Supporting Information for

Construction of Electrocatalytic and Heat-Resistance Self-Supporting Electrodes for High-Performance Lithium-Sulfur Batteries

Xuemei Zhang^{1, +}, Yunhong Wei^{1, +}, Boya Wang², Mei Wang², Yun Zhang^{2, *}, Qian Wang², Hao Wu^{1, *}

¹College of Materials Science and Engineering, Sichuan University, Chengdu 610064, People's Republic of China

²Department of Advanced Energy Materials, Sichuan University, Chengdu 610064,People's Republic of China

⁺These authors contributed equally to this work

*Corresponding authors. E-mail: <u>y_zhang@scu.edu.cn</u> (Yun Zhang); <u>hao.wu@scu.edu.cn</u> (Hao Wu)

Supplementary Figures and Tables

Fig. S1 EDX spectra of NCF

Fig. S2 SEM images of ZIF-67 precursor

Fig. S3 XRD patterns of simulated CTNF and CTNF/ZIF-67

Fig. S4 EDX spectra of CTNF/CoS2-CNA

Fig. S5 a N_2 adsorption–desorption isotherm curve and b Pore size distribution of CTNF@CoS₂-CNA and CTNF@CoS₂-CNA/S (~3 mg cm⁻²)

Fig. S6 TGA curves recorded for **a** CTNF@CoS₂-CNA under air flow with the heating rate 10 °C min⁻¹; **b** CTNF@CoS₂-CNA/S under nitrogen flow with the heating rate 10 °C min⁻¹

In addition to the stage at below 100°C caused by the evaporation of H₂O, there are two tages of weight loss for CTNF@CoS₂-CNA. The first stage at below 450 °C is attributed to the oxidation of CoS₂ in the composite [S1, S2]. This is due to the complex reactions including the formation of Co₃S₄, CoO and CoSO₄ intermediate products accompanied with the oxidation of carbon. The second continuous weight loss in the range of 450-760 °C results from the combustion of total carbon (CNT, CF, and MOF-derived carbon) in CTNF/CoS₂-CNA. Nevertheless, all the intermediates would transform into Co₃O₄ as the temperature increased to 850 °C [S3]. Thus, the total reaction can be simply written as Eqs. S1 and S2:

$$3CoS_{2(s)}+8O_{2(g)}=Co_{3}O_{4(s)}+6SO_{2(g)}$$
 (S1)

$$C_{(s)}+O_{2(g)}=CO_{2(g)}$$
 (S2)

According to the weight of the Co_3O_4 , it can be calculated the weight of the CoS_2 . Eliminating the effect of H₂O, the mass content of Co_3O_4 is calculated as 12.7/(100%-7.8%)=13.8%. Therefore, on the basis of the reaction (S1), the mass content of CoS_2 in CTNF/CoS₂-CNA is around 20.9%.

Fig. S7 CV curve of CTNF@CoS2-CNA matrix

Fig. S8 Comparison of electrochemical impedance spectra after 100 charge-discharge cycles at room temperature

Fig. S9 a Rate performance from 0.1 C to 2 C at room temperature; **b** discharge/charge profiles at different rates

Fig. S10 Cycling performance comparison of CTNF@CoS₂-CNA/S tested at room/high temperature with different current density: **a** 1 C and **b** 2 C

Fig. S11 SEM images of CTNF@CoS₂-CNA/S electrode after cycled at different temperature: **a-c** room temperature and **d-f** high temperature

Fig. S12 a Schematic diagram of soft-packed CTNF@CoS₂-CNA/S battery; **b** Photograph of the soft-packed battery at charged state; **c-f** The CTNF@CoS₂-CNA/S battery used to light "Li" model LEDs after bending at 0°, 90°, 180°, and recover to 0°

Fig. S13 Self-discharge rate tests of three electrodes with the standing time of 10 days after the 50 cycles at 0.2 C

Fig. S14 Catalytic effects of electrode materials on the lithium polysulfide conversion: CV curves of symmetric cells of CTNF, CTNF@Co-CNA and CTNF@CoS₂-CNA electrodes in the electrolyte with 0.12 M Li₂S₆ at scan rate of 3 mV s⁻¹

Samples	Compounds	Electronic conductivity (S cm ⁻¹)		
Without sulfur	NCF	0.0011		
	CTNF	0.0517		
	CTNF@Co-CNA	0.0837		
	CTNF@CoS2-CNA	0.1596		
With sulfur	CTNF@ Co-CAN/S	0.0365		
	CTNF@ CoS2-CAN/S	0.0571		

Table S2 Comparison of electrical conductivity with previously reported sulfur-based
cathodes in LSBs

Materials	Compound	Electronic conductivity (S cm ⁻¹)	Refs.
Metal oxides or	Fe ₂ O ₃	$2.2 imes 10^{-6}$	[S4]
carbonaceous metal	Fe ₂ O ₃ -graphene	0.156	[S5]
oxides	NiO-GNS	1.4×10^{-3}	[S6]
Metal sulfides or carbonaceous metal sulfides	SnS ₂	1.0×10^{-3}	[S4]
	SnS ₂ -RGO	0.037	[S7]
	CoS ₂ /RGO-CNT	$7.2 imes 10^{-4}$	[S8]
	CTNF@CoS2-CNA	0.1596	This work

Table S3 The porous structure parameters of the CTNF@CoS2-CNAand
CTNF@CoS2-CNA/S

Samples	BET surface area (m ² g ⁻¹)	Pore volume (cm ³ g ⁻¹)	Average pore size (nm)
CTNF@CoS2-CNA	39.6706	0.4025	20.29
CTNF@CoS2-CNA/S	5.1812	0.0465	17.95

Table S4 The R_{ct} values of cells before and after cycling according to equivalent circuit fitting

Samples	CTNF	CTNF@Co-CNA	CTNF@CoS2-CNA
Fresh cell	77.83	53.2	29.21
After cycling	9.67	8.77	6.78

Table S5 Comparison of electrochemical performance with previously reported sulfur-based cathodes in LSBs at room temperature

Electrode materials	Capacity at different rates (mAh g ⁻¹)			Capacity after cycling	Cycles	Sulfur (mg cm ⁻²)	Refs.
	Low rate	1 C 2 C		$(mAh g^{-1})$			
Carbon/S	750	600	400	1 C · 662	100	1.8	[\$9]
	(0.5 C)			1 0, 002	100		[07]
HC-TiO ₂ /S	1050	716	621	1 C; 691	300	1.2-1.8	[S10]
	(0.1 C)	,10	021		500		
CeO2/MMNC-S	980	680	520	0.5 C; 650	200	3.4	[\$11]
	(0.2 C)	000	520				[511]
50% MWCNTO@TIO. S	900	360	300	0.1 C; 679	50	2.0	[\$12]
	(0.1 C)	500					[012]
S@C@MnO2	1080	985	800	0.5 C; 712	300	3.0	[\$13]
	(0.5 C)	,00					[013]
	950	1	/	0.1 C; 892	200	2.8	[\$14]
	(0.2 C)						[517]
rGO/ppy/S	900	828	747	1 C; 770	100	1.32	[\$15]
	(0.5 C)						[515]
ANC/S-70	970	800	750	1 C; 700	500	1.0	[\$16]
	(0.2 C)	000			500		[910]
CTNE@CoSo CNA/S	993	905	698	1 C; 851	100	3.48	This
CINF COS2-CINA/S	(0.2 C)	005				(3.10)	work

Sulfur host materials	Areal mass loading	Current rate /Capacity (mAh g ⁻¹) 0.1 C 2 C		Cycle number	Cycle capacity (mAh g ⁻¹)	Refs.
CTNF@CoS2-C NA	3.02	1029	698	300	505 (1 C)	This work
Co ₉ S ₈ /C nanopolyhedra	3.0	950	/	200	790 (0.5 C)	[S17]
CoS ₂ -NC	1.3	1060	708	250	600 (1 C)	[S18]
Co ₃ S ₄ nanotubes	Wt:79.3%	1040	608	200	815 (0.5 C)	[S19]
S/GN–CNT composite	1.3–1.6	1045	408	500	363 (1 C)	[S20]
CoS@PPy/S	1.4–1.6	1000 (0.2 C)	536	500	700 (0.2 C)	[S21]
graphene- like Co ₉ S ₈	1.5	/	863	400	512 (0.5 C)	[S22]

Table S6 Comparison of the electrochemical performance of previously reported cobalt

 sulfide nanocomposite electrode materials with our work

Supplementary References

- [S1]Z. Chen, R. Wu, M. Liu, H. Wang, H. Xu et al., General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries. Adv. Funct. Mater. 27(38), 1702046 (2017). https://doi.org/10.1002/adfm.201702046
- [S2]C. Xu, Y. Jing, J. He, K. Zhou, Y. Chen, Q. Li, J. Lin, W. Zhang, Self-assembled interwoven CoS₂/CNTs/graphene architecture as anode for high-performance lithium ion batteries. J. Alloy. Compd. **708**, 1178-1183 (2017). https://doi.org/10.1016/j.jallcom.2017.03.099
- [S3]B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou, X. Wang, A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1(1), 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
- [S4]Y. Zhao, L.P. Wang, M.T. Sougrati, Z. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 7(9), 1601424 (2017). https://doi.org/10.1002/aenm.201601424
- [S5]J. Kan, Y. Wang, Large and fast reversible Li-ion storages in Fe₂O₃-graphene sheet-on-sheet sandwich-like nanocomposites. Sci. Rep. 3, 3502 (2013). https://doi.org/10.1038/srep03502

- [S6]Y. Zou, Y. Wang, NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 3(6), 2615-2620 (2011). https://doi.org/10.1039/c1nr10070j
- [S7]P. Chen, Y. Su, H. Liu, Y. Wang, Interconnected tin disulfide nanosheets grown on graphene for Li-ion storage and photocatalytic applications. ACS Appl. Mater. Interfaces 5(22), 12073-12082 (2013). https://doi.org/10.1021/am403905x
- [S8]S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan et al., Cobalt sulfide nanosheet/graphene/carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew. Chem. Int. Ed. 53(46), 12594-12599 (2014). https://doi.org/10.1002/anie.201408876
- [S9]J. Wu, J. Hu, K. Song, J. Xu, H. Gao, Spirulina-derived nitrogen-doped porous carbon as carbon/S composite cathodes for high cyclability lithium-sulphur batteries. J. Alloy. Compd. 704, 1-6 (2017). https://doi.org/10.1016/j.jallcom.2017.02.052
- [S10]J. Yao, T. Mei, Z. Cui, Z. Yu, K. Xu, X. Wang, Hollow carbon spheres with TiO2 encapsulated sulfur and polysulfides for long-cycle lithium-sulfur batteries. Chem. Eng. J. 330, 644-650 (2017). https://doi.org/10.1016/j.cej.2017.08.006
- [S11]L. Ma, R. Chen, G. Zhu, Y. Hu, Y. Wang, T. Chen, J. Liu, Z. Jin, Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 11(7), 7274-7283 (2017). https://doi.org/10.1021/acsnano.7b03227
- [S12]X. He, H. Hou, X. Yuan, L. Huang, J. Hu et al., Electrocatalytic activity of lithium polysulfides adsorbed into porous TiO₂ coated MWCNTs hybrid structure for lithium-sulfur batteries. Sci. Rep. 7, 40679 (2017). https://doi.org/10.1038/srep40679
- [S13]L. Ni, G. Zhao, G. Yang, G. Niu, M. Chen, G. Diao, Dual core-shell-structured S@C@MnO₂ nanocomposite for highly stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces 9(40), 34793-34803 (2017). https://doi.org/10.1021/acsami.7b07996
- [S14]F. Wu, Y.S. Ye, J.Q. Huang, T. Zhao, J. Qian et al., Sulfur nanodots stitched in 2D "Bubble-Like" interconnected carbon fabric as reversibility-enhanced cathodes for lithium-sulfur batteries. ACS Nano 11(5), 4694-4702 (2017). https://doi.org/10.1021/acsnano.7b00596
- [S15]W. Qian, Q. Gao, H. Zhang, W. Tian, Z. Li, Y. Tan, Crosslinked polypyrrole grafted reduced graphene oxide-sulfur nanocomposite cathode for high performance Li-S Battery. Electrochim. Acta 235, 32-41 (2017). https://doi.org/10.1016/j.electacta.2017.03.063

- [S16]X. Wu, L. Fan, M. Wang, J. Cheng, H. Wu, B. Guan, N. Zhang, K. Sun, Long-life lithium-sulfur battery derived from nori-based nitrogen and oxygen dual-doped 3D hierarchical biochar. ACS Appl. Mater. Interfaces 9(22), 18889-18896 (2017). https://doi.org/10.1021/acsami.7b04583
- [S17]T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu et al., Metallic and polar Co₉S₈ inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium–sulfur batteries. Nano Energy 38, 239-248 (2017). https://doi.org/10.1016/j.nanoen.2017.05.064
- [S18]J. Zhou, N. Lin, W.I. Cai, C. Guo, K. Zhang, J. Zhou, Y. Zhu, Y. Qian, Synthesis of S/CoS₂ nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium-sulfur batteries. Electrochim. Acta 218, 243-251 (2016). https://doi.org/10.1016/j.electacta.2016.09.130
- [S19]J. Pu, Z. Shen, J. Zheng, W. Wu, C. Zhu et al., Multifunctional Co₃S₄@sulfur nanotubes for enhanced lithium-sulfur battery performance. Nano Energy **37**, 7-14 (2017). https://doi.org/10.1016/j.nanoen.2017.05.009
- [S20]Z. Zhang, L.-L. Kong, S. Liu, G.-R. Li, X.-P. Gao, A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 7(11), 1602543 (2017). https://doi.org/10.1002/aenm.201602543
- [S21]Y. Song, H. Wang, W. Yu, J. Wang, G. Liu et al., Synergistic stabilizing lithium sulfur battery via nanocoating polypyrrole on cobalt sulfide nanobox. J. Power Sources 405, 51-60 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.032
- [S22]Z.W. Seh, J.H. Yu, W. Li, P.C. Hsu, H. Wang et al., Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 5, 5017 (2014). https://doi.org/10.1038/ncomms6017