Supporting Information for

Plate-to-layer Bi₂MoO₆/MXene Heterostructured Anode for Lithium

Ion Batteries

Peng Zhang¹, Danjun Wang^{1, 2}, Qizhen Zhu^{1, *}, Ning Sun¹, Feng Fu^{2, *}, Bin Xu^{1, *}

¹State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

²Shaanxi Key Laboratory of Chemical Reaction Engineering, School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, People's Republic of China

*Corresponding authors. E-mail: <u>binxumail@163.com</u> (B. Xu), <u>Zhuqz@mail.buct.edu.cn</u> (Q. Zhu), <u>yadxfufeng@126.com</u> (F. Fu)

Supplementary Figures and Table

Fig. S1 a SEM image, b XRD pattern of the Ti₃AlC₂ MAX phase

Fig. S2 AFM image of the pristine MXene nanosheets

Fig. S3 a, b TEM images, c HRTEM image of the pristine Bi₂MoO₆ nanoplates

Fig. S4 a EDS and **b** corresponding elemental mapping images of the Bi₂MoO₆ nanoplates

Fig. S5 Zeta potentials of the as-prepared samples

Fig. S6 XPS survey of Bi₂MoO₆/MXene-30% and Bi₂MoO₆

Fig. S7 CV curves of a Bi₂MoO₆/MXene-50%, b Bi₂MoO₆/MXene-10%, and c Bi₂MoO₆

Fig. S8 Charge/discharge profiles of **a** Bi₂MoO₆/MXene-50%, **b** Bi₂MoO₆/MXene-10%, and **c** Bi₂MoO₆

Fig. S9 Charge/discharge profiles of the Bi2MoO6 electrode at different current rates

Fig. S10 SEM images of the $Bi_2MoO_6/MXene-30\%$ electrode: **a**, **b** before cycling; **c**, **d** after 1000 cycles at 1 A g⁻¹

Fig. S11 GITT profiles of the Bi_2MoO_6 (current pulse at 100 mA g⁻¹ for 30 min followed by 1 h relaxation)

Fig. S12 a, b EIS spectra of the $Bi_2MoO_6/MXene-50\%$, $Bi_2MoO_6/MXene-30\%$, $Bi_2MoO_6/MXene-10\%$, and Bi_2MoO_6 electrodes. Normalized real and imaginary capacities of the c $Bi_2MoO_6/MXene-30\%$ and d Bi_2MoO_6 electrodes

The real C'(ω) and imaginary C"(ω) capacities could be calculated through Eqs. 1 and 2:

$$C'(\omega) = \frac{-Z''(\omega)}{\omega |Z(\omega)|^2} \tag{1}$$

$$\mathcal{C}''(\omega) = \frac{Z''(\omega)}{\omega |Z(\omega)|^2} \tag{2}$$

where $Z'(\omega)$ and $Z''(\omega)$ are the real and imaginary parts of the complex impedance Z (ω), respectively. The angular frequency (ω) is calculated by $\omega = 2\pi f$.

Fig. S13 CV profile measured at **a** 0.2 mV s⁻¹, **b** 0.3 mV s⁻¹, **c** 0.5 mV s⁻¹, **d** 2 mV s⁻¹, and **e** 3 mV s⁻¹ with shaped area displaying the capacitive contribution

	Bi ₂ MoO ₆ /MXene- 50%	Bi ₂ MoO ₆ /MXene- 30%	Bi ₂ MoO ₆ /MXene- 10%	Bi2MoO6
$R_{\rm s}/\Omega$	3.49	3.08	3.76	4.18
$R_{\rm ct}/\Omega$	115.8	105.9	121.0	148.9

Table S1 Fitting EIS data of the as-prepared samples