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Supplementary Figures

Elastic property

! areal strain 300% areal strain 1500% areal strain

2500% areal strain

Fig. S1 Highly Expandable PGCL polymer. Sequential images of expansion test of
PGCL (55:45) film (100 um, thick) with pneumatic approaches
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Fig. S2 Degradation mechanism of PGCL polymers with different contents. a Chemical
reaction of hydrolysis of PGCL. b Schematic illustration of changes in polymer structure
during degradation of GA segments
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Fig. S3 Investigation of water uptake and pH effect of solution in degradation profiles
with different PGCL films. a Water uptake profile of different PGCL films immersed in
PBS solution at 37 <C. Changes of weight with respect to immersion time in acidic,
neutral, and basic solutions: b PGCL (70:30), ¢ PGCL (55:45), and d PGCL (15:85)
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Fig. S4 Elastic, degradable encapsulant of PGCL film. a Cross-sectional illustration of
encapsulation test set-up. b Encapsulation test of a serpentine-designed magnesium device
in no applied strain (left) and applied 50% of strain (right) at room temperature. Each water
reservoirs were attached on marked red square region. ¢ Measurements of resistance
changes of Mg device with different thickness of PGCL (55:45) films. d Encapsulation
performances of different PGCL films. e Enhanced functional lifetime profiles of the
device encapsulated by PGCL and SiO2 (300 nm thick) passivation layer
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Fig. S5 Resilience and toughness of PGCL film. a Strain-stress curve in the initial
condition of different PGCLs. b Toughness test images of PGCL (55:45) film loading with

100 g weights
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Fig. S6 Mechanical evaluation of PGCL films. Experimental results of cyclic tensile
loading-unloading test of a PGCL (70:30) and b PGCL (15:85) films. c Calculated
young’s modulus with respect to glycolide contents in copolymers
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Fig. S7 Physical, optical, chemical characterization of PGCL films. a Thermal
investigation of PGCL showing glass transition temperature and melting temperature of
each PGCL films. b Transparency measurement of PGCL films in visible light region. ¢

Infrared spectrum of P

GCL polymers to analyse chemical bonding ratio in copolymers
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Fig. S8 Degradable conductive elastomer. a Addition effect with D-sorbitol ratio with
respect to conductivity and stretchability in conductive composite at PGCL (55:45) :
(PEDOT:PSS) = 5:5. b Evaluation of conductivity and stretchability with varied mixing
ratio between PGCL and PEDOT:PSS. c Strain dependent resistance changes of the
degradable conductive elastomeric thread. d Optical images of stretching degradable
conductive elastomer applied with strain up to 50%
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Fig. S9 Surface analysis of degradable conductive elastomer. a Cross-sectional SEM
images of conductive composite and b flat surface image of the composite film
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Fig. S10 Mechanical test of conductive composite. a Bending image of the conductive
composite and b measured repeated bending test results to show changes in optical power
of blue LED with varied bending radius
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Fig. S11 Degradable Fig. motion sensor. a Strain sensing test of the attached device when
flexing human’s index finger with different bending angle. b Time-lapsed resistance
profiles in response to diverse bending angle of human finger
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Fig. S12 Degradable elastic heating thread. a Infrared images of heating performance
with different applying voltages. b Repetitive on/off test of heating thread. ¢
Performance maintenance experiment in heating thread with mechanical deformation
(strain, ~50%)
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Fig. S13 Changes in conductivity of heating thread immersed in PBS solution at 37 <C
Performance profile of heating thread w/o and w/ periodic heating for 2 weeks
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Fig. S14 Fabrication of medical electronic degradable suture. Schematic illustration of

fabrication process of MED-suture
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Fig. S15 Fabricated MED-suture. a SEM images showing microstructure of MED-suture
half layer (top view) and b whole structure of MED-suture (cross-sectional view)
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Fig. S16 Block diagram of wireless module. Circuit diagram for real-time monitoring,
transmitting measured data and on-demand drug release
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Fig. S17 Characterization of embedded temperature sensor and heater. a Optical image of
temperature sensor of MED-suture. b Measured thermal sensitivity of temperature sensor
between room temperature and body temperature. ¢ Temperature profile in sensor of stable
monitoring operation temperature of heat thread with deformation. d Reliable temperature
sensor and heating thread performance even in repeated bending test of MED-suture
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Fig. S18 Soft, elastic performance of MED-suture. a Mechanical tensile test images of
MED-suture with 50% strain. b Comparative mechanical characteristics of
commercialized absorbable sutures and MED-suture
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Fig. S19 Thermally induced drug release of MED-suture. a Molecular structure of
ketorolac tromethamine as an anti-inflammatory agent. b Optical calibration of the drug
concentration in the solution. ¢ Drug release behaviors of drug loaded PGCL with
different release conditions for 60 minutes. d Surface analysis of drug eluting layer after
active and passive release
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Fig. S20 Ex vivo results of controllable drug elution. Comparative resected porcine tissue
images of control group (no thermal triggering) and repeated drug release group
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