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Supplementary Figures and Tables 

 

Fig. S1 Raman spectra of CNT films with and without plasma treatment 
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Fig. S2 Thermogravimetric analysis curves of the MOD with CNT film 

 

Fig. S3 SEM images of Ag-CNT film (a) without plasma treatment and (b) with plasma 

treatment 
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Fig. S4 The corresponding EDS maps of (a) CNT film. (b) Ag-CNT film-1. (c) Ag-

CNT film-2. (d) Ag-CNT film-3 

 

Fig. S5 (a) Raman spectra of CNT films. (b) Strong G peak with a small shoulder D' 

peak of CNT and Ag-CNT films 
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Fig. S6 (a-d) Stress-strain curves of CNT film and Ag-CNT films with different Ag 

content 

Table S1 Summary of mechanical properties of CNT film and Ag-CNT films 

Sample 
Tensile strength  

(MPa) 

Elongation at  

break (%) 

Young’s modulus  

(GPa) 

CNT film 30.09±3.14 41.39 ± 4.30 1.12±0.33 

Ag-CNT-film-1 40.38±4.56 2.73 ± 0.87 4.55±0.65 

Ag-CNT-film-2 71.52±7.42 2.06 ± 0.73 7.04±0.71 

Ag-CNT-film-3 76.06±6.20 1.63 ± 0.50 8.90±0.97 

 

Fig. S7 Home-made devices for in-situ Raman test 
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Table S2 Summary of mass, thickness, electrical conductivity, and EMI SE of Ag-CNT 

films 

Sample CNT film Ag-CNT-film-1 Ag-CNT-film-2 Ag-CNT-film-3 

Ag content (wt %) 0 42 51 66 

Thickness (μm) 5 5.9 6.5 7.8 

Electrical 

conductivity (S/m) 
77040 84960 324333 682000 

Average EMI SE (3 

- 40 GHz, dB) 
37 41 48 66 

SSE 

（dB·cm-1） 
74000.0 69491.5 73846.2 84615.4 

 

Fig. S8 (a) Experimental and theoretical EMI SE of Ag-CNT film. (b) Measuring 

equipment of shielding performance and (c) Experimental EMI SE measurements of 

Ag-CNT film, show similar EMI SE values at lower and higher frequencies 

The theoretical EMI SE values derived from Simon's formula over a broad frequency 

range are compared with the experimental values in the S-band (Figure S8a). Calculated 

results predict high EMI SE values at low frequencies as well. According to ASTM 

D4935-99 standard, the EMI SE in the frequency range of 30 MHz - 1.5 GHz is tested 

by coaxial transmission line method. The measurement set-up consisted of a sample 

holder (KEYCOM, Japan) with its input and output connected to the network analyzer 

(Figure S8b). The SE values of the films in the low-frequency range were evaluated, 

and the results are shown in Figure S8c. 

Equation part 

(1) The input impedance of a single-layer shield (Z) can be calculated according to the 

following equation [S1]: 

𝑍 = 𝑍0 (
𝜇𝑟

𝜀𝑟
)

1

2
tanh (

𝑗(2𝜋𝑓𝑑)(𝜇𝑟𝜀𝑟)
1
2

𝑐
)                          (S1) 

(2) The reflection loss of the shielding surface from front to back can be calculated 
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using the following formula [S2]: 

𝑆𝐸𝑅 = 20 log
(𝑍+𝑍0)

2

4𝑍𝑍0
= 39.5 + log (

𝜎

2𝑓𝜋𝜇
)                 (S2) 

(3) The absorption loss of shielding material can be expressed as follows [S3]: 

𝑆𝐸𝐴 = 20 (
𝑑

𝛿
) log 𝑒 = 8.68 (

𝑑

𝛿
) = 8.68

√𝑓𝜇𝜎

2
              (S3) 

where Z0, 𝜀𝑟, and 𝜀𝑟 are the impedances of in free space, relative complex permittivity, 

and relative complex permeability, respectively. As Z approaches Z0, the impedance 

matching between free space and the shield improves, allowing EMWs to penetrate 

more into the shielding material. 𝑓 and c are the frequency and velocity of the EMWs. 

𝑑, 𝜎 and 𝜇 are the thickness, electrical conductivity, and magnetic permeability of the 

shield, respectively.  

 

Fig. S9 The SEM images of Ag-CNT films (a) before and (b) after 2000-cycle bending 

 

Fig. S10 Measuring equipment of near-field shielding performance 

The near-field radiation is typically dominated in the region of KR ≪ 1. The delay 

between phase and energy propagation of the EM waves can be ignored in this case, 

and the near-field radiation can be served as a quasi-static condition. To accurately 

measure the near-field SE of Ag-CNT film, a microstrip antenna embedded in a printed 
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circuit board serves as an analog chip and used as a near-field EM radiation source4. 

The scanning probe connected to VNA via a coaxial cable with an SMA connector is 

employed as the signal collector, as shown in Figure S10. The probe directly measures 

the electromagnetic wave radiation intensity at a specific point in space, while the 

shielding efficiency of the material is determined by comparing the radiation intensity 

before and after shielding. 
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