Supporting Information for

Weakly Polarized Organic Cation-Modified Hydrated Vanadium Oxides for High-Energy Efficiency Aqueous Zinc-Ion Batteries

Xiaoxiao Jia¹, Chaofeng Liu², Zhi Wang¹, Di Huang¹, and Guozhong Cao^{1, *}

¹Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA

²School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China

*Corresponding author. E-mail: gzcao@uw.edu (Guozhong Cao)

S1 Supplementary Figures

Fig. S1 A schematic illustration of the $M_x V_8 O_{20} \cdot n H_2 O$ phase

Fig. S2 TEM images of TMPA-VOH

Fig. S3 SEM image of VOH

Fig. S4 SEM-EDS mapping of TMPA-VOH and VOH

Fig. S5 XPS Cl 2p region of TMPA-VOH

Fig. S6 Enlarged FTIR spectra of TMPA-VOH and VOH in the region of 1180-1030 cm⁻¹

Fig. S7 EPR spectra of TMPA-VOH

Fig. S8 The dQm/dV vs. voltage profiles of TMPA-VOH

Fig. S9 (a) CV curves of VOH at different scan rates. (b) *b*-values of each redox peak in CV curves for VOH

Fig. S10 The ex situ SEM images of TMPA-VOH electrodes at fully discharged and charged state

S2 Supplementary Tables

Table S1 Frequencies and assignment of the FTIR bands of TMPA-VOH and VOH

Wavenumber/cm ⁻¹		 Assignment (vibration mode) 	
ТМРА-VOH	VOH		
742	738	Asymmetric stretching of V-O-V	
770	_	Out-of-plane ring deformation	
841		N-CH ₃ symmetric stretching + (N-C) stretching +ring (C-H) stretching	
944	_	Out-of-plane ring (C-H) bending+CH ₂ twisting	
954		(N-CH ₃) streching+CH ₃ rocking	
975	less obvious	Stretching of V ⁴⁺ =O	

1007	less obvious	Stretching of V ⁵⁺ =O	
spitted	1010 (broad)	Stretching of V=O	
1118		In-plane ring (C-H) bending+ (N-C) stretching+ CH ₃ rocking	
1130		CH ₃ rocking	
1167		In-plane ring (C-H) bending	
1229	_	N-CH ₃ asymmetric stretching	
1298		In-plane ring (CCC) asymmetric stretching + CH ₂ wagging	
1409		CH ₃ symmetric bending	
1457		CH ₃ asymmetric bending + In-plane ring (C-H) bending	
1485	—	In-plane ring (C-H)+ CH ₃ asymmetric bending	
1496	_	CH ₃ scissoring + In-plane ring (C-H) bending	
	1613	H-O-H bending of water molecules	
1632		C-H bending	
	3565	O-H stretching of water molecules	

Table S2 Peak positions and potential gaps between each redox pair of TMPA-VOH and VOH

Sample	Peak Voltages (V)	Redox Pairs	Peak Separation (V)
TMPA-VOH	0.98/0.99	V^{5+}/V^{4+}	0.01
	0.91/1.06		0.15
	0.61/0.67	V ⁴⁺ /V ³⁺	0.06
	0.43/0.51		0.08
	1.33/1.35		0.02
VOH	0.98/1.06	V^{5+}/V^{4+}	0.08
	0.45/0.65	V^{4+}/V^{3+}	0.20

S3 Supplementary Calculations

S3.1 Kinetics analysis from CV tests

In CV tests, the total current can be interpreted as a sum of current response from two process: a slow diffusion-controlled process (i_{diff}) and a fast surface-controlled capacitive process (i_{cap}), based on the following empirical equation [S1]:

$$i(v) = i_{cap} + i_{diff} = av^b$$
(S1)

$$\log i(v) = \log a + b \log v \tag{S2}$$

where both a and b are adjustable parameters. b-value (in the range of 0.5-1.0) can be determined from the slope of the plot of log i vs. log v. A b-value of 0.5 represents a slow diffusion-controlled intercalation process, while a b-value of 1.0 indicates a fast surface-controlled capacitive process. Generally, the larger the b value is, the larger the contribution from capacitive process.

Notice that the capacitive-controlled current varies linearly with the sweep rate v, while the diffusion-controlled current obeys a linear relationship with $v^{1/2}$. So, the contribution of each component can be determined based on the following equations [S1]:

$$i(v) = i_{cap} + i_{diff} = k_1 v + k_2 v^{\frac{1}{2}}$$
(S3)
$$i(v) / v^{\frac{1}{2}} = k_1 v^{\frac{1}{2}} + k_2$$
(S4)

By plotting $i(v)/v^{\frac{1}{2}}$ vs. $v^{\frac{1}{2}}$, constants k₁ and k₂ can be evaluated from the slope and intercept of the line. Therefore, the contributions from the capacitive effect (k₁v) can be quantitively differentiate from diffusion-controlled processes (k₂v^{1/2}).

Then, the average charge storage can be estimated by:

$$Q = \frac{\int i(E)dE}{2m\nu}$$
(S5)

Where Q is the average charge during the charge/discharge process (C/g), *m* is the mass of the active material (g), *i* is the current response (A), ν is the scan rate (V s⁻¹). Then the diffusion-controlled and capacitive controlled charge storage can be quantified.

S3.2 Diffusion coefficient and internal resistance analysis from GITT

The chemical diffusion coefficient of Zn^{2+} ions (D_{Zn}^{2+}) in cathode materials can be calculated by [S2]:

$$D_{Zn^{2+}}^{GITT} = \frac{4}{\pi\tau} \left(\frac{m \cdot V_M}{M \cdot S}\right)^2 \left(\frac{\Delta E_s}{\Delta E_\tau}\right)^2 \quad (\tau \ll \frac{L^2}{D})$$
(S6)

Where τ (s) is the current pulse duration time; m, M, and V_M are the mass (g), atomic weight (g mol⁻¹), and molar volume (cm³ mol⁻¹) of the active materials, respectively; S (cm²) is the contact area of the electrode/electrolyte interface (0.785 cm²); ΔE_s (V) is the steady state voltage change; ΔE_{τ} (V) is the total voltage change during a current pulse, neglecting the IR-drop.

The internal resistance (Ω) is calculated from the IR drop by [S3]:

Internal resistance(
$$\Omega$$
) = $\frac{IR \, drop}{i}$ (S7)

Where i is the applied constant current during pulses(A), and IR (V) is illustrated as below:

Fig. S11 Schematic illustration of ΔE_{τ} , ΔE_s , and IR drop

Supplementary References

- [S1] J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, et al., Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Adv. Sci. 5, 1700322 (2018). <u>https://doi.org/10.1002/advs.201700322</u>
- [S2] W. Weppner and R. A. Huggins, Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li₃Sb. J. Electrochem. Soc. 124, 1569–1578 (1977). <u>https://doi.org/10.1149/1.2133112</u>
- [S3] M. Kemeny, P. Ondrejka, and M. Mikolasek, Comprehensive Degradation Analysis of NCA Li-Ion Batteries via Methods of Electrochemical Characterisation for Various Stress-Inducing Scenarios. Batteries 9, (2023). <u>https://doi.org/10.3390/batteries9010033</u>