Supporting Information for

Covalently Bonded Ni Sites in Black Phosphorene with Electron Redistribution for Efficient Metal-Lightweighted Water Electrolysis

Wenfang Zhai¹, Ya Chen¹, Yaoda Liu¹, Yuanyuan Ma², Paranthaman Vijayakumar³ Yuanbin Qin¹, Yongquan Qu², * and Zhengfei Dai¹, *

¹State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, P. R. China

²School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China

³SSN Research Centre, SSN College of Engineering, Tamil Nadu 603110, India

*Corresponding authors. E-mail: <u>sensdai@mail.xjtu.edu.cn</u> (Z. D.); <u>yongquan@nwpu.edu.cn</u> (Y. Q.)

Note S1 Density Functional Theory Calculation

DFT was used to study the reaction energy barriers of BP and Ni-BP-6 during reaction process for overall water splitting. Device Studio program provides a number of functions for performing visualization and modeling [S1].The DFT calculations were carried out based on projector augmented-wave (PAW) method and the Vienna Ab Initio Simulation Package (VASP) code, employing Perdew-Burke-Ernzerhof (PBE) and generalized gradient approximation (GGA) [S2-S4]. A $6\times4\times1$ supercell of black phosphorus (0 2 0) was used kpoints grid of $3\times3\times1$ and $6\times6\times1$ for structure optimization and density of states (DOS) calculations, respectively [S5]. The cutoff energy was 450 eV and the convergence of energy and forces were 10^{-5} eV and 0.01 eV Å⁻¹.

S1.1 Density Functional Theory Calculation of OER Progress

In an alkaline environment, OER calculation could occur in the following four-electron pathways:

$OH^- + {}^* \leftrightarrow$	$^{*}OH + e^{-}$	((S1)
			< / /

$$^{*}OH + OH^{-} \leftrightarrow ^{*}O + H_{2}O + e^{-}$$
(S2)

$$^{*}O + OH^{-} \leftrightarrow ^{*}OOH + e^{-}$$
(S3)

$$^{*}OOH \leftrightarrow O_2 + ^{*} + H_2O + e^{-} \tag{S4}$$

where * represents the active site on the surface, the adsorption energy for adsorbates ΔE_{ads} for OOH*, O*, and OH* can be calculated by the following equations:

$$\Delta EO^* = E(O^*) - E(^*) - (EH_2O - EH_2)$$
(S5)

$$\Delta EOH^* = E(OH^*) - E(^*) - (EH_2O - 1/2EH_2)$$
(S6)

$$\Delta EOOH^* = E(OOH^*) - E(^*) - (2EH_2O - 3/2EH_2)$$
(S7)

The adsorption free energy for adsorbates Δ Gads can be calculated by the following equation:

$$AG_{ads} = \Delta E_{ads} + \Delta ZPE - T\Delta S \tag{S8}$$

 Δ ZPE-T Δ S is used as energy correction values, and the results of the corresponding steps are listed in Tables S5-S6.

S1.2 Density Functional Theory Calculation of HER Progress

The free energy of hydrogen adsorption (ΔG_{H^*}) is defined as

$$\Delta G_{H^*} = \Delta E_{H^*} + \Delta E_{ZPE} - T\Delta S_H \tag{S9}$$

Where ΔE_{H^*} is the adsorption energy of hydrogen, ΔE_{ZPE} is the zero-point energy, T is for temperature and ΔS_H is the entropy differences of H between the adsorbed hydrogen and gas phase hydrogen (H₂). The H* denotes the catalytic active site for hydrogen adsorption. ΔE_{H^*} is defined as

$$\Delta E_{H^*} = E(Surf + H^*) - E(Surf) - 1/2E(H_2)$$
(S10)

Where $E(Surf+H^*)$, E(Surf) and $E(H_2)$ represent total energies of the electrocatalyst with adsorbed hydrogen atom, the catalyst itself and H₂, respectively.

Under standard conditions, the value of ΔE_{ZPE} -T ΔS_H is chosed as the reference. Thus, equation (S9) can be abbreviated as equation (S11)

$$\Delta G_{H^*} = \Delta E_{H^*} + 0.24 \tag{S11}$$

In order to match the experimental and theoretical calculations more closely, H atoms adsorbed on the surface of BP and Ni-BP-6 were used to calculate their (ΔG_{H^*}). The detailed data of (ΔG_{H^*}) of electrocatalyst can be found in Table S7.

Note S2 XAFS Spectra Test

XAFS spectra at the Ni K-edge (8333 eV) was carried out on the sample at 21A X-ray nanodiffraction beamline of Taiwan Photon Source (TPS), National Synchrotron Radiation Research Center (NSRRC). This beamline adopted 4-bounce channel-cut Si (111) monochromator for mono-beam X-ray nanodiffraction and X-ray absorption spectroscopy. The end-station equipped with three ionization chambers and S3 Lytle/SDD detector after the focusing position of KB mirror for transmission and fluorescence mode X-ray absorption spectroscopy. The photon flux on the sample is range from $1 \times 10^{11} \sim 3 \times 10^{9}$ photon/sec for X-ray energy from 6-27 keV. The data of XANES and EXAFS were analyzed by Athena software [S6]. The Matlab source code of Wavelet transform (WT) referred Muñoz M. and co-workers' code [S7, S8].

Supplementary Figures and Tables

Fig. S1 Electrochemical exfoliation procedure from bulk BP to BP NSs

Fig. S2 SEM images: (a) Ni-BP-3, (b) Ni-BP-6, (c) Ni-BP-9

Fig. S3 XRD patterns of different samples

Fig. S4 The SAED pattern of BP NSs

Fig. S5 The SAED pattern of Ni-BP-6

Fig. S6 TEM characterizations of Ni-BP-3: (a, b) TEM images, (c) HRTEM image, (d) SAED pattern, and (e) EDS mapping images

Fig. S7 TEM characterizations of Ni-BP-9: (a, b) TEM images, (c) HRTEM image, (d) SAED pattern, and (e) EDS mapping images

Fig. S8 FTIR spectra of samples

Fig. S9 F 1s XPS profiles of (a) BP NSs, (b) Ni-BP-3, (c) Ni-BP-6, (d) Ni-BP-9

Nano-Micro Letters

Fig. S10 B 1s XPS profiles of (a) BP NSs, (b) Ni-BP-3, (c) Ni-BP-6, (d) Ni-BP-9

Fig. S11 Ni K-edge EXAFS (points) and curvefit (line) for Ni-BP-6, shown in R-space (FT magnitude and imaginary component). The data are k^3 -weighted and not phase-corrected. Note: the detailed fitting parameters are given in Table S4.

Fig. S12 Wavelet transform for the k³-weighted EXAFS signals: (a) Ni foil and (b) NiO

Fig. S13 Bar plots of OER overpotentials at 10 mA cm⁻² of different electrocatalysts

Fig. S14 The electrochemical impedance spectra of BP NSs, Ni-BP-3, Ni-BP-6, and Ni-BP-9

Fig. S15 LSV curves of OER catalysts normalized by Ni loading on electrodes

Fig. S16 CV curves for OER ECSA calculations of (**a**) BP NSs, (**b**) Ni-BP-3, (**c**) Ni-BP-6, (**d**) Ni-BP-9. (**e**) The double layer capacitance of catalysts

Fig. S17 ECSA-normalized LSV curves of OER catalysts

Fig. S18 Bar plots of HER overpotentials at 10 mA cm⁻² of different electrocatalysts

Fig. S19 LSV curves of HER catalysts normalized by Ni loading on electrodes

Fig. S20 CV curves for HER ECSA calculations of (**a**) BP NSs, (**b**) Ni-BP-3, (**c**) Ni-BP-6, (**d**) Ni-BP-9. (**e**)The double layer capacitance of catalysts

Fig. S21 ECSA-normalized LSV curves of HER catalysts

Fig. S22 (a) OER and (b) HER LSV curves of Ni-BP-6 in 1.0 M KOH (prepared by the 99.99% KOH chemical); (c) SEM and (d-f) EDS elemental mapping images of Ni-BP-6 catalyst after OER test

Fig. S23 (a) The OER LSV curve before and after 1000 CV cycles. (b) The OER i-t curve of Ni-BP-6 in 1.0 M KOH (prepared by the 99.99% KOH chemical)

Fig. S24 Digital picture of the actual operation of the in-situ Raman instrument

Fig. S25 DFT calculation models of the catalysts. (**a**) BP NSs. (**b**) Ni-BP-6. The brown and blue atoms represent P and Ni, respectively

Fig. S26 DOS of BP NSs

Fig. S27 The work functions of (a) BP NSs. (b) Ni₄

Fig. S28 The OER catalytic mechanisms of (**a**) BP NSs and (**b**) Ni-BP-6. where M means the active centers of catalyst

Fig. S29 OER free energy diagram on BP NSs and Ni-BP-6 at U=1.23V

Fig. S30 Reaction energy diagram of water dissociation on BP NSs and Ni-BP-6. The initial state (H₂O), the transition state (TS) and the final state (H+OH) are indicated in the diagram with the corresponding energy barrier on the two surfaces

Fig. S31 H₂O adsorption model and energy of Ni-BP-3 and Ni-BP-9. The insets from left to right represent the models of Ni-BP-3 and Ni-BP-9 with the adsorption of H₂O

Fig. S32 Optical contact angle measurements of (**a**) BP NSs, (**b**) Ni-BP-3, (**c**) Ni-BP-6, and (**d**) Ni-BP-9

Fig. S33 Theoretically profiles for the O-BP and O-Ni-BP-6 structures. (**a**) DFT calculation models of O-BP (top) and O-Ni-BP-6 (bottom). (**b**) The band structure of O-BP. (**c**) The band structure of O-Ni-BP-6. (**d**) The DOS of O-BP. (**e**) The DOS of O-Ni-BP-6. (**f**) The OER catalytic mechanism of O-Ni-BP-6. where M means the active centers of catalyst. (**g**) The free energy diagram of the OER process on O-BP and O-Ni-BP-6 at U=0 V. (**h**) Hydrogen adsorption Gibbs free energy of O-BP and O-Ni-BP-6. The insets from left to right show the O-BP and O-Ni-BP-6 with the adsorption of hydrogen. (**i**) H₂O adsorption model and energy of O-BP NSs and O-Ni-BP-6. The insets from left to right show the O-BP NSs and O-Ni-BP-6 with the adsorption of H₂O

Sample	Ni (µg/mL)	P (µg/mL)	Weight ratios: M _{Ni} :M _{Ni+P}
Ni-BP-3	6.7	978.0	0.68 <i>wt</i> %
Ni-BP-6	14.8	967.3	1.5 <i>wt</i> %
Ni-BP-9	19.6	960.2	2.0 <i>wt</i> %

Sample	P-O peak (eV)	P _{1/2} peak (eV)	P _{3/2} peak (eV)
BP NSs	134.22	130.65	129.81
Ni-BP-3	133.65	130.23	129.38
Ni-BP-6	133.86	130.27	129.4
Ni-BP-9	133.59	130.25	129.4
Ni-BP-6-after stability	133.43	130.95	130.1

Table S2 The XPS P 2p peak positions of BP NSs, Ni-BP-3, Ni-BP-6, Ni-BP-9, and Ni-BP-6after stability testing

Table S3 The XPS Ni 2p peaks of Ni-BP-3, Ni-BP-6, Ni-BP-9, and Ni-BP-6-after stabilitytesting

Co In	Ni _{1/2} peak (eV)		Ni _{3/2} peak (eV)		
Sample	Sat.	Ni ³⁺	Ni ²⁺	Sat.	Ni ³⁺	Ni ²⁺
Ni-BP-3	878.9	-	874.0	860.6	-	856.3
Ni-BP-6	879.9	-	874.7	861.6	-	857.0
Ni-BP-9	879.0	-	874.1	860.3	-	856.3
Ni-BP-6-after stability	881.7	878.3	874.0	863.2	860.6	856.3

 Table S4 Curvefit parameters^a for Ni K-edge EXAFS for the Ni-BP-6 catalyst

Path	Ν	R/Å	$\sigma^2 / \mathring{A}^2$
Ni-P	2 ^b	2.27	0.0042
Ni-Ni	3 ^b	2.46	0.0048

 ${}^{a}S_{0}{}^{2}$ was fitting as 0.78 for Ni K-edge. The inner potential correction (ΔE_{0}) are -7.71 eV. The number of variable parameters is 5, out of a total 7.4 independent data points.

^bThese coordination were constrained as N(Ni-P) = 2 and N(Ni-Ni) = 3 based on the Ni-BP-6 structure of DFT calculation.

Table S5 P and Ni contents in the Ni-BP-6 and in the	e electrolyte after	i-t test by ICP-MS
--	---------------------	--------------------

Element	Concentration	Electrolyte volume	Total content
P in electrolyte	0.2963 µg mL ⁻¹	100 mL	0.02963 mg
Ni in electrolyte	2.314 ng mL ⁻¹	100 mL	0.2314 µg

Electrocatalysts	Current density (mA cm ⁻²)	Potential	Stability (hour)	Refs.
Ni-BP-6	10	1.605 V	50	This
Pt/C RuO ₂	10	1.621 V	10	work
O-vac. NiCo ₂ O ₄	10	1.61 V	50	[S9]
FeP	10	1.62 V	28@20mA cm ⁻²	[S10]
BP@FeCoMOF	10	1.63 V	10@1.70 V	[S11]
ZnCo ₂ S ₄	10	1.66 V	20	[S12]
NiCoSe S/BP	10	1.67 V	10	[S13]
MoP@Ni ₃ P	10	1.67 V	45@1.65 V	[S14]
Co-Mo ₂ C-CNx-2	10	1.68 V	20@1.69 V	[S15]
FeCo/Co ₂ P	10	1.68 V	~11.1	[S16]
NiCoO2@NiCo	10	1.688 V	12	[S17]

Table S6 Comparison of OWS catalytic performances and stability at 10 mA cm⁻² in 1.0 M KOH for Ni-BP-6|Ni-BP-6 with other reported OWS electrocatalysts

Note: O-vancancy (O-vac.).

Table S7 Fe impurity content in	different KOH chen	nicals by ICP-MS
---------------------------------	--------------------	------------------

Purity of 1 M KOH	Concentration	Electrolyte volume	Total content
95%	0.118 μg mL ⁻¹	100 mL	11.8 µg
99.99%	0.029 µg mL ⁻¹	100 mL	2.9 μg

Note: 5.6 g of KOH is required to configure 100 mL of 1 M KOH solution. According to Table S7, Fe impurities account for 0.21% in 95% KOH and 0.052% in 99.99% KOH.

Table S8 The OER step enegies of BP NSs

*	E(Surf+*) (eV)	Energy correction (eV)
Slab	-385.74509	0
-OH	-395.87023	0.2759
-0	-393.18567	0.015934
-ООН	-400.05989	0.297697
Slab	-385.74509	0

Table S9 The OER step enegies of Ni-BP-6

*	E(Surf+*) (eV)	Energy correction (eV)
Slab	-403.85336	0
-OH	-415.43564	0.275575
-0	-410.26542	-0.016153
-ООН	-418.64374	0.270674
Slab	-193.1032	0

Sample	E(Surf+H [*]) (eV)	E(Surf) (eV)	E(H ₂) (eV)	ΔG _H * (eV)
BP NSs	-383.375	-385.745	-6.8	1.27
Ni-BP-6	-400.346	-403.853	-6.8	0.13

Table S10 The ΔG_{H^*} of catalysts

Table S11 H₂O molecule adsorption energy on the different surface

Sample	E(Surf+H ₂ O*) (eV)	E(Surf) (eV)	E(H ₂ O) (eV)	ΔE (eV)
BP NSs	-400.10009	-385.74509	-14.22	-0.135
Ni-BP-3	-409.37793	-394.87993	-14.22	-0.278
Ni-BP-6	-418.56836	-403.85336	-14.22	-0.495
Ni-BP-9	-424.25443	-409.68043	-14.22	-0.354

Supplementary References

- [S1] D. S. Hongzhiwei Technology, Version 2021A, China. Available: https://iresearch.net.cn/cloudSoftware (2021).
- [S2] P. E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953-17979 (1994). <u>https://doi.org/10.1103/PhysRevB.50.17953</u>
- [S3] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169-11186 (1996). <u>https://doi.org/10.1103/PhysRevB.54.11169</u>
- [S4] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865-3868 (1996). <u>https://doi.org/10.1103/PhysRevLett.77.3865</u>
- [S5] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188-5192 (1976). <u>https://doi.org/10.1103/PhysRevB.13.5188</u>
- [S6] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12(4), 537-541 (2005). <u>https://doi.org/10.1107/S0909049505012719</u>
- [S7] M. Muñoz, P. Argoul, F. o. Farges, Continuous cauchy wavelet transform analyses of EXAFS spectra: a qualitative approach. Am. Mineral. 88(4), 694-700 (2003). <u>https://doi.org/10.2138/am-2003-0423</u>
- [S8] M. Muñoz, F. Farges, P. Argoul, Continuous cauchy wavelet transform of XAFS spectra. Phys. Scr. 2005(T115), 221 (2005). <u>https://doi.org/10.1238/Physica.Topical.115a00221</u>
- [S9] S. Peng, F. Gong, L. Li, D. Yu, D. Ji et al., Necklace-like multishelled hollow spinel oxides with oxygen vacancies for efficient water electrolysis. J. Am. Chem. Soc. 140(42), 13644-13653 (2018). <u>https://doi.org/10.1021/jacs.8b05134</u>
- [S10] G. Liu, Y. Wu, R. Yao, F. Zhao, Q. Zhao et al., Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting. Green

Energy Environ. 6(4), 496-505 (2021). <u>https://doi.org/10.1016/j.gee.2020.05.009</u>

- [S11] K. Ge, Y. Zhang, Y. Zhao, Z. Zhang, S. Wang et al., Room temperature preparation of two-dimensional black phosphorus@metal organic framework heterojunctions and their efficient overall water-splitting electrocatalytic reactions. ACS Appl. Mater. Interfaces 14(27), 31502-31509 (2022). <u>https://doi.org/10.1021/acsami.2c09335</u>
- [S12] G. Song, Z. Wang, J. Sun, J. Sun, D. Yuan et al., ZnCo₂S₄ nanosheet array anchored on nickel foam as electrocatalyst for electrochemical water splitting. Electrochem. Commun. 105, 106487 (2019). <u>https://doi.org/10.1016/j.elecom.2019.106487</u>
- [S13] T. Liang, S. Lenus, Y. Liu, Y. Chen, T. Sakthivel et al., Interface and M³⁺/M²⁺ valence dual-engineering on nickel cobalt sulfoselenide/black phosphorus heterostructure for efficient water splitting electrocatalysis. Energy Environ. Mater. 6(2), e12332 (2023). <u>https://doi.org/10.1002/eem2.12332</u>
- [S14] F. Wang, J. Chen, X. Qi, H. Yang, H. Jiang et al., Increased nucleation sites in nickel foam for the synthesis of MoP@Ni₃P/NF nanosheets for bifunctional water splitting. Appl. Surf. Sci. 481, 1403-1411 (2019). <u>https://doi.org/10.1016/j.apsusc.2019.03.200</u>
- [S15] P. Zhang, Y. Liu, T. Liang, E. H. Ang, X. Zhang et al., Nitrogen-doped carbon wrapped Co-Mo₂C dual Mott–Schottky nanosheets with large porosity for efficient water electrolysis. Appl. Catal. B-Environ. 284, 119738 (2021). <u>https://doi.org/10.1016/j.apcatb.2020.119738</u>
- [S16] Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang et al., High-performance trifunctional electrocatalysts based on FeCo/Co₂P hybrid nanoparticles for zinc–air battery and selfpowered overall water splitting. Adv. Energy Mater. 10(10), 1903854 (2020). <u>https://doi.org/10.1002/aenm.201903854</u>
- [S17] B. Zhang, X. Zhang, Y. Wei, L. Xia, C. Pi et al., General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a highly efficient bifunctional electrocatalyst for overall water splitting. J. Alloys Compd. 797, 1216-1223 (2019). <u>https://doi.org/10.1016/j.jallcom.2019.05.036</u>