Supporting Information for

Critical Solvation Structures Arrested Active Molecules for

Reversible Zn Electrochemistry

Junjie Zheng^{1,2}, Bao Zhang^{3,*}, Xin Chen^{1,2}, Wenyu Hao⁴, Jia Yao^{1,2}, Jingying Li^{1,2}, Yi Gan^{1,2}, Xiaofang Wang^{1,2}, Xingtai Liu^{1,2}, Ziang Wu^{1,2}, Youwei Liu^{1,2}, Lin Lv^{1,2}, Li Tao^{1,2}, Pei Liang⁵, Xiao Ji⁴, Hao Wang^{1,2,*}, Houzhao Wan^{1,2,*}

¹ Hubei Yangtze Memory Laboratories, Wuhan 430205, P. R. China

² Hubei Key Laboratory of Micro-Nanoelectronic Materials and Devices, School of Microelectronics, Hubei University, Wuhan 430062, P. R. China

³ School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore

⁴ School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

⁵ Institute of Optoelectronics Technology, China Jiliang University, Hangzhou 310018, P. R. China

* Corresponding authors. E-mail: <u>bao.zhang@ntu.edu.sg</u> (Bao Zhang); <u>nanoguy@126.com</u>, <u>wangh@hubu.edu.cn</u> (H. Wang); <u>houzhaow@hubu.edu.cn</u> (H. Wan)

Supplementary Figures and Tables

Fig. S1 Electroplating mechanism of Zn²⁺ in ZHA 0 electrolytes

Fig. S2 Electroplating mechanism of Zn^{2+} in ZHA > 10 electrolytes

Fig. S3 Contact angles of different electrolytes

Fig. S4 Ionic conductivity and viscosity of different electrolytes

Fig. S5 NMR comparison of different electrolytes

Fig. S6 Raman comparison of different electrolytes

Fig. S7 pH comparison of different electrolytes

	密度(density)	рН	电导率 (Conductivity)	粘度 (Visoosity)
1m H2O	1.000	6.85		
1m Zn (OTF) 2	1.248	4.81	0.01271	1.42
1m H ₂ O: ACN=9.5:0.5	0.997	6.93		
1m Zn (OTF) 2:ACN=9.5:0.5	1.196	4.82	0.07422	1.38
1m H ₂ O : ACN=9:1	0.983	6.99		
1m Zn (OTF) 2:ACN=9:1	1.146	4.86	0.08157	1.29
1m H ₂ O : ACN=7:3	0.922	7.89		
1m Zn (OTF) 2:ACN=7:3	0.901	5.2	0.158	1.15
pure ACN	0.787			

Fig. S8 Comparison of physical properties of different electrolytes

Fig. S9 a Comparison of LSV curves of ZHA 0 and ZHA 10 electrolytes. **b** Hydrogen evolution curve. **c** Oxygen evolution curve

Fig. S10 Electrochemical impedance spectroscopy (EIS) of different electrolytes

Fig. S11 After 50 cycles of symmetrical cells in different electrolytes a XRD image. b SEM image

Fig. S12 After 100 cycles of symmetrical cells in different electrolytes SEM image

Fig. S13 In-situ Raman map of the Zn||Cu battery at a current density of 1 mA cm⁻²

Fig. S14 Zn||Cu half-cell charge-discharge curves corresponding to in-situ Raman

Fig. S15 Elemental C XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 50 h in ZHA 0 and ZHA 10 electrolytes

Fig. S16 Elemental S XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 50 h in ZHA 0 and ZHA 10 electrolytes

Fig. S17 Elemental F XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 50 h in ZHA 0 and ZHA 10 electrolytes

Fig. S18 Elemental O XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 50 h in ZHA 0 and ZHA 10 electrolytes

Fig. S19 Elemental N XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 50 h in ZHA 0 and ZHA 10 electrolytes

Fig. S20 Elemental Zn XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 50 h in ZHA 0 and ZHA 10 electrolytes

Fig. S21 Elemental C XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 100 hours in ZHA 0 and ZHA 10 electrolytes

Fig. S22 Elemental S XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 100 h in ZHA 0 and ZHA 10 electrolytes

Fig. S23 Elemental F XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 100 hours in ZHA 0 and ZHA 10 electrolytes

Fig. S24 Elemental O XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 100 h in ZHA 0 and ZHA 10 electrolytes

Fig. S25 Elemental N XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 100 h in ZHA 0 and ZHA 10 electrolytes

Fig. S26 Elemental Zn XPS pattern of Ar^+ sputtered Zn anode after cycling at a current density of 0.5 mA cm⁻² for 100 h in ZHA 0 and ZHA 10 electrolytes

Fig. S27 SEM images of Zn surface and cross-section after cycling the Zn anode in ZHA 0 and ZHA 10 electrolytes at a current density of 0.5 mA cm⁻² for 100 h

Fig. S28 SEI film formed in ZHA 10 electrolyte

Fig. S29 a XRD and b SEM images of V₆O₁₃ powder

The formula for analyzing CV data at various scan rates according to a typical method [S1] is as follows:

 $i = av^b$

The measured current (*i*) corresponds to the power-law relationship of the scan rate (*v*). a and b are tunable parameters, where *b* is a value determined by the slope of the relationship between log*i* and log*v*, the coefficient b varies in the range of 0.5–1.0, so there are two clearly defined conditions, namely b = 0.5 and b = 1.0. The *b* value is 0.5, which indicates the insertion process of diffusion control, and the *b* value is 1.0, which indicates the surface capacitance process. Linear relationship between log *i* and log *v* graphs (log*i* = log*a* + *b*log*v*) according to **Fig. S28** [S2]. The *b* values of the four redox peaks are calculated to be 0.68 (peak 1), 0.92 (peak 2), 0.89 (peak 3) and 0.83 (peak 4), This indicates that the electrochemical kinetics of the compounds are related to diffusion-controlled processes and capacitive effects, but the surface capacitance process are the main process.

Fig. S30 a CV plots and b b-values of $Zn||V_6O_{13}$ full cells in ZHA 0 electrolyte

Fig. S31 GCD plots of Zn||V₆O₁₃ full cells in ZHA 0 electrolyte

Fig. S32 Zn||V₆O₁₃ self-discharge in ZHA 0 electrolytes

	H ₂ O	Otf	ACN
0% ACN	5.536	0.464	0
5% ACN	5.719	0.281	0
10% ACN	5.754	0.246	0
20% ACN	5.571	0.388	0.04
30% ACN	5.56	0.415	0.05

Table 1 (Coordination	number of	acetonitrile at	different	proportions
-----------	--------------	-----------	-----------------	-----------	-------------

Table 2 Performance comparison table of $Zn ||V_6O_{13}$ batteries reported in this work and other reports

Description	Current density	Cycle	Capacity	Coulomb	References
	$(A g^{-1})$	number	(mAh g ⁻¹)	efficiency (%)	
H-V ₆ O ₁₃	5	1000	262	87	[S3]
CO ₂ -V ₆ O ₁₃	2	4000	244	80	[S4]
V_6O_{13+x} ·nH ₂ O	10	1000	215	89	[85]
K-V ₆ O ₁₃	10	2000	155.5	90.8	[S6]
V ₆ O ₁₃	10	3000	206	91.5	[S7]
ZnAl//V ₆ O ₁₃	3	1000	280	95	[S8]
Ni _x V _{6-x} O ₁₃	8	10000	96.5	99	[S9]
V ₆ O ₁₃	4	2000	230	92	[S10]
MnVO/(SN)-C	10	1000	236.4	99	[S11]
NMP eletrolyte	3.5	1000	281	82.4	[S12]
additive					
VONs	10	6000	177	88.9	[S13]
This work	10	10000	100	99.2	

Supplementary References

- [S1] V. Augustyn, J. Come, M.A. Lowe, J.W. Kim, P.-L. Taberna et al., High-rate electrochemical energy storage through Li⁺ intercalation pseudocapacitance. Nat. Mater. 12(6), 518–522 (2013). <u>https://doi.org/10.1038/nmat3601</u>
- [S2] T. Brezesinski, J. Wang, J. Polleux, B. Dunn, S.H. Tolbert, Templated nanocrystal-based porous TiO₂ films for next-generation electrochemical capacitors. J. Am. Chem. Soc. 131(5), 1802–1809 (2009). <u>https://doi.org/10.1021/ja8057309</u>

- [S3] J. Lai, H. Zhu, X. Zhu, H. Koritala, Y. Wang, Interlayer-expanded V₆O₁₃·nH₂O architecture constructed for an advanced rechargeable aqueous zinc-ion battery. ACS Appl. Energy Mater. 2(3), 1988–1996 (2019). <u>https://doi.org/10.1021/acsaem.8b02054</u>
- [S4] W. Shi, B. Yin, Y. Yang, M.B. Sullivan, J. Wang et al., Unravelling V₆O₁₃ diffusion pathways via CO₂ modification for high-performance zinc ion battery cathode. ACS Nano 15(1), 1273–1281 (2021). <u>https://doi.org/10.1021/acsnano.0c08432</u>
- [S5]B. Sambandam, S. Kim, D.T. Pham, V. Mathew, J. Lee et al., Hyper oxidized V₆O_{13+x}·nH₂O layered cathode for aqueous rechargeable Zn battery: Effect on dual carriers transportation and parasitic reactions. Energy Storage Mater. **35**(47–61), (2021). <u>https://doi.org/10.1016/j.ensm.2020.11.001</u>
- [S6]Q. Chen, Z. Luo, X. Zhao. K-ion intercalated V₆O₁₃ with advanced high-rate long-cycle performance as cathode for zn-ion batteries. J. Mater. Chem. C 10(2), 590–597 (2022). <u>https://doi.org/10.1039/D1TC04822H</u>
- [S7] L. Shan, J. Zhou, W. Zhang, C. Xia, S. Guo et al., Highly reversible phase transition endows V₆O₁₃ with enhanced performance as aqueous zinc-ion battery cathode. Energy Technol. 7(6), 1900022 (2019). <u>https://doi.org/10.1002/ente.201900022</u>
- [S8]Z. Qi, T. Xiong, Z.G. Yu, F. Meng, B. Chen et al., Suppressing zinc dendrite growth in aqueous battery via Zn–Al alloying with spatially confined zinc reservoirs. J. Power Sources 558, 232628 (2023). https://doi.org/10.1016/j.jpowsour.2023.232628
- [S9] Y.-Y. Liu, G.-Q. Yuan, X.-Y. Wang, J.-P. Liu, Q.-Y. Zeng et al., Tuning electronic structure of ultrathin V₆O₁₃ nanobelts via nickel doping for aqueous zinc-ion battery cathodes. Chem. Eng. J. **428**, 132538 (2022). <u>https://doi.org/10.1016/j.cej.2021.132538</u>
- [S10] J. Shin, D.S. Choi, H.J. Lee, Y. Jung, J.W. Choi, Hydrated intercalation for high-performance aqueous zinc ion batteries. Adv. Energy Mater. 9(14), 1900083 (2019). <u>https://doi.org/10.1002/aenm.201900083</u>
- [S11] X. Wang, L. Ye, Y. Zou, L. Zhao, Q. Jiang, Constructing ultra-long life and super-rate rechargeable aqueous zinc-ion batteries by integrating mn doped V₆O₁₃ nanoribbons with sulfur-nitrogen modified porous carbon. Mater. Today Energy 19, 100593 (2021). <u>https://doi.org/10.1016/j.mtener.2020.100593</u>
- [S12] K. Wang, F. Liu, Q. Li, J. Zhu, T. Qiu et al., An electrolyte additive for interface regulations of both anode and cathode for aqueous zinc-vanadium oxide batteries. Chem. Eng. J. 452, 139577 (2023). <u>https://doi.org/10.1016/j.cej.2022.139577</u>
- [S13] M. Chen, H. Kimura, X. Yang, H. Huang, C. Hou et al., Carbon reduction assist structured preparation stable three-dimensional V₆O₁₃ for durable aqueous zinc-ion batteries. J. Power Sources 580, 233332 (2023). <u>https://doi.org/10.1016/j.jpowsour.2023.233332</u>