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S1 Characterization Section 

The X-ray diffraction was performed by an X-ray diffractometer (XRD, Bruker D8 

Advance, Germany) with a Cu·Kα radiation source (40 kV and 30 mA). Chemical 

composition of microspheres was analyzed by an X-ray photoelectron spectroscopy 

(XPS, Dmax2500, Rigaku, Japan). Magnetic properties of Fe3O4@MWCNTs were 

characterized by a vibrating sample magnetometer (VSM, Lakeshore7404, USA) at 

300 K. Scanning electron microscope (SEM, Nano SEM 430, FEI, USA) was 

employed to observe the microstructure of the microspheres and composites at an 

accelerating voltage of 5 kV. Energy dispersive X-ray spectrometry (EDS, X-Max 

Extreme, Oxford, UK) mapping was carried out to analyze the dispersion of Ni. The 

electrical conductivity of the composites was determined using a four-point probe 

apparatus (RTS-9). EMI shielding performance was assessed with an Agilent N5230 

vector network analyzer (USA) according to ASTM ES7-83 standards. The shape of 

the sample is a disk with a diameter of 13 mm. The total SE (SET), reflected SE (SER), 

absorbed SE (SEA), reflection coefficient (R), transmission coefficient (T) and 

absorption coefficient (A) can be calculated as follows: 

                             𝑅 = |𝑆11|
2                            (S1) 

                            𝑇 = |𝑆21|
2                             (S2) 

                           𝐴 = 1 − 𝑅 − 𝑇                          (S3) 

                          𝑆𝐸𝑇 = −10log 𝑇                          (S4) 

                       𝑆𝐸𝑅 = −10log(1 − 𝑅)                        (S5) 
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                𝑆𝐸𝐴 = −10log (
𝑇

1−𝑅
) = 𝑆𝐸𝑇 − 𝑆𝐸𝑅 − 𝑆𝐸𝑀               (S6) 

Where the multiple reflection (SEM) could be ignored when SET >15 dB [S1-S3]. 

S2 XRD Patterns of Fe3O4@MWCNTs Nanoparticles and PBAT-

Fe3O4@MWCNTs/Ni Microspheres 

Figure S1 exhibits the XRD spectra of Fe3O4@MWCNTs and PBAT-

Fe3O4@MWCNTs/Ni microspheres, and it can be seen that the Fe3O4@MWCNTs 

nanoparticles display five distinctive characteristic peaks corresponding to (220), 

(311), (400), (511) and (440) crystal planes, which align with the cubic anti spinel 

structure of magnetite (JCPDS CARD NO. 19-0629). Meanwhile, the prepared PBAT-

Fe3O4@MWCNTs/Ni microspheres also exhibit similar XRD curve characteristics. 

Moreover, the three typical characteristic peaks at 2θ = 44.92°, 51.06° and 76.48° are 

in conformity with the (111), (200) and (220) crystal plane diffractions of Ni, which 

are consistent with the standard face-centered cubic structure of Ni metal (JCPDS no. 

04-08507) [S4-S5], indicating that the Ni particle layer has been deposited on the 

surface of PBAT-Fe3O4@MWCNTs microspheres. 

 

Fig. S1 XRD patterns of Fe3O4@MWCNTs nanoparticles and PBAT-

Fe3O4@MWCNTs/Ni microspheres 
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S3 SEM Images of Isolated PBAT-Fe3O4@MWCNTs/Ni Composites 

The cross-sectional micromorphology of PBAT-Fe3O4@MWCNTs/Ni composites is 

presented in Fig. S2, where the microspheres were deformed into polygonal shapes 

because of the high-intensity extrusion during the molding process (Fig. S2a-b). Ni 

particles are concentrated at the interface of microspheres, establishing 

interconnections that give rise to a complex three-dimensional isolated network 

structure (Fig. S2c-d). High pressure and low temperature molding conditions were 

adopted in the fabrication of isolated structural composites to prevent the filler from 

diffusing into the interior of polymer matrix [S6-S7]. The presence of defects was not 

observed by local magnification of SEM images, ascertaining the strong bonding 

between the Ni particles and PBAT-Fe3O4@MWCNTs microspheres. This 

configuration proves highly advantageous for the construction of an interfacial 

skeleton that facilitates multiple reflections and absorptions of EM waves. This results 

primarily from the deliberate filler distribution at the micro-phase interface [S8-S10]. 

 

Fig. S2 a-d SEM images of the cross-section for isolated PBAT-Fe3O4@MWCNTs/Ni 

composites at different magnification 

S4 Conductivity and Density of the Solid and Foamed PBAT-

Fe3O4@MWCNTs/Ni/Ag Composites 

As illustrated in Fig. S3, the conductivity of both solid and foamed PBAT-

Fe3O4@MWCNTs/Ni/Ag composites was significantly enhanced with the addition of 

Fe3O4@MWCNTs nanoparticles. This is due to the synergistic overlap of the 

nanoparticles inside the PBAT microspheres with the Ni particles at interface, which 

strengthens the three-dimensional conductive network structure. In addition, the 
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introduction of porous structure reduces the electrical conductivity of the composites 

resulting from the disruption of original isolated network consisting of Ni particles, 

which in turn alleviates the impedance mismatch between the composites and air, 

facilitating the multiple reflections of EM waves incident inside the composites 

through the microporous (Figs. 4g and 5a). 

 

Fig. S3 The conductivity of the bottom surfaces of solid and foamed PBAT-

Fe3O4@MWCNTs/Ni/Ag composite with various filler contents 

 

The EMI shielding behavior of the composite foams were also affected by their 

density. As the content of Fe3O4@MWCNTs was raised from 5 to 15 wt%, the density 

of the solid composite increased from 1.319 to 1.722 g/cm3. The density of the 

samples can be reduced by approximately 50% after scCO2 foaming (Fig. S4). Such a 

significant weight reduction not only helps to broaden the application area for EM 

shielding materials, but also offers efficient absorption and dissipation of EM waves 

through the air-substrate interface in a large amount of porosity. 
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Fig. S4 Density of solid and foamed composites with different Fe3O4@MWCNTs 

content 
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