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HIGHLIGHTS

• m-BN/PNF nanocomposite paper with nacre-mimetic layered structures prepared via sol–gel film transformation approach presents 
excellent thermal conductivity, incredible electrical insulation, outstanding mechanical property and thermal stability.

• When the mass fraction of m-BN is 50 wt%, m-BN/PNF nanocomposite paper exhibits excellent thermal conductivity and elec-
trical insulation. The λ∥ and λ⊥ are 9.68 and 0.84 W  m−1  K−1, and the volume resistivity and breakdown strength are as high as 
2.3 ×  1015 Ω cm and 324.2 kV  mm−1, respectively.

• The m-BN/PNF nanocomposite paper with 50 wt% m-BN also presents outstanding mechanical properties (tensile strength of 
193.6 MPa) and thermal stability (thermal decomposition temperature of 640 °C).

ABSTRACT With the rapid develop-
ment of 5G information technology, ther-
mal conductivity/dissipation problems of 
highly integrated electronic devices and 
electrical equipment are becoming prom-
inent. In this work, “high-temperature 
solid-phase & diazonium salt decompo-
sition” method is carried out to prepare 
benzidine-functionalized boron nitride 
(m-BN). Subsequently, m-BN/poly(p-
phenylene benzobisoxazole) nanofiber 
(PNF) nanocomposite paper with nacre-
mimetic layered structures is prepared via 
sol–gel film transformation approach. The 
obtained m-BN/PNF nanocomposite paper with 50 wt% m-BN presents excellent thermal conductivity, incredible electrical insulation, 
outstanding mechanical properties and thermal stability, due to the construction of extensive hydrogen bonds and π–π interactions between 
m-BN and PNF, and stable nacre-mimetic layered structures. Its λ∥ and λ⊥ are 9.68 and 0.84 W  m−1  K−1, and the volume resistivity and 
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breakdown strength are as high as 2.3 ×  1015 Ω cm and 324.2 kV  mm−1, respectively. Besides, it also presents extremely high tensile strength 
of 193.6 MPa and thermal decomposition temperature of 640 °C, showing a broad application prospect in high-end thermal management 
fields such as electronic devices and electrical equipment.

KEYWORDS Poly(p-phenylene-2,6-benzobisoxazole) nanofiber; Boron nitride; Thermal conductivity; Electrical insulation

1 Introduction

Thermally conductive polymer-based composite paper has 
attracted widespread attention in the fields of lithium bat-
teries, capacitors and integrated circuits [1–4], due to the 
advantages of high strength, high thermal conductivity and 
excellent designability, etc. With the rapid development 
toward miniaturization and integration, as well as increas-
ing power density, the build-up of heat inside electronic 
devices and electrical equipment is getting serious, which 
puts forward higher requirements for the thermal conduc-
tivity and heat resistance of thermally conductive polymer-
based composite paper [5–7]. Moreover, in order to avoid 
the formation of short-circuit currents between microelectri-
cal components and the mutual interference of signals, the 
polymer-based composite paper should possess outstanding 
electrical insulation to meet the application in practical elec-
tronic engineering [8–10]. Although thermally conductive 
polymer matrix (polytetrafluoroethylene, polyimide, aramid 
and cellulose nanofibers, etc.) composite paper has been 
widely used in industry owing to their low-cost and simple 
processing technology, the intrinsically poor heat resistance, 
or poor mechanical properties, or low thermal conductivity 
limits their application and no longer guarantees the stability 
and reliability in the fields of thermal management for high-
end electronics and electrical appliances [11–13].

Among the known organic fibers, poly(p-phenylene-
2,6-benzobisoxazole) (PBO) fibers present the highest ther-
mal decomposition temperature (650 °C), the best tensile 
strength (5.8 GPa) and tensile modulus (280 GPa) and have 
been hailed as the super fiber of the twenty-first century 
[14–16]. Recent studies exhibit that PBO nanofibers (PNF) 
obtained by organic acid stripping can retain the excellent 
mechanical properties and heat resistances of PBO fibers 
[17–20]. In addition, their interior contains highly oriented 
molecular chains and original crystallinity, showing better 
thermal conductivity than ordinary polymer matrix, which 
shows a broad application prospect in the field of ther-
mally conductive polymer-based composite paper. Li et al. 
[21] reported a series of fluorinated graphene (FG)-based 

nanocomposite films containing robust PNF network struc-
tures via unique sol–gel film conversion method. The nano-
composite film with 40 wt% FG possessed high in-plane 
thermal conductivity coefficient (λ∥, 12.3 W   m−1   K−1), 
392% higher than that of pure PNF paper (2.50 W  m−1  K−1). 
Zhao et al. [22] introduced boron nitride (BN) and MXene 
sequentially into the PNF networks to prepare PNF/BN/
MXene composite paper via gel microparticle-mediated 
ordered assembly process with the aid of vacuum-assisted 
filtration. When the amounts of BN and MXene were 29.2 
and 41.7 wt%, respectively, the λ∥ of PNF/BN/MXene com-
posite paper was 26.10 W  m−1  K−1, significantly higher than 
that of pure PNF paper (2.92 W  m−1  K−1). Nevertheless, 
the introduction of functional fillers (such as graphene and 
MXene) can drastically decrease the electrical insulation of 
PNF-based composite paper [23–26], limiting its broader 
application in electrical and electronic fields. It remains a 
great challenge to develop high-performance PNF-based 
composite paper with excellent thermal conductivity and 
electrical insulation.

BN presents excellent thermal conductivity, electrical 
insulation and heat resistance, showing good application 
prospects in the thermal management fields of electronic 
and electrical [27–31]. Yu et al. [32] prepared BN/epoxy 
composites by blending BN with epoxy resin. When the 
amount of BN was 11.9 wt%, the thermal conductivity 
coefficient (λ) of BN/epoxy composites increased from 
0.21 to 0.51 W   m−1   K−1, and the breakdown strength 
increased from 40.9 to 58.6 kV  mm−1. Yang et al. [33] 
reported the facile and scalable approach to fabricate 
elastomeric silicone rubber (SiR)/graphene nanoparti-
cles (GNPs)/BN composites with an alternating mul-
tilayer structure, achieving high λ of 8.45 W   m−1   K−1 
and excellent electrical insulation properties (volume 
resistivity of about  1013 Ω cm and breakdown strength 
of 5.33 kV  mm−1). However, the enhancement of ther-
mal conductivity was limited due to the high interfacial 
thermal resistance between BN and BN fillers, as well as 
BN and polymer matrix [34–36]. In our previous work, 
Gu et al. [37] calculated the interfacial thermal resistance 
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between fillers and polymer matrix based on the modified 
Hashin–Shtrikman model and effective medium theory, 
revealing that the surface-functionalized fillers could fur-
ther improve the λ of thermally conductive composites 
with the same amount of fillers. Therefore, the surface 
functionalization of BN is the key factor for reducing 
interfacial thermal resistance and further improving the λ 
of corresponding thermally conductive composites.

To our knowledge, the surface functionalization meth-
ods of BN fillers are mainly classified into non-covalent 
modification and covalent modification [38–40]. The for-
mer utilizes van der Waals force and electrostatic adsorp-
tion, etc., to coat the surface of BN with a layer of organic 
matter [41–43]. However, the functionalized BN prepared 
by the non-covalent modification is unstable. Covalent 
modification is to destroy B–N bond on the surface of BN 
by plasma, ultrasonic treatment, strong acid, and strong 
base to form stable hydroxyl and amino groups [44–46]. 
Kim et al. [47] carried out ultrasonic treatment of BN and 
then adopted (hexadecyl)trimethoxysilane to modify the 
surface of BN (C16-BN). C16-BN/epoxy composites with 
20 wt% C16-BN presented excellent λ (3.49 W  m−1  K−1), 
45.4% higher than that of 20 wt% BN/epoxy composites 
(2.40 W  m−1  K−1). Zhang et al. [48] adopted KOH/NaOH 
to treat BN by the high-temperature solid-phase method to 
obtain BN-OH and subsequently blended with polystyrene 
(PS) to prepare BN-OH/PS composites. The native struc-
ture of BN-OH was not damaged. When the amount of 
BN-OH was 12 wt%, the BN-OH/PS composites presented 
excellent thermal conductivity with λ of 1.13 W  m−1  K−1, 
52.7% higher than that of 12  wt% BN/PS composites 
(0.74 W  m−1  K−1).

In this work, PBO fibers are stripped in the methane-
sulfonic acid (MSA)/trifluoroacetic acid (TFA) solution to 
obtain PNF. Benzidine is performed to functionalize the sur-
face of BN (m-BN), followed by blending with PNF to pre-
pare the m-BN/PNF nanocomposite paper via sol–gel film 
transformation approach. X-ray diffractometer (XRD), X-ray 
photoelectron spectroscopy (XPS), scanning electron micro-
scope (SEM) and transmission electron microscope (TEM) 
are utilized to analyze and characterize the surface elements, 
crystal structures and micromorphologies of m-BN and PNF. 
On this basis, the functionalization of m-BN and its amount 
influencing on thermal conductivities, electrical insulation 
and mechanical properties of the m-BN/PNF nanocomposite 
paper are analyzed.

2  Experimental Section

2.1  Surface Functionalization of BN

Benzidine is performed to functionalize the surface of BN 
(m-BN) by “high-temperature solid-phase & diazonium salt 
decomposition” method. The B–N on the surface of BN can 
be destroyed to generate hydroxyl and amino groups (HO-
BN) via high-temperature solid-phase method [49] at con-
centrated alkaline environment. The high activity of benzi-
dine carbocation produced by decomposition of diazonium 
salt is utilized to graft benzidine onto the surface of HO-BN 
(m-BN). The surface functionalization mechanism of m-BN 
is shown in Fig. S1, and the specific process is as follows.

One gram of BN, 1.5 g of sodium hydroxide and 1.5 g 
of potassium hydroxide were ground into powder, reacting 
in a hydrothermal reactor at 180 °C for 5 h. Subsequently, 
the reactants were dissolved in distilled water and washed 
for 2–3 times until the solution was neutral, followed by 
drying at 60 °C for 24 h to obtain HO-BN. Next, 3.7 g of 
benzidine was dissolved in distilled water, stirred in an ice 
bath, and an appropriate amount of hydrochloric acid was 
added to form amaranth suspension. Then, 1.4 g of sodium 
nitrite was slowly added into the above solution to form a 
diazonium chloride salt solution. Finally, 0.5 g of HO-BN 
was added into the diazonium chloride salt solution, 2.0 g of 
iron powder and an appropriate amount of hydrochloric acid 
were added sequentially, and the reaction was carried out 
at ice bath environment for 2 h. The reactants were washed 
with distilled water and methanol to remove excess diazo-
nium chloride salts, followed by drying at 60 °C for 24 h to 
obtain m-BN.

2.2  Fabrication of the m‑BN/PNF Nanocomposite 
Paper

PBO fibers were added into the MSA/TFA solution with a 
volume ratio of 1:1, followed by stirring for 24 h to form 
PNF dispersion. Appropriate amount of m-BN and 1.5 g of 
 Na2SO4 were added into 30 g of PNF dispersion (0.1 wt%) 
and magnetically stirred for 2 h. Subsequently, 10 g of 
PNF dispersion (1 wt%) was continued to be added, and 
the m-BN/PNF acid sol was obtained by high-speed homo-
geneous stirring. The acid sol was poured into a culture 
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dish and stood for 24 h to obtain m-BN/PNF acid gel. 
Then, the m-BN/PNF acid gel was soaked in distilled water 
for multiple solvent exchange, to obtain the m-BN/PNF 
hydrogel, which was then compressed and dried to obtain 
m-BN/PNF nanocomposite paper. The schematic diagram 
of the preparation process is shown in Fig. 1a. A series 
of m-BN/PNF-X nanocomposite paper was fabricated by 
changing the mass ratio of m-BN to PNF (X represented 
the mass fraction of m-BN, which were 10, 20, 30, 40 
and 50, respectively). In addition, a series of BN/PNF-X 
composite paper was prepared by the same method for 
comparative analyses.

3  Results and Discussion

3.1  Structures and Morphologies of m‑BN/PNF 
Nanocomposite Paper

Figure 1b shows the SEM image and optical photograph 
of PBO fibers. PBO fibers have been gradually exfoliated 
in the mixed acid of MSA/TFA, becoming brown PNF 
dispersion (Fig. 1c). Figure 1d, d′ shows the TEM images 
of high-aspect-ratio PNF with diameter ranging from 10 
to 40 nm. Nitrogen and oxygen atoms on PBO molecular 
chains are protonated by the mixed acid, which increases the 

Fig. 1  Schematic diagram of the preparation process for m-BN/PNF nanocomposite paper (a); optical photograph and SEM image of PBO 
fibers (b); the process of converting PNF solution into m-BN/PNF sol (c, c′); TEM images of PNF (d, d′); optical photographs of m-BN/PNF 
gel with certain flexibility (e, e″); SEM images showing the inside of m-BN/PNF gel (f, f′); schematic diagram of the interaction mechanism 
between PNF and m-BN (g); optical photographs of m-BN/PNF nanocomposite paper showing excellent flexibility and foldability (h, h″); cross-
sectional SEM images of m-BN/PNF nanocomposite paper (i, i′)
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electrostatic repulsion between the molecular chains, result-
ing in the gradual stripping of PBO fibers to PNF. Mean-
while, some oxazole rings on the PBO molecular chains are 
broken to generate hydroxyl and amino groups (Fig. S2).

The yellow m-BN/PNF acid sol (Fig. 1c′) is formed by 
adding m-BN and  Na2SO4 into the PNF dispersion. The acid 
sol has been poured into a culture dish and stood for 24 h to 
obtain m-BN/PNF acid gel with certain flexibility (Figs. S3a, 
a′ and 1e, e″). On the contrary, the pristine PNF dispersion 
shows no significant changes after standing for 24 h. As can 
be seen in Fig. 1f, f′, m-BN and PNF form a stable three-
dimensional (3D) crosslinked network structures, and PNF 
is tightly attached onto the surface of m-BN. The network 
is created because the  SO4

2− shields the positive charge on 
the surface of PNF, which suppresses electrostatic exclusion 
and enhances the π–π interactions between PNF, leading to 
crosslinking for gelation (Fig. S4a, a′). In addition, amino 
groups and biphenyls on the surface of m-BN form strong 
hydrogen bonds and π–π interactions with PNF (Fig. 1g), 
causing PNF to adhere closely onto the surface of m-BN. 
However, original BN forms obvious defects in 3D network 
structure of PNF owing to weak interaction (Fig. S4b, b′).

The m-BN/PNF nanocomposite paper presents excellent 
flexibility and folding resistance, with no obvious dam-
age after being bent for 180 degrees or folded into a bow 
(Fig. 1h–h″). As shown in Fig. 1i, i′, based on the hydro-
gen bonds and π–π interactions, m-BN/PNF nanocomposite 
paper displays an orderly arrangement of m-BN in the in-
plane direction. A large amount of PNF is tightly stacked 
and interconnected between the m-BN in the through-plane 
direction, resulting in stable nacre-mimetic layered struc-
tures inside the nanocomposite paper (Fig. S5). Besides, m-
BN is uniformly distributed on the surface of the m-BN/PNF 
nanocomposite paper, and PNF on the surface is interlaced 
with each other to form a porous nanofiber network structure 
(Fig. S6).

Figure 2a, b shows Fourier transformed infrared (FTIR, 
a) and XRD (b) spectra of the BN before and after func-
tionalization. BN shows obvious absorption peaks at 811 
and 1376  cm−1 (Fig. 2a), corresponding to the stretching 
and bending vibration absorption of B–N, respectively [50, 
51]. Compared with BN, m-BN appears new characteristic 
absorption peaks at 1608 and 1500  cm−1, mainly attributed 
to the stretching vibration peak of biphenyls. Characteristic 

Fig. 2  FTIR (a) and XRD (b) spectra of m-BN and BN; XPS wide-scan spectra (c) and high-resolution C 1s XPS spectra (d–f) of PNF paper, 
BN/PNF and m-BN/PNF nanocomposite paper
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absorption peak corresponding to the amino group appears 
at 3400  cm−1, which proves that benzidine is successfully 
grafted on the surface of BN. As can be seen from the high-
resolution XPS spectra of N1s before and after BN func-
tionalization (Fig. S7a, b), in addition to the B–N peak cor-
responding to BN (397.4 eV, Fig. S7a), m-BN also shows a 
new split peak corresponding to the C–N peak at 399.1 eV 
(Fig. S7b), further proving that benzidine is successfully 
grafted on the surface of BN. Figure S7c shows the thermo-
gravimetric analyses (TGA) curves of BN and m-BN. The 
weight of BN does not change significantly in the range of 
40–800 °C, while the weight loss of m-BN increases with 
increasing temperature. When the temperature rises to 
800 °C, the weight loss rate of m-BN is about 2.6 wt%, due 
to the oxidation decomposition of benzidine. As can be seen 
from Fig. 2b, both BN and m-BN present XRD diffraction 
peaks of the same size, corresponding to 26.6° (002) and 
55.2° (004) [52–54]. The morphology (Fig. S8) of the m-BN 
is basically unchanged, compared with that of BN. Results 
show that “high-temperature solid-phase & diazonium salt 
decomposition” method does not destroy the crystal struc-
ture of BN.

Figure 2c shows XPS spectra of PNF paper, BN/PNF and 
m-BN/PNF nanocomposite paper. The surface of PNF paper 
mainly contains C, N and O elements. Compared to PNF 
paper, BN/PNF and m-BN/PNF nanocomposite paper shows 
new B elements attributed to the introduction of BN or m-BN. 
C 1s spectra in Fig. 2d–f demonstrate the existence of abun-
dant polar C–N and C–O groups for PNF paper, BN/PNF and 
m-BN/PNF nanocomposite paper. Notably, the characteristic 
peaks at 285.2, 286.4 and 287.6 eV for the C–N, C–O and 
N=C–O groups of PNF paper, BN/PNF nanocomposite paper 
shift to a higher binding energy of 285.8, 286.9 and 288.3 eV 
for m-BN/PNF nanocomposite paper, respectively. Results 
indicate that the chemical environments for C–N, C–O and 
N=C–O groups of m-BN/PNF nanocomposite paper have been 
changed, demonstrating the formation of hydrogen-bonding 
interaction between m-BN and PNF.

3.2  Thermal Properties of m‑BN/PNF Nanocomposite 
Paper

Figure 3a, b shows the λ∥ and through-plane thermal con-
ductivity coefficient (λ⊥, b) of m-BN/PNF nanocomposite 
paper, respectively. The λ∥ and λ⊥ of m-BN/PNF and BN/

PNF nanocomposite paper all increase with the increas-
ing amount of m-BN and BN, mainly due to the fact that 
the formation probability of thermal conduction pathway 
increases gradually inner PNF matrix, and the thermal resist-
ance of heat conduction along thermal conduction pathway 
decreases gradually [55]. Under the same amount of m-BN 
and BN, the λ∥ and λ⊥ of the m-BN/PNF nanocomposite 
paper are both higher than those of the BN/PNF nanocom-
posite paper. When the mass fraction of m-BN is 50 wt%, 
m-BN/PNF-50 nanocomposite paper presents the highest λ∥ 
and λ⊥ of 9.68 and 0.84 W  m−1  K−1, respectively, increased 
by 393% and 494% compared with those of PNF paper, 
25.4% and 18.3% higher than the λ∥ (7.72 W  m−1  K−1) and 
λ⊥ (0.71 W  m−1  K−1) of the BN/PNF nanocomposite paper 
with the same amount of BN. It can be indicated that the m-
BN presents significant influences on improving the thermal 
conductivities. This is because the amino groups and biphe-
nyls on the surface of m-BN form strong hydrogen bond and 
π–π interaction with PNF, resulting in the lower interfacial 
thermal resistance of nanocomposite paper. The m-BN is 
uniformly arranged in the in-plane direction of the m-BN/
PNF nanocomposite paper (Fig. 4a), which can form effi-
cient m-BN thermal conduction pathway (Fig. 4a′). Besides, 
the m-BN is interconnected with a large number of PNF 
in the through-plane direction (Fig. 4b), which effectively 
reduces the interfacial thermal resistance between m-BN, 
and drastically improves the phonon propagation efficiency 
(Fig. 4b′). In contrast, BN is partially agglomerated in the 
PNF matrix, which cannot form efficient BN thermal con-
duction pathway, and inevitably introduce the interfacial 
thermal resistance of BN-BN or BN-PNF [47, 56]. There-
fore, BN/PNF nanocomposite paper presents relatively lower 
λ∥ and λ⊥ than those of m-BN/PNF nanocomposite paper 
with the same amount of fillers.

To further elucidate the effect of surface functionalization 
for BN on the interfacial thermal resistance and λ of the m-
BN/PNF nanocomposite paper, the experimentally obtained 
λ∥ and λ⊥ of BN/PNF and m-BN/PNF nanocomposite paper 
are fitted by the modified Hashin–Shtrikman model [57–59] 
(Fig. S9). The in-plane thermal resistance ( R∗

c
 ) and through-

plane R∗

c
 of m-BN/PNF nanocomposite paper are 0.2336 and 

0.2258, respectively, lower than those of BN/PNF nanocom-
posite paper (in-plane R∗

c
 of 0.2443 and through-plane R∗

c
 

of 0.2317), which further demonstrates that the reduction 
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of interfacial thermal resistance plays a crucial role in 
improving the thermal conductivity of the nanocomposite 
paper. Figure S10 shows the λ∥ and λ⊥ of PNF paper and 
m-BN/PNF-50 nanocomposite paper at different tempera-
ture (20–200 °C). The λ∥ and λ⊥ of PNF paper and m-BN/
PNF-50 nanocomposite paper all increase slightly with the 
increasing temperature. This is because as the temperature 
increases, the phonon transmission speed increases, contrib-
uting to the improvement of thermal conductivities [60].

Figure 3c, c′ shows the curves of temperatures vs. time 
for heating resistor on air, PNF paper and m-BN/PNF-50 

nanocomposite paper, and corresponding infrared thermal 
images. The surface temperature of the heating resistor rises 
sharply to about 90 °C after 20 s of operation at 10 V. Sub-
sequently, the surface temperature gradually decreases after 
the heating is stopped, and eventually decreases to below 
40 °C. When the air and PNF paper are used as the heat dis-
sipation materials, the surface temperatures of the heating 
resistor after heating 20 s are 88.3 and 87.1 °C, respectively, 
higher than the surface temperature of 84.5 °C when m-BN/
PNF-50 nanocomposite paper is used as the heat dissipation 
material. The main reason is that m-BN/PNF nanocomposite 

Fig. 3  λ∥ (a) and λ⊥ (b) of BN/PNF and m-BN/PNF nanocomposite paper at room temperature; the curves of temperatures vs. time (c) for 
heating resistor on air, PNF paper and m-BN/PNF-50 nanocomposite paper and corresponding infrared thermal images (c′); the curves of tem-
peratures vs. time (d) for the bare lithium-ion rechargeable battery, the lithium-ion rechargeable battery integrated with PNF paper and m-BN/
PNF-50 nanocomposite paper, and corresponding infrared thermal images (d′); TGA curves (e) of PNF paper and m-BN/PNF-50 nanocomposite 
paper; optical photographs of PNF paper (f) and m-BN/PNF-50 nanocomposite paper (g) before and during burning; SEM images of PNF paper 
(h) and m-BN/PNF-50 nanocomposite paper (i) after burning
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paper can effectively dissipate part of the accumulated heat 
during heating, due to its excellent thermal conductivity. 
After cooling for 30 s, the surface temperature of the heating 
resistance with m-BN/PNF-50 nanocomposite paper as the 
heat dissipation material is as low as 26.2 °C, much lower 
than those of air (32.7 °C) or PNF paper (38.3 °C).

The m-BN/PNF-50 nanocomposite paper is also used as 
the heat dissipation material in the lithium-ion recharge-
able battery (Fig. S11). Figure 3d, d′ shows the curves of 
temperatures vs. time for the bare lithium-ion rechargeable 
battery, the lithium-ion rechargeable battery integrated with 
PNF paper and m-BN/PNF-50 nanocomposite paper and the 
corresponding infrared thermal images. When the lithium-
ion rechargeable battery starts to work, the temperature of 
the core components increases gradually, among which the 
bare core components show the highest heating rate, and that 
of the m-BN/PNF-50 nanocomposite paper shows the low-
est. After charging for 150 s, the surface temperature of core 
components integrated with m-BN/PNF-50 nanocomposite 
paper stabilizes around 36.4 °C, significantly lower than 

the surface temperature of bare core component of 46.3 °C 
and core components integrated with PNF paper of 41.1 °C. 
This is mainly because the m-BN/PNF-50 nanocomposite 
paper presents excellent heat dissipation property, which 
can quickly diffuse the heat from the lithium-ion recharge-
able battery. Therefore, the m-BN/PNF-50 nanocomposite 
paper is an efficient kind of thermal management material 
with broad application prospects in lithium batteries and 
integrated circuits.

Figure 3e shows TGA curves of PNF paper and m-BN/
PNF-50 nanocomposite paper. PNF paper and m-BN/PNF-
50 nanocomposite paper exhibit excellent heat resistances, 
and m-BN/PNF-50 nanocomposite paper has only slight 
weight loss below 640 °C, attributed to the degradation of 
benzidine. When the temperature is higher than 640 °C, the 
weight of PNF paper and m-BN/PNF-50 nanocomposite 
paper begins to decrease significantly, mainly attributed 
to the carbonization of PBO molecular chains. Figure 3f–i 
shows optical photographs of PNF paper (f) and m-BN/PNF-
50 nanocomposite paper (g) before and during burning, SEM 

Fig. 4  Cross-sectional SEM images (a, b) of m-BN/PNF-50 nanocomposite paper; schematic diagram of thermal conduction for m-BN/PNF-50 
nanocomposite paper in the in-plane (a′) and through-plane (b′) direction
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images of PNF paper (h) and m-BN/PNF-50 nanocomposite 
paper (i) after burning, respectively. PNF paper and m-BN/
PNF-50 nanocomposite paper only shrink and curl slightly 
when they stay on the flame for 10 s. After removing the 
flame (> 20 s), no obvious flame and smoke are observed 
on PNF paper and m-BN/PNF-50 nanocomposite paper, and 
they basically maintain the original shape. From Fig. 3h, i, 
PNF paper and m-BN/PNF-50 nanocomposite paper form a 
dense carbon layer on the surface after burning, which can 
prevent oxygen from entering the interior [61, 62], showing 
that PNF paper and m-BN/PNF-50 nanocomposite paper 
both have excellent flame-retardant properties. To further 
evaluate the flame-retardant properties of PNF paper and 
m-BN/PNF-50 nanocomposite paper, The microscale com-
bustion calorimetry is used to quantificationally measure the 
heat release rate of PNF paper and m-BN/PNF-50 nanocom-
posite paper (Fig. S12). The m-BN/PNF-50 nanocomposite 
paper exhibits the low peak heat release rate of 154.3 W  g−1, 
lower than that of the PNF paper (221.4 W  g−1). Results 
suggest that the introduction of m-BN further improves the 
flame-retardant property of m-BN/PNF-50 nanocomposite 
paper. The reason is that m-BN presents extremely excellent 

thermal stability (Fig. S7c) and can be used as a flame 
retardant to prevent the spread of flame, thereby improving 
the flame-retardant property.

3.3  Electrical Insulation of m‑BN/PNF Nanocomposite 
Paper

Figure 5a, b shows the dielectric constant (ε) and dielectric 
loss tangent (tanδ) of m-BN/PNF nanocomposite paper at 
different frequency. At the same frequency, ε and tanδ of 
m-BN/PNF nanocomposite paper gradually increase with 
the increasing amount of m-BN. When the mass fraction of 
m-BN is 50 wt%, the ε and tanδ of m-BN/PNF-50 nanocom-
posite paper are 3.55 and 0.033 (1 MHz), higher than that (ε 
of 2.39 and tanδ of 0.015, 1 MHz) of PNF paper, but lower 
than that (ε of 3.76 and tanδ of 0.042, 1 MHz, Fig. S13) of 
BN/PNF-50 nanocomposite paper. This is because BN with 
high ε (~ 4.0) increases the ε of the nanocomposite paper. 
In addition, the introduction of m-BN or BN produces new 
interfaces with PNF. Under the action of applied electric 
field, charge carriers accumulate on the interface and induce 

Fig. 5  ε (a) and tanδ (b) of m-BN/PNF nanocomposite paper at different frequencies; ε (c) and tanδ (d) of PNF paper and m-BN/PNF-50 nano-
composite paper in the range of − 50 to 200 °C; volume resistivity (e) of m-BN/PNF nanocomposite paper; Weibull plots for breakdown strength 
(f) of PNF paper and m-BN/PNF-50 nanocomposite paper
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interfacial polarization, which further increases the ε and 
tanδ. Compared with BN/PNF nanocomposite paper, m-BN 
forms strong hydrogen bond and π–π interaction with PNF, 
which would reduce the interfacial polarization, resulting 
in relatively lower ε and tanδ of m-BN/PNF nanocomposite 
paper.

In addition, the ε (3.55–3.59) and tanδ (0.021–0.033) of 
m-BN/PNF-50 nanocomposite paper show no significant 
changes in the range of 100 Hz–1 MHz, indicating excel-
lent frequency stability. Figure 5c, d shows the ε and tanδ 
of PNF paper and m-BN/PNF-50 nanocomposite paper in 
the range of − 50 to 200 °C. The ε and tanδ of PNF paper 
and m-BN/PNF-50 nanocomposite paper generally increase 
with increasing temperature. When the temperature rises 
from − 50 to 200 °C, the ε of m-BN/PNF-50 nanocompos-
ite paper increases from 3.51 to 3.73, showing an increase 
of 0.22, lower than the increase (0.43) of PNF paper. The 
tanδ increases from 0.031 to 0.059, showing an increase of 
0.028, lower than the increase (0.035) of PNF paper. The 
main reason is that, within a certain range, the increase of 
temperature is conducive to the orientation of molecular 
chains, promoting the generation of atomic and orienta-
tion polarization [63, 64], which leads to the increasing ε 
and tanδ of the PNF paper and m-BN/PNF nanocomposite 
paper. While BN presents excellent thermal stability, and its 
internal molecular structure is difficult to change in a wide 
temperature range, so that the ε and tanδ are less affected 
by temperature. Overall, the dielectric properties of m-BN/
PNF nanocomposite paper exhibit better temperature stabil-
ity than that of PNF paper.

Figure 5e shows volume resistivity of m-BN/PNF nano-
composite paper. Volume resistivity of m-BN/PNF nano-
composite paper increases with the increasing amount of 
m-BN. The m-BN/PNF-50 nanocomposite paper has the 
highest volume resistivity of 2.3 ×  1015 Ω cm, higher than 
that of the PNF paper (3.6 ×  1014 Ω cm), which meets the 
requirements for the use of insulating materials inside elec-
tronic/electrical devices (>  109 Ω cm) [65]. To our satisfac-
tion, the m-BN/PNF-50 nanocomposite paper presents high 
breakdown strength (Fig. 5f) of 324.2 kV  mm−1. The excel-
lent electrical insulation is attributed to the high volume 
resistivity  (1016–1018 Ω cm) of m-BN, and charged carriers 
are difficult to carry out multiple migration between m-BN 
and PNF, promoting the high volume resistivity of m-BN/
PNF-50 nanocomposite paper. Under the action of applied 
voltage, m-BN can be used as the scattering point, and 

ejected electrons in the PNF matrix directly collide with m-
BN and lose energy [66–68]. The m-BN/PNF-50 nanocom-
posite paper requires higher voltage to achieve breakdown.

3.4  Mechanical Properties of m‑BN/PNF 
Nanocomposite Paper

Figure 6a shows that the m-BN/PNF-50 nanocomposite 
paper can be bent arbitrarily, and withstand a 1-kg reac-
tor without any crack or fracture, indicating flexibility and 
robust mechanical properties. From Fig. 6b, c, after linear 
elastic deformation and yielding, BN/PNF and m-BN/PNF 
nanocomposite paper undergoes obvious plastic elongation 
until fracture. Figure 6d–f shows tensile strength (d), tensile 
modulus (e) and toughness (f) of BN/PNF and m-BN/PNF 
nanocomposite paper. With the increasing amount of m-BN 
and BN, the tensile strength, tensile modulus and toughness 
of m-BN/PNF-50 nanocomposite paper increase first and 
then decrease, while the tensile strength, tensile modulus and 
toughness of BN/PNF-50 nanocomposite paper gradually 
decrease. Under the same amount of m-BN and BN, the ten-
sile strength, tensile modulus and toughness of m-BN/PNF 
nanocomposite paper are all higher than those of the BN/
PNF nanocomposite paper. When the mass fraction of m-BN 
is 10 wt%, the tensile strength and modulus and toughness of 
the m-BN/PNF-10 nanocomposite paper reach the maximum 
values of 301.5 MPa, 6.9 GPa and 20.3 MJ  m−3, respec-
tively, 10.8%, 6.2% and 38.1% higher than those of PNF 
paper, also higher than the tensile strength (254.6 MPa), 
tensile modulus (5.1 GPa) and toughness (14.0 MJ  m−3) of 
BN/PNF-10 nanocomposite paper. When the mass fraction 
of m-BN is 50 wt%, the tensile strength (193.6 MPa), tensile 
modulus (3.72 GPa) and toughness (7.26 MJ  m−3) of m-BN/
PNF-50 nanocomposite paper are slightly lower than those 
of PNF paper.

The excellent mechanical properties are mainly attrib-
uted to the construction of extensive hydrogen bonds 
and π–π interactions between m-BN and PNF, and stable 
nacre-mimetic layered structures. The introduction of 
appropriate amount of m-BN can effectively slow down 
the crack propagation and transfer stress and improve 
the mechanical properties of m-BN/PNF nanocomposite 
paper. However, excessive m-BN tends to form stress con-
centration points in the m-BN/PNF nanocomposite paper. 
In contrast, the relatively poor compatibility between BN 
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and PNF leads to the formation of more defects and stress 
concentration points within the BN/PNF nanocompos-
ite paper, resulting in the serious decline in mechanical 
properties.

As shown in Table S1, m-BN/PNF-50 nanocomposite 
paper presents optimal thermal stability (thermal decom-
position temperature up to 640 °C) and excellent thermal 
conductivity among the reported electrically insulating 
paper. Meanwhile, m-BN/PNF nanocomposite paper has 
excellent mechanical properties and high breakdown 
strength, showing a broad application prospect in high-
end thermal management fields such as electronic devices 
and electrical equipment.

4  Conclusions

FTIR, XRD and TGA show that benzidine has been suc-
cessfully grafted on the BN surface (m-BN). TEM and 
SEM indicate that PBO fibers are exfoliated into PNF, 
and m-BN and PNF have formed 3D crosslinked network 

structures. When the mass fraction of m-BN is 50 wt%, m-
BN/PNF-50 nanocomposite paper presents the highest λ∥ 
and λ⊥ of 9.68 and 0.84 W  m−1  K−1, respectively, increased 
by 393% and 494% compared with the PNF paper. The 
nanocomposite paper also presents excellent electrical 
insulation (volume resistivity of about 2.3 ×  1015 Ω cm and 
breakdown strength of 324.2 kV  mm−1), and its dielectric 
properties exhibit excellent frequency and temperature 
stability. In addition, the nanocomposite paper has excel-
lent mechanical properties (tensile strength of 193.6 MPa), 
outstanding thermal stability (thermal decomposition tem-
perature > 640 °C) and flame retardancy (self-extinguish-
ing immediately after evacuation from the flame).
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