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Enhanced High‑Temperature Cycling Stability 
of Garnet‑Based All Solid‑State Lithium Battery 
Using a Multi‑Functional Catholyte Buffer Layer
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HIGHLIGHTS

• Thermally stable catholyte buffer layer was fabricated via incorporating a multi-functional flame-retardant triphenyl phosphate addi-
tive into poly(ethylene oxide).

• The optimized catholyte buffer layer enabled thermal and electrochemical stability at interface level, delivering comparable cycling 
stability of garnet-based all solid-state lithium battery, i.e., capacity retention of 98.5% after 100 cycles at 60 °C, and 89.6% after 50 
cycles at 80 °C.

• Exceptional safety performances were demonstrated, i.e., safely cycling behavior at temperature up to 100 °C and spontaneous fire-
extinguishing ability.

ABSTRACT The pursuit of safer and high-performance lithium-ion 
batteries (LIBs) has triggered extensive research activities on solid-
state batteries, while challenges related to the unstable electrode–elec-
trolyte interface hinder their practical implementation. Polymer has 
been used extensively to improve the cathode-electrolyte interface 
in garnet-based all-solid-state LIBs (ASSLBs), while it introduces 
new concerns about thermal stability. In this study, we propose the 
incorporation of a multi-functional flame-retardant triphenyl phos-
phate additive into poly(ethylene oxide), acting as a thin buffer layer 
between  LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and garnet electro-
lyte. Through electrochemical stability tests, cycling performance evaluations, interfacial thermal stability analysis and flammability 
tests, improved thermal stability (capacity retention of 98.5% after 100 cycles at 60 °C, and 89.6% after 50 cycles at 80 °C) and safety 
characteristics (safe and stable cycling up to 100 °C) are demonstrated. Based on various materials characterizations, the mechanism for the 
improved thermal stability of the interface is proposed. The results highlight the potential of multi-functional flame-retardant additives to 
address the challenges associated with the electrode–electrolyte interface in ASSLBs at high temperature. Efficient thermal modification in 
ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern.
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1 Introduction

Conventional lithium-ion batteries (LIBs) have transformed 
the energy storage industry significantly. However, their use, 
in particular at large scale, is associated with safety concerns 
due to the presence of flammable liquid electrolytes. All-
solid-state LIBs (ASSLBs) have emerged as a promising 
alternative, offering enhanced safety and compatibility with 
high-capacity cathodes [1]. Nonetheless, ASSLBs face sev-
eral new challenges, including lower ionic conductivity and 
poor cycling performance compared to their liquid counter-
parts. Such challenges are not only limited to the electrolyte 
but also encompass the interfaces between the electrodes 
and electrolyte [2, 3].

Garnet electrolytes are a class of solid-state electrolytes 
based on lithium-stuffed garnet crystal structures, typi-
cally represented as  Li7La3Zr2O12 (LLZO) [4, 5], which 
have received considerable attention because of their mod-
est conductivity at room temperature (RT) and favorable 
chemical stability. The main concerns in the practical use 
of LLZO-based ASSLBs include insufficient conductivity at 
low temperature and unstable anode-electrolyte interface and 
cathode-electrolyte interface. Insufficient conductivity will 
cause poor rate performance and capacity, while electrodes-
garnet electrolyte interfaces instability causes poor interfa-
cial contact and limited ionic conductivity, thereby impeding 
efficient charge transfer. On the other hand, dendrite forma-
tion, particularly in lithium metal anodes, is another critical 
issue for the anode, as dendrites can breach the electrolyte, 
leading to safety hazards and short circuits [6]. Additionally, 
thermodynamically unstable interfaces can lead to undesir-
able side reactions, depleting active materials and decreasing 
overall device performance [7].

To address above-mentioned issues, various strategies 
were employed, including surface modification, electrolyte 
optimization, interlayer integration, creation of composite Li 
anode and structural design within electrolyte [8]. Cathode-
garnet electrolyte interfaces require particular attention. 
Volume expansion and contraction-induced stress occurs 
during charge and discharge cycles, inducing strain at the 
cathode-electrolyte interface which can potentially cause 
interface delamination, compromising battery stability. In 
some studies, lithium-conducting interlayers were incorpo-
rated to enhance interface contact and improve conductiv-
ity by facilitating smooth lithium-ion transfer and reducing 

interfacial resistance, in particular the use of  Li3PO4 [9] 
can help weaken the space charge layer and provide bind-
ing effect for cathode and electrolyte. In some other stud-
ies, composite cathodes were used to reinforce the inter-
face contact, which comprises of cathode active material 
and small amount of garnet, e.g.,  LiNi0.8Mn0.1Co0.1O2 (NC
M811) +  Li6.4La3Zr1.4Ta0.6O12 (LLZTO) [10] composite, to 
facilitate compact contact without incurring side reactions 
from new substance. Fabrication of garnet 3-D structure 
was also reported to be effective as  Li+ conductive network, 
by integrating conductive polymer such as poly(ethylene 
oxide) (PEO) [11]. Furthermore, electrolyte additives were 
introduced to stabilize the interface and suppress undesired 
reactions, forming protective layers or passivating films that 
reduce active material consumption and enhance device per-
formance [12–14].

Recently, solid-state electrolytes (SSEs) incorporating 
both polymers and inorganic materials have emerged, involv-
ing the combination of a polymer-based electrolyte with an 
active inorganic filler [15]. Despite improvements in the 
mechanical strength of the composite electrolyte compared 
to the original solid polymer electrolyte (SPE), challenges 
such as dendrite formation and side reactions on the Li/Poly-
mer interface remain [16]. Alternatively, polymers have been 
extensively utilized as wetting agents between cathode and 
electrolyte to improve physical contact while preserving the 
mechanical property of garnet electrolyte, i.e., incorporation 
of polymer as cathode electrolyte (catholyte) interlayer [17, 
18]. PEO has long been considered a promising choice for 
this purpose, owing to PEO’s capability for high  Li+ sol-
vation, facile fabrication, and cost-effectiveness [19]. This 
approach is expected to play a crucial role in enhancing ionic 
conductivity and addressing interfacial compatibility issues 
within and between SSEs and electrodes. However, PEO 
is susceptible to decomposition at high voltages and high 
temperatures. Polymer matrix consisting of poly(vinylidene 
fluoride-hexafluoropropylene) (PVdF-HFP) [20] and PEO 
blends have been tried as catholyte interlayer with favorable 
cycling stability. The combination of PVDF-HFP and PEO 
can offer enhanced anti-oxidation capability with a wider 
electrochemical stability window, consequently boosting the 
specific capacity of battery [21]. Alternatively, raising the 
operating temperature will enhance the lithium-ion conduc-
tivity of the solid electrolyte and electrode reaction kinetics, 
which boosts battery rate capability. The improved thermo-
dynamics introduces high mobility of Li ions and reduces 
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activation polarization at the electrode, leading to a better 
realization of theoretical capacity. In addition, heat leads to 
larger nuclei radii, lower nucleation density, smoother lith-
ium deposition, and softens the lithium to reduce risk asso-
ciated with dendrite formation, as studied by Goodenough 
et al. [22]. However, the thermal stability of polymer is a big 
concern at high temperatures when it is used as a catholyte 
interlayer material. Therefore, the inclusion of a catholyte 
interlayer with an improved thermal and electrochemical sta-
bility is necessary, while carefully managing the amount of 
inactive material introduced to avoid reducing the capacity 
limit of ASSLBs [23].

In this study, we proposed the incorporation of triphe-
nyl phosphate (TPP), a functional flame-retardant additive 
[24], into the PEO catholyte to introduce spontaneous fire-
extinguishing properties, thus improving its stability for 
operating at high temperature. Furthermore, TPP enhances 
the thermal stability of the polymer catholyte at extreme 
temperatures, enabling it to recover its ability to safely and 
efficiently transfer  Li+ ions after thermal abuse, in contrast 
to pristine polymer catholyte. Additionally, the inclusion of 
TPP maintains the thermal stability of interface, which sup-
presses undesirable side reactions that would otherwise lead 
to the consumption of active material NCM811 to impair 
the device performance. A garnet-based 4 V-Class ASSLBs 
using high-voltage cathode NCM811, LLZTO garnet elec-
trolyte and a multi-functional PEO-TPP catholyte interlayer 
was fabricated which demonstrated enhanced cycling stabil-
ity at elevated working temperature, superior safety perfor-
mance in the aspect of flame retardancy, and comparable 
capacity performance to pristine PEO system.

2  Experimental

2.1  Preparation of Electrode and Electrolyte Material

The synthesis of NCM811 cathode and LLZTO solid-state 
electrolyte are detailed in Supporting Information. All 
assembly work was conducted within an argon-filled glove 
box. To fabricate full cells, the process began with the prepa-
ration of Li-Li0.3La0.57TiO3 (LLTO) composite anode by tak-
ing the procedure as described in our previous study to man-
age the variable introduced by the lithium anode metal and 
address potential issues arising from the anode-electrolyte 
interface [25]. This is done through continuous stirring of a 

molten mixture of Li and LLTO, maintaining a weight ratio 
of 95:5 in a stainless-steel crucible. The stirring was carried 
out for 15 min at 280 °C. Subsequently, an LLZTO (garnet) 
pellet was coated on one side with the Li-LLTO composite 
by immersing it in the molten anode composite.

To prepare the NCM cathode disks, the as-synthesized 
NCM811, polyvinylidene fluoride (PVDF), and Acetylene 
black (AB) were mixed at a weight ratio of 8:1:1 in N-meth-
ylpyrrolidone, and stirred for 40 min in vacuum to obtain 
the cathode slurry, which was then cast on aluminum foil, 
followed by vacuum drying at 120 °C overnight. The cath-
ode foils were subsequently punched into 8 mm diameter 
discs, the areal loading of active material was approximately 
2.0 mg·cm−2.

2.2  Fabrication of PEO‑TPP Catholyte Buffer Layer

The catholyte material is composed of PEO, TPP, and a  Li+ 
conducting salt: lithium bis(trifluoromethane)sulfonimide 
(LiTFSI). Following our previous work on the construction 
of catholyte interlayer [18], 1 g of PEO, 0.434 g of LiTFSI 
(with a ratio of EO/Li+  = 15:1, n/n), and 0.2 g of TPP pellets 
(20 wt% of PEO) were combined through continuous stirring 
in 10 mL of acetonitrile at 60 °C overnight. Subsequently, a 
50 μL portion of the liquid mixture was applied onto the sur-
face of the LLZTO electrolyte. Afterward, Φ8 mm cathode 
disks were positioned on top, and the entire assembly was 
dried at 80 °C overnight inside the argon-filled glove box 
to ensure the thorough evaporation of the organic solvent.

The full cell was securely sealed within a CR2025 case, 
utilizing a Φ15 mm stainless steel plate and a Φ15 mm Ni 
foam as spacers and current collectors. The sealing process 
was executed using a specialized crippling machine (MTI, 
MSK-110). Details on the general schematic of the cell con-
figuration are shown in Fig. 1a.

2.3  Basic Characterization

The direct visualization of catholyte interlayer was observed 
by dual beam focussed ion beam scanning electron micro-
scope (SEM, ZEISS NEON 40EsB FIBSEM). The distri-
bution of elements across the electrode/interlayer/electro-
lyte was additionally examined through the utilization of 
an energy-dispersive X-ray spectroscope (EDS) integrated 
within the FIBSEM. The composition and organic structure 
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of catholyte interlayer before and after galvanostatic cycling 
were examined by X-ray photoelectron spectroscopy (XPS) 
using a Kratos Axis Ultra-XPS with a hybrid lens and a 
50 W monochromatic Al  Kα (1486.6 eV) radiation source 
at 15 kV (10 mA), resolution levels of 160 and 40 nm are 
chosen for full (wide) spectra and high-resolution spectra, 
respectively. The raw data were analyzed using CasaXPS, 
with which the XPS spectra results were mathematically cor-
rected and fitted using Shirley background and calibrated 
to the C–C/C–H peak (284.8 eV) from adventitious carbon 
contamination. X-ray diffraction (XRD) was employed to 
investigate the crystal structure and compositional informa-
tion of catholyte interlayer before and after cycling, using 
a Bragg–Brentano geometry X-ray Diffractometer (Bruker 
D8A) with a copper X-ray source. Crystal structure of as 
synthesized and cycled cathode was observed and analyzed 

by FEI Talos FS200X G2 transmission electron microscope 
(TEM) with a field emission gun (FEG). The interplanar 
spacing is determined using ImageJ software and cross-
referenced with the XRD results.

2.4  Electrochemical Characterization

The lithium-ion transference number, tLi+, was determined 
electrochemically using a potentiostat BioLogic VSP and 
EC-lab in a Li-symmetrical cell, following the Bruce-
Vincent method [26, 27]. To achieve this, potentiostatic 
polarization and EIS measurements were conducted. EIS 
was performed between 100 mHz and 200 kHz, both before 
and after potentiostatic polarization. The polarization was 
accomplished by applying a DC bias (ΔV) of 50 mV until 
the current reached a steady state (Is).

Fig. 1  a General schematic of configuration of cell, Nyquist plots of b NCM|LLZTO|Li-LLTO full cells with and without PEO catholyte, c 
NCM|PEO-LLZTO|Li-LLTO full cells with and without different weight ratio of TPP functional additives, and d an example of experimental 
and fitted Nyquist plot using equivalent circuit model
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The transference numbers are determined via Eq. (1):

where I0 is the initial current, initial and steady state charge-
transfer resistance are denoted as R0 and Rs, respectively. 
Biologic VSP was also used to test the EIS of full batteries 
between 100 mHz and 100 kHz, as well as cyclic voltam-
metry (CV), linear sweep voltammetry (LSV), potentiostatic 
profile to validate the improved electrochemical stability of 
PEO-TPP catholyte interlayer. To assess the battery perfor-
mance of the complete cells, a LANHE battery test system 
was employed to conduct galvanostatic Li plating and strip-
ping (charge and discharge) under constant current density, 
which was calculated using the theoretical capacity of stoi-
chiometric NCM811, i.e., 275.6 mAh·g−1. Additionally, the 
performance of the full cell was examined across different 
temperatures using a Thermoline Scientific laboratory oven 
fitted with a temperature controller.

3  Results and Discussion

The importance of adding SPEs and increasing operation 
temperature on improving electrochemical performance of 
the ASSLBs was first confirmed by EIS. The Nyquist plot 
in Fig. S1 clearly demonstrates a substantial increase in the 
ionic conductivity of the SPEs at 60 °C as compared with 
that at RT. Figure 1b illustrates how the integration of the 
SPEs reduces interfacial resistance of LLZTO electrolyte, 
i.e., integration of PEO catholyte substantially reduces inter-
facial resistance substantially from 351.5 to 115.4 Ω·cm2 at 
60 °C.

It was reported that some functional additives could 
facilitate the formation of cathode-electrolyte interphase 
(CEI) [28]. During electrochemical oxidation, such addi-
tive decomposes prior to the other electrolyte components 
to form a kinetically protective CEI layer, which suppresses 
further decomposition of the electrolyte at the electrode. 
Certain flame retardants (F- and P-based) used in LIBs can 
decompose at the electrode to form a protective layer in the 
same way to prevent thermal runaway [29–38]. For example, 
Cui et al. incorporated TPP into PVDF-HFP to substitute 
the conventional membrane separator in conventional LIBs, 
thereby introducing flame-retardant properties triggered by 
thermal decomposition of PVDF-HFP [39]. Recently, we 
have used liquid-state trimethyl phosphate (TMP) as wetting 

(1)tLi+ =
Is
(

ΔV − I0Rs�
)

I0
(

ΔV − IsR0�
)

agent to realize highly stable anodic and cathodic interfaces 
with improved physical contact and chemical stability [35]. 
In this study, we selected TPP as an additive to enhance 
the electrochemical and thermal stability of the PEO-based 
catholyte considering its widespread use, cost effective-
ness, and efficient performance as a phosphorus-based flame 
retardant [40]. With its distinct solid-state nature at RT, TPP 
plays a crucial role in tackling thermal stability challenge as 
a flame-retardant additive and contributes to the realization 
of an all-solid-state battery solution. As depicted in Fig. 1c, 
the introduction of TPP into SPEs results in an escalation 
of charge transfer resistance (Rct) at the interface, and the 
trend becomes more pronounced when TPP content reaches 
a mass ratio of 1:1 with PEO electrolyte. This phenomenon 
may be related to the high viscosity of TPP and its influence 
on the solvation of lithium-ion charge carriers [41], indi-
cating the need for content optimization. It was found the 
obvious fire-retardant effect was demonstrated when TPP 
content is 20% or higher, which will be discussed in more 
detail later. The Rct (charge transfer resistance at the inter-
face) and Rs (bulk resistance of electrode and electrolyte 
material) of the electrolyte can be estimated by fitting the 
Nyquist plot with equivalent circuit model as demonstrated 
in Fig. 1d. Although the addition of 20 wt% TPP into PEO 
increased bulk resistance of the entire PEO-LLZTO system 
from 38.5 to 71.9 Ω·cm2, there is minimal effect on charge 
transfer resistance (107.3 Ω·cm2 for PEO-LLZTO and 119.5 
Ω·cm2 for PEO/TPP-LLZTO) at 60 °C. Conversely, increas-
ing TPP content to a 1:1 mass ratio with PEO electrolyte 
not only raises Rb from 38.5 to 119.6 Ω·cm2, but also results 
in a much larger Rct (177.8 Ω·cm2) compared to pristine 
PEO-LLZTO. In light of achieving a suitable equilibrium 
between fire retardancy (as demonstrated in Fig. 5a) and 
interfacial resistance, we selected a composition of 20 wt% 
TPP within the PEO-TPP system as the optimized catholyte 
for subsequent experimental demonstrations.

The critical operation temperature for both PEO and PEO-
TPP interlayers was found to be around 170 °C, at which 
point the catholyte experienced a significant decline in ionic 
conductivity based on the EIS results. While both systems 
exhibited a similar point of thermal failure, the PEO-TPP 
system had a satisfactory level of recovery after thermal 
stress. In contrast, the pristine PEO system displayed a 
substantial two orders of magnitude difference between its 
original and post-failure impedance, as shown in Fig. 2a 
and details of Nyquist plots in Fig. S2. This emphasizes 
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TPP’s inherent capability to offer greater thermal stability 
to the PEO-TPP system, rendering it more resilient against 
thermal degradation. It is widely acknowledged that phos-
phorus-based flame retardants generally operate by forming 
a protective film or barrier on the surface of combustible 
materials. This mechanism shields the material from the full 
extent of thermal runaway, a concept supported by earlier 
work [42]. In the case of TPP, previous studies have provided 
evidence for the formation of a char layer that acts as a pro-
tective film in the gaseous phase [43, 44]. Hence, the discov-
ered thermal recovery of the PEO-TPP system may also be 
linked to a catalytic phenomenon, wherein TPP, functioning 

as a phosphate compound, initiated reactions that assisted in 
repairing thermal-induced impairments before the process 
of TPP gasification occurred. This could draw parallels to a 
condense phase mechanism of P-based flame retardants as 
well as their interactions and reactions with the surroundings 
polymeric material [45], providing a plausible explanation 
to the enhanced thermal recovery demonstrated by the PEO-
TPP system compared to the unmodified PEO. Figure 2b, c 
displays measurements of LSV and Potentiostatic profiles, in 
which PEO-TPP shows a comparable oxidation potential but 
exhibits a reduced current response at the working electrode 
compared to pristine PEO. This observation indicates that 

Fig. 2  a Interfacial resistance derived from Nyquist plot of NCM|SPE-LLZTO|Li-LLTO when subject to thermal abuse up to 170 °C and cor-
responding thermal recovery, b LSV scanning from OCV to 5.0 V at 0.1 mV  s−1 and c Potentiostatic Profile (step-wise) for PEO and PEO-TPP 
catholyte interlayer d Staircase Potentiostatic test from 2.8 to 4.5 V for PEO and PEO-TPP catholyte interlayer
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the addition of TPP contributes to the suppression of PEO 
decomposition at high voltage. Staircase Potentiostatic (SP) 
test result aligns with this conclusion, where lower current 
response was obtained in most voltages applied to the PEO-
TPP system (Fig. 2d).

The lithium-ion transference number,  t+, represents the 
fraction of total ionic current carried by lithium ions dur-
ing the battery’s operation, which is crucial for assess-
ing a battery’s performance characteristics. Materials 
with high transfer numbers are desirable because they 
facilitate efficient lithium-ion transport, leading to better 
battery performance [46]. Figure 3a, b indicates that the 
PEO-TPP system demonstrated a relatively lower value 
of transference number (t+ = 0.15) as compared to pris-
tine PEO (t+ = 0.20)  Li+ transfer number at 60 °C, which 
undermines the  Li+ mobility and aligns with the lower 
initial charge/discharge capacity, this consequently results 
in performance degradation due to electrode polarization. 
This adverse effect on lithium-ion transference number 
can be attributed to the difficulty of large  PO4 anions 
hoping through the narrow ionic channel [47]. However, 

observation at the first anodic/cathodic peak in Fig. 3c, 
d indicates that PEO-TPP had little to negligible effect 
on reducing electrode polarization that stemmed from 
the irreversible structure change from phase transition of 
H1-M (i.e., Ni redox) [48]. Promisingly, the PEO-TPP sys-
tem did exhibit some beneficial effect in alleviating oxy-
gen evolution at 4.5 V, at which point the electrochemical 
breakdown of PEO-based SPE dominates the deterioration 
of interface [49]. The NCM-PEO/TPP system showed a 
smooth current response between 4.3 and 4.5 V, whereas 
the NCM-PEO system exhibited a noticeable peak that 
correlates to the oxidation of lattice oxygen through the 
following redox reactions [50], where M stands for transi-
tional metal, i.e., Ni, Mn, and Co,

This is attributed to the antioxidative property and high 
electrochemical stability of phosphate-based materials (both 
metal- and organo-phosphate) [51, 52], which contributed to 

(2)3MO2(layered) ⇌ M3O4(spinel) + 2[O]

(3)M3O4(spinel) ⇌ 3MO(rocksalt) + [O]

Fig. 3  a, b Determination of  Li+ transference number by symmetric polarization procedure at 60 °C. CV profile of c NCM811|PEO-LLZTO|Li-
LLTO, d NCM811|PEO/TPP-LLZTO|Li-LLTO
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the suppression of oxygen evolution reaction beyond 4.3 V 
as reported in previous researches [53, 54].

Table 1 presents a comprehensive comparison of modi-
fied garnet-based ASSLBs featuring high-energy–density 
NCM cathodes, as reported over the last two years [55–66]. 
Although reduced  Li+ transfer number by incorporation of 
TPP into the SPE was demonstrated previously, improved 
long-term charge/discharge stability was demonstrated in 
the aspect of cycling number, maximum operating tempera-
ture, and long-term stability. As shown in Fig. 4a, although 
cycling tests on PEO catholyte with the addition of TPP 
demonstrated lower initial discharge capacity, a consequence 
attributed to the expected rise in bulk resistance, the PEO-
TPP system exhibited enhanced cycling stability at 60 °C, 
which became more pronounced at higher temperatures 
(Fig. 4b–d). The system also demonstrated safe cycling 
behavior up to 100 °C, despite the concurrent observation 
of heightened NCM cathode aging, with evidence from the 
charge/discharge profile in Fig. S3a, b [67]. Nonetheless, the 
presence of flame-retardant additives in PEO-TPP showed 
a higher degree of thermal stability, as a result the full cell 
cycling performance of the PEO-TPP system at various 

temperatures (60, 80, 90, and 100 °C) consistently outper-
formed that of the pristine PEO catholyte. It is particularly 
noteworthy that at 60 °C, a reversible capacity of 136.0 
mAh·g−1 was achieved when charged at 1 C, accompanied 
by an impressive 98.5% capacity retention after 100 cycles. 
Additionally, it showcases an 89.6% capacity retention after 
50 cycles when cycling at 80 °C. As a comparison, most of 
the reported NCM/LLZO-based ASSLBs are limited to a 
temperature range of 25–60 °C owing to the thermal insta-
bility of polymer catholyte or liquid-based wetting agent as 
shown in Fig. 4e. However, while achieving a capacity of 
181.5 mAh·g−1 at a charging rate of 0.2 C, the capacity drops 
to less than 50 mAh·g−1 when charged at 3 C, as illustrated 
in Fig. S3c. This underscores the ASSLBs’ mediocre rate 
capability, primarily attributed to the constraints imposed 
by low ionic conductivity.

It’s noteworthy to consider that, in theory, the initial dis-
charge capacity should be proportional to temperature esca-
lation due to change of thermal dynamics within the system, 
i.e., increasing temperature improves the specific capacity of 
the battery. Nevertheless, for the unmodified pristine PEO 
catholyte, this projected pattern did not persist at elevated 

Table 1  Comparison to recently reported performance of NCM/LLZO-based ASSLBs

Electrolyte Cathode/anode Operating 
potential 
(V)

Reversible capacity /current 
rate/cycle number/capacity 
retention

Tem-
perature 
(°C)

References

Li6.5Mg0.05La3Zr1.6Ta0.4O12-PEO-
TMOS-Pyr14FSI

NCM523/Li 3.0–4.3 124.0 mAh·g−1/0.1 C/50/61.4% 55 [55]

PEO-Li6.4La3Zr1.4Ta0.6O12-PAN NCM111/Li 3.0–4.3 108.6 mAh·g−1/0.2 C/100/65% 30 [56]
Li6.35Ga0.15La3Zr1.8Nb0.2O12-SCN-

3D
NCM523/Li (thin gold layer) 2.5–4.3 165.3 mAh·g−1/0.1 C/100/95.0% 45 [57]

Li6.75La3Zr1.75Ta0.25O12-PEO-
PVDF-OX

Al2O3@NCM523/Li 2.5–4.3 150.6 mAh·g−1/0.2 C/80/86.7% 55 [58]

Li7La3Zr2O12-PEO NCM622/Li 3.0–4.3 176.4 mAh·g−1/0.2 C/200/82.4% 60 [59]
Li7La3Zr2O12-LiBFSIE NCM622 with liquid electrolyte/Li 2.5–4.2 113.0 mAh·g−1/0.6 C/200/NR 40 [60]
PEO-PVDF-LiF-Li6.4La3Zr1.4Ta0

.6O12

NCM622 with LiBODFP layer/Li 
with PEO-3LiF-5LiDFOB layer

2.5–4.3  ~ 105.0 mAh·g−1/1 C/300/87.4% 60 [61]

Li6.25Al0.25La3Zr2O12-PVDF-HFP-
PAN

NCM811/Li 2.6–4.2 160.9 mAh·g−1/0.1 C/100/92.5% RT [62]

Li6.4La3Zr1.4Ta0.6O12-PEO-LiBOB-
LiClO4

NCM811/Li 2.8–4.3 190.0 mAh·g−1/0.1 C/200/70.0% 25 [63]

Li6.4La3Zr1.4Ta0.6O12-PEGDA-SCN NCM811/Li 2.5–4.3 174.0 mAh·g−1/0.2 C/200/85.4% RT [64]
Ga/F-Li7La3Zr2O12-PVDF-PAN NCM811/  Li2MoO4/Li 2.7–4.2 103.8 mAh·g−1/1 C/300/89.8% 25 [65]
Li6.4La3Zr1.4Ta0.6O12-PEO-PVDF-

LiTFSI-MgPFPAA
NCM811/Li 2.5–4.3  ~ 162.0 mAh·g−1/1 C/200/74.5% 60 [66]

Li6.4La3Zr1.4Ta0.6O12 with PEO-
TPP-LiTFSI Interlayer

NCM811/Li-LLTO 2.8–4.3 136.0 mAh·g−1/1 C/300/82.3% 60 This work
162.0 mAh·g−1/1 C/50/89.6% 80
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temperatures (90 and 100 °C). In contrast, within the PEO-
TPP catholyte system, this projected trend is consistently 
upheld, a phenomenon attributed to the augmented thermal 
stability encompassed by the inclusion of TPP.

The flammability test (Fig. 5a and Videos S1-S4) revealed 
the spontaneous fire-extinguishing ability of PEO-TPP. 
Increasing TPP concentration led to better prevention of 
combustion, indicating the effectiveness of TPP as a flame 
retardant. Specifically, both the pristine PEO and that with 
addition of 10% TPP were completely consumed by fire. But 
increasing the TPP concentration to 20% led to a notable 
difference as, when subjected to the flame, the spread of fire 
was stopped by the presence of TPP. For PEO and TPP with 

a weight ratio of 1:1, i.e., PEO-TPP (50%), combustion was 
effectively prevented by TPP in the first place, indicating 
its effectiveness as a flame retardant. However, higher TPP 
concentrations resulted in reduced flexibility of the polymer 
membrane, posing challenges in interlayer fabrication.

Observations from SEM–EDS analysis in Figs. 5b, c 
and S4 of the NCM811 cathode, PEO/TPP interlayer, and 
LLZTO electrolyte cross-section reveal the much-improved 
and distinctive surface contact, as well as even distribution 
of Li-conductive material across interfaces, facilitating Li 
ion diffusion. It is worth noting that the incorrect identi-
fication of phosphorus (P) in LLZTO electrolyte by EDS 
elemental mapping due to considerable overlap of P Kα 1 

Fig. 4  1 C charge/discharge full cell cycling performance for NCM|SPE-LLZTO|Li-LLTO at a 60 °C, b 80 °C, c 90 °C, and d 100 °C, where 
the choice of SPE are PEO and PEO-TPP, and e summary of initial discharge capacity as well as capacity retention after 50 cycles
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(2.014 keV) and P Kβ 1 (2.139 keV) with the strong signal 
of Zr Lα 1 (2.042 keV) (EDS, Fig. S5). This false signal was 
substantiated by the absence of carbon c and sulfur (S) in 
LLZTO, where carbon is originating from PEO and TPP, and 
sulfur is deriving from the lithium-conducting salt LiTFSI. 
These components collectively form the catholyte inter-
layer. Furthermore, trace amounts of aluminum (Al) were 
detected within the LLZTO electrolyte. This occurrence can 
be attributed to unavoidable contamination from the  Al2O3 
crucible utilized during the synthesis process. Regardless, 
the presence of Al is inconsequential to the functionality of 
the LLZTO electrolyte since Al was sometimes utilized as a 
dopant during the synthesis of LLZO to stabilize the cubic 
modification, and thus it should not yield any detrimental 
effects on the property of LLZTO electrolyte as confirmed 
in previous study [68].

To further understand the role of TPP additive in alleviat-
ing the effect of PEO degradation at elevated temperature, 
X-ray photoelectron spectroscopy (XPS) was conducted with 
the results shown in Fig. 6a. The XPS spectra were normal-
ized to the  CF3 related peak at 292.7 eV, as LiTFSI is typi-
cally more stable against electrochemical oxidation due to 
the strong TFSI anion [69, 70]. In NCM cathodes equipped 

with a catholyte interlayer composed of PEO, the appearance 
of the O–C=O peak within the C 1s spectra subsequent to 
cycling of 100 cycles is indicative of the oxidative degra-
dation of PEO [71]. Additionally, a discernible reduction 
in C–O peak relative to C–C/C–H was observed, further 
validating the phenomenon of PEO degradation [49]. Con-
versely, when employing a PEO-TPP catholyte interlayer in 
NCM cathodes, only a vague signal corresponding to the 
O–C=O peak was identified in the C 1s spectra. It suggests 
the inclusion of the TPP additive effectively enhanced elec-
trochemical stability by mitigating the degradation of the 
PEO catholyte under elevated working temperature and/or 
high electrochemical voltage. Nevertheless, an unidentified 
species was observed in the P 2p spectra on the shoulder 
of –PO4 peak, which may be attributed to the possible crea-
tion of CEI through the involvement of the –PO4 phosphate 
group stemming from the functional additive TPP (XPS and 
TEM, Figs. S6 and S7).

XRD pattern of the PEO and PEO-TPP systems before 
and after the cycling test were conducted to assess the crys-
talline nature of the polymer catholyte interlayers (Fig. 6b). 
The absence of characteristic peaks of TPP in cycled/uncy-
cled catholyte interlayers indicates the complete dissolution 

Fig. 5  a Spontaneous fire-extinguishing ability of PEO-TPP via flammability test. b SEM cross-sectional image and c elemental mapping of the 
NCM811-PEO/TPP-LLZTO catholyte interlayer
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of the TPP additive in PEO, owing to its exceptional solvat-
ing ability [72]. Concurrently, the inclusion of LiTFSI in the 
host polymer PEO significantly reduced peak intensity, in 
the meantime the interaction between the  Li+ cation of the 
salt and the ether oxygen of PEO caused the peaks of PEO 
to shift to lower 2θ values [73]. Typically, incorporating the 
LiTFSI conducting agent into PEO leads to a reduction in 
the degree of crystallinity and an increase in ionic conduc-
tivity by suppressing the crystallization of PEO, an indica-
tive observation is the decline of the characteristic peak at 
19.4° and 23.7°. However, the complete absence of the 23.7° 
peak, in contrast to the pristine PEO interlayer, signifies the 
dominance of an amorphous phase that is possibly generated 
by the plasticization effect of TPP [74], potentially hindering 
the movement of polymer chains, leading to a reduction in 
the ionic conductivity of PEO interlayer which is confirmed 
by EIS result.

4  Conclusion

In conclusion, we propose a solution to the challenges asso-
ciated with the cathode-electrolyte interface by incorporat-
ing a multi-functional flame-retardant catholyte interlayer 
in garnet-based 4 V-Class ASSLBs to enable its operation 

at elevated temperature. The use of PEO catholyte enriched 
with TPP as the flame-retardant additive exhibited remark-
able advancements in cycling stability and thermal safety at 
elevated temperatures, allowing for safe and stable cycling 
even at a high temperature of 100 °C, outperformed that of 
the pristine PEO catholyte. The PEO-TPP catholyte inter-
layer also displayed improved oxidative stability and better 
recovery from thermal abuse at 170 °C compared to the pris-
tine PEO system. At 60 °C, the PEO-TPP system achieved 
a reversible capacity of 136.0 mAh·g−1 when charged at 1 
C, with an impressive 98.5% capacity retention after 100 
cycles.

Observations from SEM–EDS analysis of the NCM811 
cathode, PEO/TPP interlayer and LLZTO electrolyte cross-
section revealed improved surface contact and even distribu-
tion of Li-conductive material across interfaces, facilitating 
Li ion diffusion. XPS analysis further confirmed that TPP 
maintains the thermal stability of interface by suppressing 
the decomposition of PEO, curbing undesirable side reac-
tions and preserving active material, thus enhancing the bat-
tery’s overall performance. Flammability tests demonstrated 
the self-extinguishing property of the PEO-TPP system with 
TPP content exceeding 20%. The presented research not 
only advances the understanding of interface engineering 

Fig. 6  a C 1s XPS Spectra and b XRD pattern of NCM811/PEO interface, NCM811/PEO-TPP interface before and after cycling at 60 °C
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in solid-state batteries but also offers practical insights for 
the design of high-performance, high-temperature batter-
ies, paving the way for their broader implementation in 
various applications, from portable electronics to electric 
vehicles and large-scale energy storage. However, further 
enhancement in rate performance is imperative for the prac-
tical application of ASSLBs ensuring consistent capacity 
realization across a range of charge/discharge rates. Future 
work should prioritize the resolution of structural and kinetic 
limitations within the solid-state battery system to facilitate 
faster  Li+ transport.
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