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Interface Engineering of Titanium Nitride Nanotube 
Composites for Excellent Microwave Absorption 
at Elevated Temperature
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HIGHLIGHTS

• The boosted heterogeneous interfaces in titanium nitride (TiN) nanotube/polydimethylsiloxane (PDMS) composite contributed to 
strong polarization loss relaxation ability.

• The TiN nanotubes/PDMS composite possessed both good impedance matching behavior and strong dielectric loss ability in wide 
temperature spectrum.

• The TiN nanotubes/PDMS composite exhibited excellent EMWA performances (effective absorption bandwidth value of 3.23 GHz 
and minimum reflection loss value of − 44.15 dB) at the varied temperature from 298 to 573 K.

ABSTRACT Currently, the 
microwave absorbers usually 
suffer dreadful electromagnetic 
wave absorption (EMWA) per-
formance damping at elevated 
temperature due to imped-
ance mismatching induced by 
increased conduction loss. Con-
sequently, the development of 
high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a 
top priority. Herein, due to the high melting point, good electrical conductivity, excellent environmental stability, EM coupling effect, and 
abundant interfaces of titanium nitride (TiN) nanotubes, they were designed based on the controlling kinetic diffusion procedure and Ostwald 
ripening process. Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane (PDMS), enhanced 
polarization loss relaxations were created, which could not only improve the depletion efficiency of EMWA, but also contribute to the opti-
mized impedance matching at elevated temperature. Therefore, the TiN nanotubes/PDMS composite showed excellent EMWA performances 
at varied temperature (298–573 K), while achieved an effective absorption bandwidth (EAB) value of 3.23 GHz and a minimum reflection 
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loss  (RLmin) value of − 44.15 dB at 423 K. This study not only clarifies the relationship between dielectric loss capacity (conduction loss and 
polarization loss) and temperature, but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.

KEYWORDS TiN nanotubes; Interface engineering; Polarization loss; Impedance matching; Electromagnetic wave absorption 
performance

1 Introduction

With the explosive development of electronic devices and 
wireless communication, the complex environment requires 
electromagnetic wave absorption (EMWA) materials that can 
cope with temperature changes [1–5]. The tremendous efforts 
have been devoted to exploring high-performance absorbers 
from two aspects: optimized impedance matching and strong 
EMW attenuation ability [6, 7]. According to the Debye the-
ory, dielectric loss is function of temperature and consisted of 
polarization loss ( �′′

p
 ) and conduction loss ( �′′

c
): 

��� = ���
p
+ ���

c
= (�s − �∞)

��

1+�2�2(T)2
+

�(T)

�0�
 , in which �0 , �∞ , 

�s , � , � , and �(T) = Ae−E∕2kT is dielectric constant in vacuum, 
relative dielectric permittivity at the high frequency limit, 
static permittivity, relaxation time, angular frequency and 
temperature-dependent conductivity, respectively [7–9]. The 
electrons can hop and migrate in a conductive network under 
an EM field. With the rise of temperature, more electrons will 
be thermally activated to hop across the potential barrier and 
migrate faster, resulting in the boosted conductivity ( �(T) ) 
and conduction loss ( �′′

c
 ) [7]. However, the enhanced conduc-

tivity will induce strong eddy current and lead to the imped-
ance mismatching [7]. Differently, the interfacial polarization 
loss decreases with increasing the temperature, resulting in 
the weak loss ability and inferior EMWA performances [10]. 
According to the abovementioned analysis, the �′′

c
 and �′′

p
 with 

temperature dependence bring about the opposite temperature 
effect of dielectric loss. Therefore, it is imperative to have both 
good impedance matching and strong loss ability to achieve 
the high-performance EMWA in a fluctuating temperature 
environment [7, 8].

Recently, the dielectric composites with excellent tempera-
ture resistance characteristic and multiple loss mechanisms 
have garnered considerable attention [11]. For example, Cao 
et al. fabricated graphene/silica dioxide  (SiO2) composites 
with a low filler content, which exhibited the stable imped-
ance matching from 323 to 473 K due to the relative low 
conduction loss ratio [12]. Yin et al. prepared silicon carbide 
fibers/silicon nitride  (SiCf/Si3N4) composite, which showed 

the relatively reliable high-temperature EMWA performances 
up to 873 K ascribed to the good impedance matching caused 
by improving the compensating effect of the decreased inter-
facial polarization loss [13]. Shi et al. synthesized titanium 
nitride/boron nitride (TiN/BN) nanocomposites that exhibited 
the steady broadband EMWA (maximum effective absorption 
bandwidth: EAB = 3.26 GHz, minimum EAB = 2.71 GHz) in 
the temperature range of 293–873 K, in which insulating BN 
both prevented TiN nanoparticles from agglomerating and 
provided additional interfacial polarization loss ability [14]. 
Besides components regulation, reasonable structural design 
was another effective strategy to improve impedance matching 
and achieve high-performance absorbers [15–27]. For exam-
ple, Yin et al. constructed red blood cell like-mesoporous car-
bon hollow microspheres and sandwich-like reduced graphene 
oxide (RGO) and  Si3N4 ceramic (RGO/Si3N4) composites, 
finding that the specific structure could result in boosting 
the interfacial polarization, which decreased with elevated 
temperature and compensated the increased �′′

c
 , dramatically 

contributing to the improvement of impedance matching at 
rising temperature [25, 26]. The optimized EMWA properties 
originated from the compensation effect of the decrease in 
polarization loss and increase in conduction loss at elevated 
temperature. Very recently, Jiang et al. created the pomegran-
ate-like antimony-doped tin dioxide (ATO)/SiO2 spheres via 
a simple spray drying process, RL could reach − 47.3 dB at 
573 K and EAB was 2.4 GHz, which was attributed to the 
effective local conductive network and abundant heterogene-
ous interfaces [3]. Evidently, abundant heterogeneous inter-
faces not only caused more intense polarization loss, but also 
modulated the EM parameters to improve the impedance 
matching, which provided an effective strategy for attenuat-
ing EMWs with temperature changes. Though developing a 
high-performance absorber with high polarization loss perfor-
mance have been attracted, the inherent relationship between 
dielectric loss capacity (conduction loss and polarization loss) 
and temperature is still unclear. Up to now, there are few stud-
ies on exquisitely designed dielectric property, especially, the 
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detailed variation of polarization loss mechanism in wide tem-
perature spectrum [28].

Encouraged by the above consideration, the synergistic 
effect of components and structures contributes to the excel-
lent EMWA performance at elevated temperature. Compared 
with other high-temperature ceramic material, such as silicon 
carbide (SiC), which needs doping approach to improve the 
loss ability of EMWs, TiN exhibits great potential as a high-
temperature EMW absorber, attributed to the advantages of 
high melting point, high electrical and thermal conductivi-
ties, excellent environmental stability and EM coupling effect 
[29, 30]. Besides, the nanotubes architecture is deemed as 
the crucial branch of structure manipulation in increasing 
the EMWA due to its ultralow density, large interspace and 
ample interfaces, which can boost interfacial polarization, 
multiple scattering, and further increase the loss ability [15, 
23]. In this work, to obtain satisfied impedance matching 
and strong EMWs attenuation capacity at high temperature, 
we ingeniously fabricated TiN nanotubes by electrospinning 
and thermal treatment method, according to the kinetic dif-
fusion procedure and Ostwald ripening [31]. Compared to 
the TiN nanofibers/polydimethylsiloxane (PDMS) compos-
ite, the TiN nanotubes/PDMS composite exhibited the more 
abundant heterogeneous interfaces between TiN nanotubes 
and PDMS matrix inside the TiN nanotubes, which contrib-
uted to not only enhancing the interfacial polarization inten-
sity, but also optimizing the impedance matching at elevated 
temperature (298–573 K). As a result, the responding TiN 
nanotubes/PDMS composite showed high-efficiency EMWA 
performances at the varied temperature (298–573 K), while 
achieved an EAB value of 3.23 GHz and a  RLmin value of 
− 44.15 dB at 423 K, which indicated that constructing TiN 
nanotubes was an effective engineering to prepare high-per-
formance EMW absorbers. Here, the interface engineering 
induced by well-designed nanotubes-structure enables as-
prepared composites to achieve the strong dielectric losses, 
as well as the good impedance matching performance, which 
provides a new strategy for future high-temperature absorber 
design and refresh realization of EM loss mechanisms.

2  Experimental Section

2.1  Materials

Tetrabutyl titanate (Ti(OC4H9)4, TBT) was obtained 
from Tianjin Kemiou Chemical Reagent Co., Ltd; poly-
vinylpyrrolidone (PVP, K88-96) and iron acetylace-
tonate (Fe(C5H7O2)3) were supplied from Aladdin Rea-
gent (Shanghai) Co., Ltd; polydimethylsiloxane (PDMS, 
SYLGARD(R)184) was purchased from Dow Corning Co., 
Ltd, respectively. All the raw materials were directly used 
without further purification.

2.2  Preparation of TiN Nanotubes

TiN nanotubes were fabricated via a simple electrospin-
ning and subsequent calcination process. 0.6 g PVP and 
0.606 mmol Fe(C5H7O2)3 was added into a mixed solution 
containing 10.15 mL ethanol, 3.8 mL acetic acid and 3.8 mL 
TBT, followed by magnetic stirring for 30 min to assure the 
completely dissolution of PVP and form a light yellow spin-
ning solution. It was sucked by a 5 mL medical syringe with 
a specific needle (outer diameter: 0.8 mm, inner diameter: 
0.5 mm). Through the electrospinning apparatus with a 14.5 
and − 2.5 kV voltage and a 0.25 mm  min−1 solution feed 
rate, 20 cm receiving distance, the precursor was prepared, 
then dried at 150 °C for 24 h to obtain the spinning sample. 
Finally, the spinning sample was pretreated at 500 °C for 2 h 
with 1 °C  min−1 heating rate under air atmosphere and was 
further nitrided at 900 °C for 4 h with 5 °C  min−1 heating 
rate under  NH3 atmosphere to produce TiN nanotubes. For 
comparison, TiN nanofibers with different hollow structure 
were also prepared by the similar route with different TBT 
amount (5.05 mL, 3.8 mL) and heating rate under air atmos-
phere (2, 0.5 °C  min−1).

2.3  Fabrication of TiN/PDMS Composites

The TiN/PDMS composites filled with 25 wt% TiN were 
fabricated by uniformly mixing TiN in PDMS matrix and 
corresponding curing agent under stirring at a speed of 
2000 r  min−1 for 10 min by centrifugal defoaming machine 
to ensure uniform dispersion, pouring into the mold 
(22.86 mm × 10.16 mm × 2 mm) and degassing at room 
temperature for 10 min in the vacuum oven to completely 
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eliminate the gas, then placing in the oven for curing thor-
oughly at 80 °C for 3 h.

2.4  Characterization

The morphology of TiN with different hollow structure 
was observed by scanning electron microscopy (SEM, Carl 
Zeiss Gemini 500) and transmission electron microscopy 
(TEM, Hitachi H-8100). Their structure and composition 
information were analyzed by the X-ray diffractometer 
(XRD, Bruker D8-Advance) and Raman spectra (Horiba 
LabRAM, laser excitation wavelength: 532 nm; exposure 
time: 3 s). The EM parameters of the corresponding TiN/
PDMS composites were obtained by a vector network 
analyzer (VNA) (Ceyear, 3672B-S) using the wave-guide 
method at the varied temperatures (298–573 K) in the 
X-band, as shown in Fig. S1. The TiN/PDMS composites 
were positioned vertically in the center of test chamber in 
Ar atmosphere with a heating rate of 5 °C  min−1, and each 
test temperature was held for 3 min to acquire accurate EM 
parameters, then the next set temperature point was fol-
lowed. Moreover, as a comparison, both the EM parameters 
and optical photographs of PDMS before and after test-
ing were also provided (as exhibited in Fig. S2), and they 
are almost consistent ( �′ and �′′ values were ≤ 3 and 0.1, 
respectively), proving that the prepared material possess 
good thermal stability.

3  Results and Discussion

3.1  Structural and Morphological Properties

To obtain the controllable manipulation of interface engi-
neering, TiN nanotubes are designed, as shown in Fig. 1a. 
Beginning with the thought of creating and triggering 
more heterogeneous interfaces, TiN nanotubes are dexter-
ously devised via changing the TBT amount and heating 
rate of pre-oxidation temperature. The TiN nanotubes are 
ultimately harvested by facile electrospinning and calcina-
tion methods with an aim of exchange reaction. Firstly, the 
uniform precursor nanofibers are prepared by an electro-
spinning method. Secondly, TiN nanotubes are created by 
the pre-oxidation and nitriding process, which are closely 
related with the decomposition of PVP, formation of TiN 

layer and diffusion of metal cations. Using 5.05 mL TBT 
and 2 °C  min−1 heating rate of pre-oxidation, the produced 
nanofibers are comprised of TiN nanoparticles, as shown in 
Fig. 1b. With the decrease in TBT (3.8 mL) and invariabil-
ity of heating rate of pre-oxidation (2 °C  min−1), the cor-
responding TiN nanofibers emerge a partial void (Fig. 1c). 
When the heating rate is 1 °C  min−1, the product becomes 
nanotube structure with the ~ 25 nm thin wall (Fig. 1d). 
Continue to reduce the heating rate (0.5 °C  min−1), TiN 
nanofibers become partial void (Fig. 1e). The result reveals 
that the formation of nanotubes is predominantly influenced 
by the TBT amount and heating rate of pre-oxidation, which 
is closely related with Ostwald ripening procedure and 
kinetic diffusion, leading to the in situ formation of TiN 
layer and diffusion of metal cations [31]. Reasonably, two 
opposing forces are acting simultaneously on the wall: con-
traction force (Fc) and adhesive force (Fa), which derives 
from the thermal degradation of organic species to facilitate 
the shrinkage of wall, and the rigid surface that restrains 
the inward shrinkage, respectively [31, 32]. Spontaneously, 
through applying the suitable TBT amount and heating rate 
of pre-oxidation, scilicet Fa = Fc, the wall will be created 
due to the interaction and dynamic equilibrium between Fc 
and Fa [31]. However, if TBT amount and heating rate of 
pre-oxidation is so much and fast, more TiN nanocrystals 
continuously diffuse outward and prefer to aggregate into 
larger particles, as shown in Fig. 1b, c, the Fc increases and 
the dynamic equilibrium is broken, thus the 1D nanofiber 
or/with partial void is generated [33]. Contrariwise, when 
the heating rate of pre-oxidation is slow, the decomposi-
tion of PVP is low, leading to the less Fc, which results in 
the nanofiber with partial void and small crystalline grain 
(Fig. 1e). Therefore, by rational controlling the Ostwald 
ripening and kinetic diffusion procedure, both the growth 
of TiN nanocrystalline and the diffusion kinetics of Ti ele-
ment could be regulated, which contribute to the formation 
of nanotube structure [31].

The crystalline structures and components of as-synthe-
sized TiN are revealed, based on XRD patterns and Raman 
spectra. The diffraction peaks at 36.8°, 42.8°, 62.1°, 74.4°, 
and 78.3° are indexed to the (111), (200), (220), (311), and 
(222) planes of face-centered cube TiN phase (PDF#38-
1420) (Fig. 1f), and no diffraction peaks are detected, 
implying the formation of pure TiN nanocrystalline. As to 
the Raman spectra (Fig. 1g), the distinctive peaks located 
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at 149, 311, 457, and 675  cm−1 are assigned to the non-
stoichiometric TiN, no other peaks are identified, which 
agrees with the XRD result [29]. Figure 1h, j shows the 
TEM images of the representative TiN nanotubes, and the 
nanoparticles are uniformly distributed in the surface to 
form the wall, which contains the homogeneous distribu-
tion of Ti, N, and O elements. Figure 1i exhibits the lat-
tice fringes of 0.207 nm, which can be indexed to (111) 
plane of TiN, and the obvious lattice mismatches and 
defects, such as lattice deformation, lattice dislocation and 

discontinuous fringe, are found [34]. The escape of gases 
during the carbonization process tends to cause a substan-
tial number of defects and lattice mismatches, prompting 
the generation of polar units due to the accumulation of 
charges at the interfaces induced by the diverse electri-
cal conductivities [35]. Thereby, ample heterogeneous 
interfaces are customized in TiN nanotubes, which are 
functioned as “polarization centers”, triggering strong 
polarization loss, which is conducive to the enhancement 
of polarization loss [36, 37]. Besides, a cross-sectional 
SEM image (Fig. 1k) of TiN nanotubes/PDMS composites 

Fig. 1  Schematic illustration of the fabrication process of a TiN and b–e SEM images of TiN with different hollow structure, which con-
tained different TBT amount and heating rate of pre-oxidation under air atmosphere: b 5.05 mL, 2 °C  min−1, c 3.8 mL, 2 °C  min−1, d 3.8 mL, 
1 °C  min−1, e 3.8 mL, 0.5 °C  min−1. XRD pattern (f) and Raman spectra (g) of TiN nanotube and TiN nanofiber, TEM images (h, i) and elemen-
tal mapping (j) of TiN nanotubes and cross-sectional SEM images (k) of TiN nanotubes/PDMS composites
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is described, which confirms the discrete distribution of 
TiN nanotubes in the PDMS matrix. Moreover, the PDMS 
matrix in the nanotubes could further increase the het-
erogeneous interfaces between TiN nanotubes and PDMS 
matrix. Thus, the interface engineering is not only benefi-
cial to enlarge the heterogeneous interfaces between filler 
and matrix and improve the interfacial polarization loss, 
but also conducive to enhance the impedance matching, 
leading to the more EMWs to interact with the absorber 
and further be attenuated, which contributes to obtaining 
the optimal EMWA performances.

3.2  Microwave Absorption Properties

Considering that the temperature and frequency response 
behavior of polarization relaxation process, to confirm the 
relationship between polarization loss and EMWA per-
formances, the influence of interface engineering on EM 
parameters (ε′ and ε″) of TiN/PDMS composites are inves-
tigated, while ε′ and ε″ imply the polarization and dielectric 
loss, respectively [38]. As shown in Fig. 2, ε′ values of TiN 
nanotubes/PDMS composite present the increased phenome-
non and noticeable frequency dissipation behavior (Fig. 2a), 
compared with those of TiN nanofibers/PDMS compos-
ite (Fig. 2d), revealing the boosted polarization [35, 38]. 
Specially, the polarized platform of TiN nanotubes/PDMS 
composite (Fig. 2a) in about 8.2–9.5 GHz induced by the 

Fig. 2  a, d ε′, b, e ε″, c, f tanδε and g, h Cole–Cole curves of TiN nanotubes/PDMS (a–c, g) and TiN nanofibers/PDMS (d–f, h) versus fre-
quency at 298–573 K. i The fitted average �′′

c
 and �′′

p
 of TiN nanotubes/PDMS versus 10–11 GHz at different temperature
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abundant heterogeneous interfaces implies the strong polari-
zation [38]. It is mainly due to the decrease in polarization 
hysteresis, indicating the typical polarization process [39]. 
Meanwhile, the frequency-dependence of ε″ values also 
displays obvious difference. One broad dielectric relaxation 
peak appears in TiN nanotubes/PDMS composite, while no 
evident relaxation peaks could be found in TiN nanofibers/
PDMS system, proving the link between composition/micro-
structure and strong polarization loss. It is mainly attributed 
that the TiN nanotubes can produce more heterogeneous 
interfaces between filler (TiN) and matrix (PDMS) inside 
the nanotube, which is beneficial to the generation of polari-
zation loss [17]. And, dielectric property difference between 
TiN and PDMS also lures the interfacial polarization [28]. 
The frequency-dependence of ε″ values of TiN nanotubes/
PDMS composite exhibits an evident lag phenomenon, 
meaning the boosted lagging of polarization and the corre-
sponding strong dielectric loss, which is attributed that the 
polar unit dissipates more EM energy to overcome the rota-
tional resistance and intrinsic energy [19]. With the incre-
mental temperature, the improved thermal motion enhances 
the orientation rotation of polar unit, therefore leading to 
the reduced polarization loss [19]. Meanwhile, the decrease 
in the energy required for charge movement at an elevated 
temperature makes polar unit movement more powerful and 
easier to keep up with changes in the EM field. Thus, accord-
ing to the above analysis, both ε″ values and dielectric loss 
character decrease with the increased temperature.

To verify the relaxation behaviors further, Cole–Cole 
curves ( �� − �s+�∞

2
)2 + (���)2 = (

�s−�∞

2
)2 ) are also provided, 

as shown in Fig. 2g, h, in which each semicircle is asso-
ciated with one Debye relaxation process [40, 41]. Com-
pared with those of TiN nanofibers/PDMS composite, the 
Cole–Cole curves of TiN nanotubes/PDMS composite main-
tain the perfectly smooth semicircle shape in 298–573 K 
without tail attributed to the increased effective hetero-
geneous interfaces and enhanced interfacial polarization 
intensity, indicating the strong polarization relaxation loss 
character [42]. Besides, the tan�� of TiN nanotubes/PDMS 
(0.02–0.66) is larger with respect to that of TiN nanofibers/
PDMS (0.02–0.21) in the whole measured frequency and 
temperature range, indicating the improved dielectric loss 
ability derived from the interface engineering, as shown in 
Fig. 2c, f [37].

To illustrate the inherent contribution of polarization 
loss ( �′′

p
 ) and conduction loss ( �′′

c
 ) on the dielectric loss 

( �′′ ), Fig. 2i compares the average �′′
c
 and �′′

p
 values of TiN 

nanotubes/PDMS composite located at 10–11 GHz, which 
corresponds the relaxation peaks. The �′′

p
 and �′′

c
 has been 

determined by the nonlinear least squares fitting method. 
The model function can be described as follows [43]:

To fit �′′
p
 and �′′

c
 as accurate as possible, the data are 

divided into 20 groups, and the �s , �∞ , � and � are fit-
ted firstly, corresponding to the method adopted by some 
research [19, 26, 43]. It is found that the average �′′

c
 and 

�′′
p
 values decline with the elevated temperature from 298 

to 573 K, according with abovementioned analysis of �′′ 
values. Meanwhile, it is obvious that �′′

p
 values gradually 

decrease at 298–423 K and dramatically reduce exceeded at 
473 K. When the temperature is 298 K, orientation rotation 
of polar unit requires enough high energy to overcome rota-
tional resistance and intrinsic energy, leading to the severe 
polarization lag and producing strong polarization loss in 
TiN nanotubes/PDMS composite, thereby the �′′

p
 value is 

high. As the temperature elevates (≥ 473 K), the external 
environment endows polar unit more energy, which makes 
it easier to overcome the orientation resistance and intrin-
sic energy. Therefore, the polarization lagging phenomenon 
could be alleviated, which results in a decreased contribution 
ratio on dielectric loss.

The EMWA performances are calculated based on the 
transmission line theory [48–50]:

where Zin and Z0 represent the input impedance of the 
absorber and impedance of free space, f, d and c corre-
spond to microwave frequency, thickness of the absorber 
and velocity of light, respectively; and �r ( �r = �� − j��� ) and 
�r ( �r = �� − j��� ) refer to the relative complex permittivity 
and permeability, respectively. When further investigating 
the impact of interface engineering on the performances of 
EMWA versus frequency and temperature, it could be found 
that TiN nanotubes/PDMS composite (Fig. 3a,  a1) exhibits 
relatively excellent EMWA capacity at 298 K, and the  RLmin 
value reaches − 31.64 dB at 9.23 GHz with 2.1 mm, and 
the EAB is 3.84 GHz (8.56–12.4 GHz). Moreover, the TiN 
nanotubes/PDMS composite possesses a high absorption 

(1)
� = �∞ + (�

s
− �∞)∕(1 + �2�2)

− i((�
s
− �∞)��∕(1 + �2�2) + �∕(��

0
))

(2)Zin = Zo(�r∕�r)
1∕2 tanh

[
j(2�fd∕c)(�r�r)

1∕2)
]

(3)RL(dB) = 20 log ||(Zin − Zo)∕(Zin + Zo)
||
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belt with one excellent EMWA ‘islands’ at 423 K, while 
the EAB can reach about 3.23 GHz and the optimal RL can 
be up to − 44.15 dB, demonstrating the gratifying EMWA 
performance within a broad temperature range (Fig. 3b). Yet, 
the  RLmin value of TiN nanofibers/PDMS composite is only 
− 7.53 dB at 298 K (Fig. 3c) due to the inferior impedance 
matching and weak loss ability. Compared with those of 
reported efficient absorbers at the varied temperature, which 
are summarized in Fig. 3d, the TiN nanotubes/PDMS com-
posite appears more significant advantages both in the EAB 
and wide temperature spectrum.

The impedance matching ( Z = ||Zin∕Zo|| ) and attenuation abil-

ity 
�

(������ − ����) +
√
(������ − ����)2 + (����� + �����)2  ) 

of absorbers are two determinants to regulate EMWA perfor-
mances [51–56]. When the Z gets closer to 1, it means that the 
more EMWs can enter the interior of the material, revealing 
the generation of stronger reflection loss. Meanwhile, when the 
� is higher, it indicates the stronger EMWs attenuation abil-
ity. A good balance between Z and � contributes to producing 
EMWA performances. Compared with those of TiN nanofib-
ers/PDMS composite (Fig. 4b, d), Fig. 4a, c exhibits the good 

Fig. 3  Microwave absorption properties (a–b1) of TiN nanotubes/PDMS (a, a1) and TiN nanofibers/PDMS (b, b1), EAB and  RLmin values (c), 
and comparison of EMWA performances with reported efficient absorbers (d) [44–47]
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impedance matching and large attenuation constant of TiN 
nanotubes/PDMS composite. The nanotube structure promotes 
better penetration of EMWs into the material, thereby serv-
ing as an “effective medium” for impedance matching [15]. 
Besides, the electrical characteristic also varies remarkably at 
the grain boundaries of heterogeneous interfaces, the diverse 
charge density functions as the condition to create capacitor-
like structure and forms interfacial polarization with the syn-
ergism of heterogeneous interfaces [15]. Apparently, the strat-
egy of interface engineering induces the ample heterogeneous 
interfaces, which can cause the multiple scattering routes of 
EMWs and serve as traps to capture and consume EMWs, 
as well as enlarge the electrical characteristic, ameliorating 
the polarization relaxation and conduction losses, effectively 
enhancing the absorptive capacity and EMWA performances 
[15, 57].

The interface engineering modulates the polariza-
tion loss in the TiN nanotubes/PDMS composite, which 
endows the optimized impedance matching and enhanced 
attenuation ability. Specifically, TiN nanofibers/PDMS 
composite with poor dielectric parameters and EMWA 

performances shows a weakened response to EMWs. 
When nanotube exists in the TiN nanotubes/PDMS com-
posite, the abundant heterogeneous interfaces are created. 
The boosted polarization loss induced by interface engi-
neering confers the enhanced loss ability and strong EM 
response. Excellent EMWA performances are mainly due 
to the following factors: (1) the better impedance match-
ing and stronger attenuation ability of TiN nanotubes/
PDMS composite allows more EMWs to enter the inte-
rior of TiN nanotubes/PDMS composite and be further 
attenuated (Fig. 5a), which is conductive to enhance the 
EMWA performances [58]. (2) The incident EMWs are 
trapped in the TiN nanotubes/PDMS composite and can 
be further consumed by the multiple scatting effect until 
they are exhausted (Fig. 5b), contributing to improving 
the loss ability [20, 59]. Meanwhile, the construction of 
TiN nanotubes is beneficial to increase the contact area 
between EMWs and absorber, and further boost the loss 
ability. (3) Compared with TiN nanofibers, we propose 
TiN nanotube microstructure to produce more heteroge-
neous interfaces, which can generate charge redistribu-
tion, transfer, and accumulation, hence contributing to 

Fig. 4  a, b Impedance matching and c, d attenuation constant of TiN nanotubes/PDMS (a, c) and TiN nanofibers/PDMS (b, d) composites
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reinforcing the conduction loss and interfacial polariza-
tion [60, 61] (Fig. 5c). The rational design of TiN nano-
tube, in which PDMS matrix can enter into the nano-
tube to provide the abundant heterogeneous interfaces 
between conductive TiN and insulating PDMS matrix, 
producing the enhanced interfacial polarization, which 
is beneficial to increase the loss capacity [26, 62–66]. 
Meanwhile, the polar unit requires more EM energy to 
overcome the rotational resistance and intrinsic energy, 
prompting the improvement of polarization loss and loss 
ability. Undoubtedly, interface engineering strategy elab-
orates the relationship between loss ability and variable 
temperature, and grants TiN nanotubes/PDMS compos-
ite more loss mechanism to obtain the high-performance 
EMWA.

4  Conclusions

In summary, we have presented the fabrication of TiN 
nanotubes to investigate the underlying correlation between 
polarization loss and variable temperatures, wherein tem-
perature-dependent polar units enable modulation of polar-
izability. By the design of interface engineering, the strong 
polarization loss was obtained, which was a slight variation 
at 298–423 K, yet decreased dramatically exceeded 423 K. 
As a result, excellent EMWA performances with optimal 
RL of -44.15 dB and broad EAB of 3.23 GHz at 423 K were 
achieved ascribed to both good impedance matching and 
strong loss ability. Here, the nanotube with ample heteroge-
neous interfaces serve as a pivotal structure in the improve-
ment of interfacial polarization, which provides a strategy 
for polarization control of EMWA performance and makes 
it possible to further investigate the effect of the dielectric 
polarization behavior.

Fig. 5  Mechanism of TiN nanotubes/PDMS for EMWs attenuation: a impedance matching, b multiple scattering, c polarization loss and con-
duction loss
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