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S1 Computational Methods 

Molecular dynamic (MD) simulations were performed via Groningen Machine for 

Chemical Simulations (GROMACS) to study the Li+ solvation structure. The object 

system was modeled by LiPF6, LT, FS, EC, DMC molecules stacked in supercell. The 

simulated system is periodic with a unit cell size of 3.4404 nm × 3.4404 nm × 3.4404 

nm and α=β=γ=90o. The OPLS force field, which is suitable for electrolyte solution, 

was used to optimize sample structures for preliminary structural optimization. Atomic 

charges of ions were multiplied by scale factor 0.73 to correct the polarization effect of 

anion and cation. The Ewald summation method with an accuracy of 0.002 kcal/mol 

was used to calculate long-range electrostatic potentials. The velocity Verlet algorithm 

with a time step of 1 fs was used to integrate the motion equations under an NVT 

ensemble with the Nose–Hoover thermostat at 300 K. During each simulation, the 

system was first equilibrated for 1 ns, followed by 10 ns of production steps. All 

simulations were repeated for five times with random initial velocities and the average 

results of these five runs were reported. Next, MD simulations were further carried out 

for 20 ns with a time step of 1 fs per integration step under the ensemble conditions of 

NVT (300 K). System energy can be obtained through structural optimization using the 

energy minimization. 

The binding energy and electronic surface potential were conducted using density 

functional theory (DFT) method. The structures of the studied complexes (denoted by 

Li+-EC, Li+-DMC, Li+-FS) were fully optimized at the B3LYP-D3BJ/def2-SVP level 

of theory. The solvent effect (50%EC+50%DMC) was included in the calculations 

using the solvation model based on the density (SMD) model. The vibrational 

frequencies of the optimized structures were carried out at the same level. The 

structures were characterized as a local energy minimum on the potential energy surface 

by verifying that all the vibrational frequencies were real. The calculation formulas of 

binding energy (Eb) are shown below: Eb(A-B)=E(AB)-E(A)-E(B), in which AB 

represent the complexes of Li+-EC, Li+-DMC, Li+-FS. 
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S2 Supplementary Figures and Tables 

 

Fig. S1 Evolution of the output voltage with varied temperature gradients under (a) 90 

min and (b) 360 min 

As shown in Fig. S1a and b, the output voltages of LP, LP-1T, LP-5F and LP-1T-5F 

with a temperature difference of 30 K over 360 min are 25.5, 30.3, 29.0 and 38.0 mV, 

respectively. In fact, such obtained values are comparable to those of LP (27.0 mV), 

LP-1T (32.4 mV), LP-5F (28.2 mV), and LP-1T-5F (40.1 mV) after charging over 90 

min. Besides, we used a voltage varying rate <0.3 mV min−1 to distinguish the near-

saturation status. It can be found that LTECs needs about 15-20 min to reach the near-

saturation status during the thermal charging process. Thus, we have applied 15 min as 

testing time to evaluate the heat-to-current behavior of as-constructed LTECs in this 

work. 

 

Fig. S2 The fitting results of voltage difference versus different values of ∆T for (a) LP, 

(b) LP-0.5T, (c) LP-1T, (d) LP-1.5T, (e) LP-2T. [LP-xT, x is content of LT.] 
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Fig. S3 The ionic conductivity and thermopower of LP-xT with different amounts of 

LT 

 

Fig. S4 The fitting results of voltage difference versus different values of ∆T for (a) 

LP-1T-1F, (b) LP-1T-2F, (c) LP-1T-5F, (d) LP-1T-8F. [LP-1T-yF, y is content of FS.] 

 

Fig. S5 The ionic conductivity and thermopower of LP-1T-yF with different amounts 

of FS 
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Fig. S6 The thermopower of LP-5F 

 

Fig. S7 (a) The voltage difference of stainless steel SS|LP-1T-5F|SS LTEC at different 

value of temperature difference. (b) Fractional contribution to thermopower of LP-1T-

5F based LTEC 

 

Fig. S8 The infrared images of (a) LP, (b) LP-1T, (c) LP-5F, and (d) LP-1T-5F 

electrolyte under same heat input after one hour 
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Fig. S9 The normalized temperature curves of LP, LP-1T, LP-5F, and LP-1T-5F 

electrolyte based on the infrared imagery 

Fig. S10 The viscosities of designed electrolytes 

Fig. S11 (a) Non-isothermal system of LP-1T-5F based LTEC for measuring the 

potential change of each electrode during thermal charging and electrical discharging 

process. The work electrode (WE) was lithium metal, whereas lithium metal was also 

used as the reference electrode (RE) and counter electrode (CE). (b) The corresponding 

real-time investigation of potential for each electrode and the voltage of full cell 
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Fig. S12 (a) The cycling stability of Li//Li symmetric cells, and (b) stripping/plating 

efficiency of Li//Cu asymmetric cell using LP and LP-1T-5F electrolytes 

Fig. S13 Raman spectra of designed electrolytes, lithium salts and solvents 
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Fig. S14 (a, c, e, g) Electrochemical impedance spectroscopy (EIS) diagram before and 

after the polarization in designed electrolytes, and (b, d, f, h) polarization results at a 

positive overpotential of 10 mV 
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Fig. S15 Snapshots of (a) LP, (b) LP-1T-5F solvation structure from MD simulations 

Fig. S16 The thermal conductivity of Li metal and graphite electrodes 

The value of Li metal is reported by Gregg E. Childs1 and that of graphite electrode is 

measured by the hot disk method. 

Fig. S17 (a) Ar adsorption-desorption isotherms, and (b) corresponding specific surface 

area values for various materials 
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Fig. S18 Electrochemically self-charging behavior of LG-LTECs and output voltage of 

the LG-LTECs at different ∆T 

Fig. S19 (a) Thermopower of LP-1T-5F based electrolyte with different electrode and 

(b) fractional contribution to thermopower of LG-LTECs

Fig. S20 Charge/discharge behavior of LG-LTECs under galvanostatic and/or thermal 

hybrid modes 
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Fig. S21 Output power with different external resistors under ΔT=30 K 

Table S1 Summary of various electrolyte of reported in the literatures 

Electrolyte Electrode 
Se 

(mV K−1) 

P 

(W m−2) 

E 

(J m−2) 
Refs. 

LP-1T-5F Li metal//Graphite 13.8 3.59 607.96 
This 

work 

LP-1T-5F Li metal//Li metal 1.35 0.0115 27.26 
This 

work 

PhNP/T-PhNP Cu//Cu 26.5 0.0208 8.33 S2 

Gelatin-KCl-

FeCN4–/3– 
Cu|Au//Cu|Au 17.0 0.042 12.8 S3 

PANI-

PAAMPSA-PA 
Ag//Ag 8.1 2.38×10−6 7.14×10−4 S4 

PVDF-HFP-

EMIM:DCA 
SWNT//SWNT 26.1 0.84×10−6 2.23×10−4 S5 

PEO-NaOH CNT|Au//CNT|Au 10 / 6×10−3 S6 

PSS-H-GO Metal//Metal 12.6 / 2 S7 

PPP-SiO2 SWCNT//SWCNT 14.8 1.8×10−4 0.25 S8 
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