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S1 Experimental Procedures 

S1.1 Materials Preparation 

Chemicals: molybdenum nickel foam (MN, Thick of 1.5 mm), Sodium chloride 

(NaCl). Potassium ferricyanide (K3[Fe(CN)6], ≥99%), Sodium hypophosphite 

monohydrate (NaH2PO2·H2O, ≥99%), Phytic acid (C6H18O24P6), Potassium hydroxide 

(KOH) were purchased from Sinopharm Chemical Reagent Co. Ltd.. MN was cut into 

pieces of 1  1.5 cm2 and then wished with hydrochloric acid, acetone, absolute ethyl 

alcohol and deionized water, respectively for later use. 

Preparation of MN-OH and NiFe-PBA/MN nanocubes: In a typical process, MN-

OH was obtained by immersing a piece of molybdenum nickel foam in 50 mM NaCl 

solution at room temperature for 12 h. Then, MN-OH was placed in a Teflon-lined 

stainless steel autoclave containing 0.6 mmol K3[Fe(CN)6] and 30 mL deionized 

water. After heating for several hours at 90 oC, the product was named as NiFe-

PBA/MN-t (t is the hydrothermal time) and rinsed with deionized water. 

Preparation of Ni2P/FeP2/MN nanocubes: The dried NiFe-PBA/MN-t and 

NaH2PO2·H2O were placed in a tube furnace and calcined under argon atmosphere for 

2 h at 350 oC. The product was obtained and denoted as Ni2P/FeP2/MN-t. 

S1.2 Materials Characterization 

Structural and morphological characterization: To characterize the chemical 

structures, Fourier transform infrared (FTIR) spectra were collected on a Bruker 

V70FTIR spectrometer. X-ray diffraction (XRD) patterns were obtained on a JSM-

7500F X-ray diffractometer. X-ray photoelectron spectroscopy (XPS) were carried 

out on a VG ESCALABMK II scanning X-ray spectroscope. In order to reduce the 

influence of Ni element on the substrate, the surface layer of the catalyst growing on 

the substrate was scraped off for XPS testing. Energy dispersive X-ray (EDX) 
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mapping images were characterized using JEOL JEM-2100F field emission electron 

microscope operating at 200 kV. Transmission electron microscopy (TEM) was 

acquired on a FEI Tecnai G2 F20 S-TWIN. Scanning electron microscopy (SEM) 

spectra were obtained with a Hitachi (S-4800) cold field emission scanning electron 

microscope. 

S1.3 Electrochemical Measurements 

Electrochemical measurements: An electrochemical workstation (Gamry Reference 

3000) was used to evolute the electrochemical properties of as-prepared catalysts in 

1.0 M and 6.0 M KOH at room temperature. Oxygen is fed into the electrolyte for 30 

minutes to get O2 saturated alkaline condition. The obtained samples, a Pt plate and a 

Hg/HgO electrode were used as the working electrode, counter electrode and 

reference electrode, respectively. All the mentioned potentials were converted into 

reversible hydrogen electrode (RHE) according to the Nernst equation: ERHE = EHg/HgO 

+ 0.0594 pH + 0.095. The pH of 1 M and 6 M KOH is around 14 and 14.8, 

respectively. Linear sweep voltammetry (LSV) curves were obtained with a scan rate 

of 5 mV·s−1. The Tafel slopes were calculated according to the LSV method. The 

electrical double-layer capacitances (Cdl) was calculated by cyclic voltammetry (CV) 

curves with different scan rates of 40, 60, 80, 100, 120 mV s-1. The stability was 

assessed by chronopotentiometry at 100 and 500 mA cm-2. 

Alkaline AEM electrolyzer: Firstly, Fumasep FAA-3-50 membrane (130 μm 

thickness) was activated in 1.0 M KOH for 24 h, and then preserved in distilled water 

for later use. As-prepared catalyts were used as an anode electrode, and Pt mesh was 

used as cathode electrode. The whole system was operated at the temperature of 25 ℃ 

using 1.0 M KOH electrolyte under the flowing rate of 400 mL·min−1. The circulation 

of electrolyte was carried out by water pump (kamoer, DIPump550). Besides, the 

performance was evaluated by measuring polarization curves from 1 to 2.4 V vs. 

RHE. The stability was evaluated by measuring chronopotentiometry at 100 mA cm-2 

for 50 h. 

S2 Computational Methods 

Density functional theory (DFT) computational: The computational calculation was 

performed within the framework of the DFT as implemented in the Vienna Ab initio 

Software Package (VASP 5.4.4) code within the Perdew–Burke–Ernzerhof (PBE) 

generalized gradient approximation and the projected augmented wave (PAW) method 

[S1−S3]. The cutoff energy for the plane-wave basis set was set to 450 eV. The 

convergence criterion for the electronic self-consistent iteration and force was set to 

10-5 eV and 0.02 eV Å-1, respectively. Using the Monkhorst-Pack special k-point 

meshes to carry out Brillouin zone sampling [S4]. 4 × 2 × 1, 5 × 2 × 1, and 5 × 2 × 2 

k-point grids were used for Ni2P, FeP2, and Ni2P/FeP2 system, respectively. A vacuum 

region of 15 Å was used to avoid the interaction with the upper structure. The atomic 

structures and charge density differences were visualized via the VESTA code. The 

absorption free energy intermediate of (ΔG) was calculated according to the following 
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formulas: 

ΔG = ΔEads + ΔEZPE − TΔS 

where the ΔEads is the adsorption energy that obtained from DFT calculations, 

ΔEZPE is the zero-point energy difference between the adsorbed state of the system 

and gas phase state, and ΔS is the entropy difference. 

The transition state (TS) searches on the catalysts were carried out with the 

climbing-image nudged elastic band method (CI-NEB) [S5]. 

S3 Supplementary Figures and Tables 

 

Fig. S1 DFT simulations of Ni2P/FeP2 heterogeneous structure configurations from 

different views: (a) front view; (b) side view; (c) Top view 

 

Fig. S2 DFT simulations of Ni2P heterogeneous structure configurations from 

different views: (a) front view; (b) side view; (c) Top view 
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Fig. S3 DFT simulations of FeP2 structure configurations from different views: (a) 

front view; (b) side view; (c) Top view 

 

Fig. S4 Planar average potential along the Z-direction of Ni2P/FeP2 

 

Fig. S5 PDOSs of FeP2, Ni2P and Ni2P/FeP2 
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Fig. S6 Proposed four-step OER mechanism for Ni2P/FeP2 with Ni active site (actNi) 

 

Fig. S7 Proposed four-step OER mechanism for Ni2P/FeP2 with Fe active site (actFe)

 

Fig. S8 Gibbs free energies of Ni2P/FeP2 with Ni active site (actNi) 

 

Fig. S9 Gibbs free energies of Ni2P/FeP2 with Fe active site (actFe) 
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Fig. S10 Interfacial hydroxyl spillover routes of (a) Ni2P and (b) Ni2P/FeP2 

 

Fig. S11 Overflow energy barrier of Ni2P/FeP2 and Ni2P 

 

Fig. S12 The adsorption energies of H2O on the surface of Ni2P and FeP2 
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Fig. S13 SEM images of (a-c) MN, (d-f) MN-OH 

 

Fig. S14 SEM images of (a-c) NiFe-PBA/MN, (d-f) Ni2P/FeP2/MN 

 

Fig. S15 SEM images of (a-c) FeP2/MN and (d-f) Ni2P/MN 
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Fig. S16 XRD of MN, MN-OH, NiFe-PBA/MN 

 

Fig. S17 XPS of P of FeP2/MN 

 

Fig. S18 Electron density difference from different views: (a) front view; (b) side 

view; (c) Top view 
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Fig. S19 Overpotential comparison of Ni2P/FeP2@PA/MN and catalysts in other 

works [S6−S16] 

 

Fig. S20 LSV curves of Ni2P/FeP2/MN, FeP2/MN, Ni2P/MN and MN in 1.0 M KOH 

 

Fig. S21 Cyclic voltammetry (CV) curves of Ni2P/FeP2/MN, NiFe-PBA/MN, MN-

OH and MN 
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Fig. S22 SEM images of Ni2P/FeP2/MN after stability test 

 

Fig. S23 XRD of NiFe-PBA/MN before and after OER 

 

Fig. S24 XPS of (a) survey, (b) Fe, (c) Ni, (d) P of Ni2P/FeP2/MN before and after 

OER 
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Fig. S25 LSV of Ni2P/FeP2/MN and Ni2P/MN in (a) PBS and (b) 0.1 M KOH in 

AWE 

 

Fig. S26 Current density comparison of obtained catalysts at 1.73/1.78/1.83/1.88 V 

 

Fig. S27 Polarization curves of Ni2P/FeP2/MN, FeP2/MN, Ni2P/MN and MN (anode), 

Pt mesh (cathode) in 1.0 M KOH in AEMWE 

 

Fig. S28 LSV of Ni2P/FeP2/MN and Ni2P/MN in (a) PBS and (b) 0.1 M KOH in 

AEMWE 
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Table S1 The specific activities of Ni2P/FeP2/MN and other catalysts 

Electrocatalysts Specific activity (mA cm-2
ECSA) 

Ni2P/FeP2/MN 0.34 

NiFe-PBA/MN 0.08 

MN-OH 0.18 

MN 0.02 

 

Table S2 The comparison of cell voltage of Ni2P/FeP2/MN and other catalysts in 

AEMWE 

Electrocatalysts 

Cell voltage (V) 

References 

@500 mA cm-2 @1000 mA cm-2 

Ni2P/FeP2/MN 1.75 1.88 This work 

HS-RuCo/NC / 2.07 [S17] 

NiFeCr-LDH 2.21(200) / [S18] 

PR-NiFe-LDH 2.13(250) / [S19] 

d-(Fe,Ni)OOH||NiMoN 1.795 / [S20] 

CuNi@NiSe / 2.2 [S21] 

Ni–Fe CLs / 2.2(670) [S22] 

NiCoFeOx 2.29 / [S23] 

NiCoO-NCO/C 1.85(504) / [S24] 

Ni2P/Ni12P5 (V–Ni2P/Ni12P5) 1.79 / [S25] 

B, V-Ni2P 1.78 1.92 [S26] 

PdNiFeCo/C-Ceria-NF0.3 2.31(300) / [S27] 
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Table S3 The percentage of increased potential (ΔE) of Ni2P/FeP2 compared with 

Ni2P in AWE and AEMWE system at 50 mA cm-2 in different concentrate of OH- 

electrolyte when compared with 1.0 M KOH solution 

Electrolyte AWE AEMWE 

0.1 M KOH 57.14% 85.71% 

PBS 242.9% 395.24% 

Table S4 The percentage of increased potential (ΔE) of Ni2P/FeP2 compared with 

Ni2P in AWE and AEMWE system at 100 mA cm-2 in different concentrate of OH- 

electrolyte when compared with 1.0 M KOH solution 

Electrolyte AWE AEMWE 

0.1 M KOH 87.5% 70.83% 

PBS 212.5% 350.00% 
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