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S1 Details for DFT Calculations and MD Simulations  

DFT simulations were conducted using CP2K and ORCA to calculate the adsorption 

energy and binding energy, respectively [S1]. Adsorption calculations were carried out using 

the CP2K package version-2022.1 using Gaussian Plane Wave (GPW) method implemented 

in the QUICKSTEP module [S2]. Perdew-Burke-Ernzerhof (PBE) [S3] exchange-

correlation (XC) functional with Grimme-D3 [S4,S5] dispersion correction method was 

employed. Both the double-zeta valence polarized (DZVP) sets and Goedecker-Teter-Hutter 

(GTH) pseudopotentials were adopted [S6-S8]. Plane wave and relative cut-offs were set to 

400 and 55 Ry, respectively. The inner and outer SCF convergence criteria were set to 2.0 × 

10-6 Ha. The Zn foil was simulated using a four layers of Zn (0 0 2) slab model with 5 × 5 

(39.97 Å × 39.97 Å) surface unit cell periodicity. In order to avoid interactions between 

periodic images, a vacuum distance of 20 Å was imposed between different layers. The 

geometrical optimizations were implemented at the Γ point for all surface structures. The 

bottom two layers of atoms were frozen while the top two were allowed to relax. Root mean 

square and maximum force convergence were set to 3.0 × 10-4 and 4.5 × 10-4 Ha·Å-1, 

respectively. 

The adsorption energies were calculated according to Eq. (S1), 

Eads = E(slab + adsorbate) - E(slab) - E(adsorbate)                                       (S1) 

where E(slab + adsorbate), E(slab), and E(adsorbate) are the calculated electronic energy of species 

adsorbed on the surface, the bare surface, and the gas-phase molecule, respectively. 

Binding energy calculations were carried out using ORCA (5.0.3). Geometry optimization 

was conducted at the B97-3c level of theory [S9] The single point calculations for the 

optimized geometries were performed to obtain accurate energies at the ωB97X-V/def2-

TZVP level of theory [S10-S12]. The solvent effect of water evaluated by the CPCM 

solvation model. The RIJCOSX approximation was applied with the def2/J auxiliary basis 

set [S13, S14].  
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The binding energy can be calculated by Eq. (S2), where AB represents the total energy 

after the binding between Zn2+ and the organic molecule. A and B are the energy of a single 

Zn2+ and organic molecule, respectively. 

Ebinding =E(AB) - E(A) - E(B)              (S2) 

MD simulations were conducted using GROMACS software package (2020.6 version). 

The gromos54a7 force field were used to parametrize all atoms, such as the bond parameters, 

angle parameters and the dihedral angles, and so on. The RESP charge of SO4
2- and TAA 

molecule was calculated using ORCA at the B3LYP/6-311+g(d,p) level. TIP3P was used for 

the model of water molecule. The steepest descent method was applied to minimize the 

initial energy for each system with a force tolerance of 1 kJ/(mol-1 nm-1 ) and a maximum 

step size of 0.002 ps before MD calculations. In all the three directions, periodic boundary 

conditions were imposed. Leapfrog algorithm was used to integrate the Newtonian equation 

of motion. The MD simulation was processed in an NPT ensemble and the simulation time 

is 20 ns. In NPT simulations, the pressure was maintained at 1 bar by the Berendsen barostat 

in an isotropic manner was performed for constrain bond lengths of hydrogen atoms. The 

Particle-Mesh-Ewald (PME) with a fourth-order interpolation was used to evaluate the 

electrostatic interactions and the grid spacing is 1.0 Å, whereas a cutoff of 1.0 Å was 

employed to calculate the short-range van der Waals interactions. After 20 ns of MD 

simulations, the radial distribution function (RDF) and coordination number between Zn2+ 

and H2O, SO4
2-, TAA molecules were calculated [S15]. 

Supplementary Figures and Tables 

 

Fig. S1 The photo of DHM equipment 

http://springer.com/journal/40820


Nano-Micro Letters 

 S3/S9 

 

 

Fig. S2 a The voltage profiles of galvanostatic Zn plating and striping at the current density 

of 1.0 mA cm-2 in 0.5 M ZnSO4 blank and DMSO-based electrolyte. b The phase maps 

corresponding to points (i-iv) in (a). i-iv: ZnSO4 blank electrolyte, i1-iv1: ZnSO4 DMSO-

based electrolyte. c The phase maps corresponding to points (i’-iv’) in (a). i’-iv’: ZnSO4 

blank electrolyte, i’1-iv’1: ZnSO4 DMSO-based electrolyte 

 

Fig. S3 Ion conductivity of the 2 M ZnSO4 electrolytes in H2O and H2O/DMSO (volume 

ration=1:1) system 
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Fig. S4 Viscosity of the 0.5 M ZnSO4 electrolyte with and without DMSO 

 

Fig. S5 SEM images of the Zn foil after 90 s and 1 h dissolution at the current density of 1 

mA cm-2 in the electrolytes: a, b blank 0.5 M ZnSO4 electrolyte, c, d DMSO-based 

electrolyte 

 

Fig. S6 The phase maps corresponding to different Zn deposition time at the current density 

of 5 mA cm-2 in (i-iv) blank ZnSO4 and (i’-iv’) ZnSO4-10 mM TAA electrolytes 
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Fig. S7 SEM images of the Zn anode after 10 min, 30 min and 60 min deposition in (a-c) 

blank electrolyte and (d-f) TAA added electrolyte 
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Fig. S8 The radial distribution functions of (a) Zn-O(H2O) and (b) Zn-SO4
2- and their radius-

dependent coordination numbers in blank ZnSO4 electrolyte. (c) Snapshot of the MD 

simulation cells for blank ZnSO4 electrolyte 

 

Fig. S9 Comparison of the 1H NMR spectra of the solution containing ZnSO4, TAA, and 

mixture of ZnSO4 with TAA in D2O 
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Fig. S10 XPS survey spectra of the Zn electrode after 3 cycles in ZnSO4-10 mM TAA 

electrolyte 

 

Fig. S11 SEM image and the corresponding Zn, C, N, S and O mapping of the Zn anode 

after 3 cycles in ZnSO4-10 mM TAA electrolyte 

 

Fig. S12 SEM images of the Zn foils after immersing in the electrolytes with and without 

TAA for 6 h: (a, b) blank ZSO electrolyte, (c, d) TAA-based electrolyte 
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Fig. S13 Enlarged galvanostatic charge-discharge curves of the symmetric cells with and 

without TAA at the deposition time of 108~114 h 
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Fig. S14 Voltage-time profiles of the cells using TAA-based electrolytes at the current 

density of 2 mA cm-2 with the capacity of 2 mAh cm-2 

 

Fig. S15 Rate performance of the Zn-Zn cells with the current density steply increased from 

1.0 to 4.0 A cm-2 and decreased to 1.0 A cm-2 
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Movie S1 a The voltage profile of galvanostatic Zn deposition at the current density of 1.0 

mA cm-2 in 2.0 M ZnSO4 electrolytes; b the corresponding dynamic evolution of interference 

fringes in the initial 40 s; c the corresponding dynamic evolution of phase maps in the initial 

40 s. 
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