was measured with an amplified Ti:sapphire 

femtosecond laser (800 nm wavelength, 50 fs, 1 kHz repetition; Coherent Libra) and a 

Helios pump/probe setup (Ultrafast Systems). The 400 nm pump pulses with a pump 

fluence of 0.5 or < 3 μJ/cm2 were obtained by frequency doubling the 800 nm 

fundamental regenerative amplifier output. The white-light continuum probe pulses 

were generated by focusing a small portion of the regenerative amplifier’s fundamental 

800 nm laser pulses into a 2 mm sapphire crystal. 

Supplementary Figures and Tables 
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Fig. S1 1H NMR spectrum of blend IC-FOMe (400 MHz, CDCl3) 

 

 

Fig. S2 1H NMR spectrum of pure IC-FOMe-A (400 MHz, CDCl3) 
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Fig. S3 1H NMR spectrum of BTP-BO-SFO (400 MHz, CDCl3) 

 

 

 

Fig. S4 1H NMR spectrum of BTP-BO-3FO (400 MHz, CDCl3) 
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Fig. S5 MS spectrum (MALDI-TOF) of compound IC-FOMe 

 

Fig. S6 MS spectrum (MALDI-TOF) of BTP-BO-SFO 

 

 

 

 

 

 

 

 

 

Fig. S7 MS spectrum (MALDI-TOF) of BTP-BO-3FO 
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Fig. S8 (a) Thermogravimetric analysis (TGA) curves of BTP-BO-SFO and BTP-BO-

3FO. (b) The differential scanning calorimetry (DSC) curves of BTP-BO-SFO and 

BTP-BO-3FO 

 

 

 

Fig. S9 CV, energy level distribution 
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Fig. S10 DFT data of eC9, BTP-BO-SFO and BTP-BO-3FO 

 

 

Fig. S11 The calculated optimal conformation and ESP average value of benzene ring 

in the end groups for BTP-BO-SFO and BTP-BO-3FO 
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Fig. S12 J-V curves of binary BTP-BO-SFO and BTP-BO-3FO devices, and their EQE 

spectra 

 

 

 

Fig. S13 Normal distribution of VOC, JSC, and FF, based on at least 10 devices 
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Fig. S14 (a) Jph vs Veff relationships. (b) light intensity vs VOC and (c) vs JSC curves. (d) 

PL spectra of BTP-eC9:BTP-BO-3FO films 

 

Fig. S15 Calculated series resistance and shunt resistance of all systems, and new J-V 

curves with corrected voltage 
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Fig. S16 CF processed acceptor-only films: (a) UV-vis spectra and (b) PL spectra. (c) 

UV-vis and PL spectra of o-XY processed ones. All are analyzed by gaussian fitting 

 

 

 

Fig. S17 (a) Hole-only and (b) electron-only device results 
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Fig. S18 Temperature varied thermally annealed film’s absorption spectra 

 

 

 

Fig. S19 UV-vis spectra deviation metrices of all neat and blend films 
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Fig. S20 TAS spectra with 2D color maps for acceptor-only films using 800 nm pump 

laser 

 

Fig. S21 TAS spectra with 2D color maps for blend films using 800 nm pump laser 
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Table S1 Photovoltaic performances of non-halogenated main solvent processed 

OSCs summary 

Refs VOC (V) JSC (mA cm-2) FF (%) PCE (%) 

S1 0.86 26.33 0.77 17.43 

S2 0.851 26.75 0.8 18.25 

S3 0.853 27.25 0.7814 18.16 

S4 0.879 26.7 0.809 19 

S5 0.85 25.76 0.781 17.12 

S6 0.933 22.52 0.738 15.51 

S7 0.947 22.78 0.746 16.1 

S8 0.85 25.2 0.75 16.1 

S9 0.84 26.9 0.796 18 

S10 0.91 20.5 0.74 13.8 

S11 0.94 19 0.7 12.5 

S12 0.865 26.05 0.77 17.36 

S13 0.856 24.94 0.755 16.1 

S14 0.84 26.23 0.75 16.52 

S15 0.96 17.97 0.7 12.1 

S16 0.95 18.19 0.7 12.22 

S17 1 18.9 0.63 11.9 

S18 0.92 22.47 0.667 13.8 

S19 0.88 17.62 0.76 11.76 

S20 0.784 19.8 0.73 11.7 

S21 0.85 26.1 0.78 17.33 

S22 0.95 22.1 0.741 15.62 

S23 0.88 24.3 0.726 15.6 

S24 0.89 21.1 0.76 14.2 

S25 0.89 23.4 0.67 13.97 

S26 0.97 18.74 0.72 13.1 

S27 0.95 18.67 0.71 12.6 

S28 0.83 19.2 0.74 11.83 

S29 0.78 20.37 0.73 11.77 

S30 1.01 17.89 0.63 11.39 
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S31 0.82 28.15 0.778 18 

S32 0.85 26.2 0.789 17.6 

S33 0.856 26.535 0.793 18.02 

S34 0.876 27.11 0.7641 18.14 

S35 0.855 26.34 0.762 17.16 

S36 0.920 24.3 0.807 18.0 

S37 0.874 27.12 0.8026 19.07 

S38 0.855 27.85 0.801 19.10 

This work 0.857 28.13 79.8 19.24 

Table S2 Jph vs Veff relationship derived parameters 

Systems Jsat (mA cm-2) JSC (mA cm-2) JMPP (mA cm-2) ηdiss, ηcoll (%) 

CF     

1:1.3:0 27.38 27.17 25.06 99.2, 91.5 

1:1:0.3 27.82 27.42 25.12 98.5, 90.3 

1:0.7:0.6 24.73 24.07 20.83 97.3, 84.2 

o-XY     

1:1.3:0 28.24 27.97 25.89 99.0, 91.7 

1:1:0.3 28.35 28.13 25.98 99.2, 91.6 

The brackets contain averages and standard errors of PCEs based on 20 devices. 

Table S3 Calculated parameters for (010) peak from OOP direction 

Systems Peak position (Å-1) d-spacing (Å) CCL (Å) 

CF    

1:1.3:0 1.71; 1.80 3.68; 3.48 42.0; 57.6 

1:1:0.3 1.78 3.55 22.0 

1:0.7:0.6 1.76 3.58 7.62 

XY    

1:1.3:0 1.72 3.65 45.8 

1:1:0.3 1.68 3.73 33.6 
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Table S4 Mobilities 

Systems μh (10-4 cm2V-1 s-1) μe (10-4 cm2V-1 s-1) μh/μe 

CF    

1:1.3:0 5.3 4.9 1.08 

1:1:0.3 3.8 3.2 1.15 

1:0.7:0.6 1.4 1.2 1.67 

o-XY    

1:1.3:0 9.7 9.1 1.07 

1:1:0.3 15 14 1.07 
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