Supporting Information for

Ultrathin and Flexible CNTs/MXene/Cellulose Nanofibrils Composite Paper

for Electromagnetic Interference Shielding

Wentao Cao^{1,2}, Chang Ma², Shuo Tan¹, Mingguo Ma^{2, *}, Pengbo Wan^{3, *}, Feng Chen^{1, *}

¹Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, People's Republic of China

²Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, People's Republic of China

³Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

*Corresponding authors. E-mail: mg_ma@bjfu.edu.cn (Mingguo Ma); pbwan@mail.buct.edu.cn (Pengbo Wan); fchen@tongji.edu.cn (Feng Chen)

Supplementary Figures and Tables

Fig. S1 Schematic illustration of the preparation of Ti₃C₂ nanosheets

Fig. S2 a Digital image and b SEM images of Ti_3AlC_2 precursor (MAX phase). c Digital image and d SEM images of multilayered Ti_3C_2 MXene

Fig. S3 XRD patterns of Ti₃AlC₂ precursor and Ti₃C₂ nanosheets

Fig. S4 Ti 2p spectra of Ti₃AlC₂ precursor and Ti₃C₂ nanosheets

Fig. S5 a AFM image, and b height cutaway view of Ti₃C₂ nanosheets

Fig. S6 Digital photographs of Ti_3C_2 suspension, CNTs aqueous dispersion, and CM composites with various Ti_3C_2 content

Fig. S7 The pore size distribution curve of CNTs

Fig. S8 a Top-view SEM and EDS mapping images of Ti_3C_2 -CNTs composite paper. **b** Cross-sectional SEM and EDS mapping images of Ti_3C_2 -CNTs composite paper

Fig. S9 Cross-sectional SEM images of a CM-5, b CM-10, and c CM-15

Fig. S10 Cross-sectional SEM and EDS mapping images of the free-standing CMC mixture composite paper

Fig. S11 a CMC GS composite paper was pressed with a weight of 200 g. **b** The CMC GS composite paper was not broken or cracked after pressed

Fig. S12 a The tensile strengths and tensile strains of pure Ti_3C_2 , CMC mixture, and CMC composite paper. b The toughness and young's modulus of pure Ti_3C_2 , CMC mixture, and CMC composite paper

Fig. S13 Tensile stress-strain curves of the Ti₃C₂-CNTs composite paper and the pure CNFs paper

Fig. S14 The EMI SE of pure Ti₃C₂ paper and single-layered CM in the X-band region

Fig. S15 a SE_A and b SE_R of single-layered TONFC, CM-5, CM-10, and CM-15 in the X-band region

Fig. S16 a SE_A, and b SE_R of evenly distributed CM composite paper and two-layered CM composite paper with different gradient structures in the X-band

Fig. S17 a SE_R, and b SE_A of CMC GS composite paper with different gradient structures

Fig. S18 The electrical conductivity of CMC mixture paper and CMC GS composite paper.

Sample	Tensile strength (MPa)	Fracture strain (%)Toughness (MJ m-3)		Young's modulus (GPa)	
Ti ₃ C ₂ MXene	4.9 ± 1.0	0.9 ± 0.1	0.010 ± 0.005	0.10 ± 0.05	
Ti ₃ C ₂ -CNTs	2.4 ± 1.3	0.8 ± 0.4	0.0019 ± 0.0004	0.25 ± 0.1	
CNFs	95.7 ± 13.7	5.1 ± 1.7	1.8 ± 0.5	2.5 ± 0.1	
CMC mixture	94.9 ± 7.4	3.6 ± 0.2	1.8 ± 0.5	1.1 ± 0.2	
CMC GS	97.9 ± 5.0	4.6 ± 0.2	2.1 ± 0.2	2.6 ± 0.2	

 Table S1 The mechanical properties of different samples

Туре	Sample		Thickness	SE	SSE/t (dB	DC
		wraterials	(mm)	(dB)	cm ² g ⁻¹)	Keis.
Metal- based	1	Ag NW	0.5	35	2416	[S1]
	2	Cu foil	0.0001	70	7812	[S2]
	3	Ni fiber/PES	2.85	58	109	[S3]
	4	Ni filaments/PES	2.85	87	165	[S4]
	5	CuNi-CNT	1.5	54.6	1580	[S5]
	6	CuNi foam	1.5	25	690	[S5]
	7	Copper	3.1	90	32	[S3]
Carbon- based	8	Graphene/PDMS	0.1	20	3330	[S6]
	9	rGO	2.5	45.1	692	[S7]
	10	rGO/PS	2	29	258	[S8]
	11	rGO/Fe ₃ O ₄	0.3	24	1033	[S4]
	12	rGO/PEDOT	0.8	70	841	[S9]
	13	MWCNT/WPU	0.1	21.1	5410	[S10]
	14	MWCNT/PC	2.1	39	164	[S11]
	15	MWCNT/ABS	1.1	50	433	[S12]
	16	MWCNT/PS	2	30	285	[S13]
	17	SWCNT/PS	1.2	18.5	275	[S14]
	18	SWCNT/epoxy	2	25	72	[S15]
	19	Carbon foam	0.2	40	1250	[S16]
	20	Carbon/PN resin	0.2	51.2	1705	[S17]
	21	CB/ABS	1.1	20	190	[S12]
	22	CB/EPDM	2	18	15	[S18]
MXene-	23	Ti ₃ C ₂ T _x /CNFs	0.047	24	2647	[S19]
based	24	Ti ₃ C ₂ T _x /rGO/epoxy	2	56.4	9400	[S20]
This work	25	CMC mixture	0.038	23.4	5219	
	26	CMC GS-1	0.038	37.7	7874	
	27	CMC GS-2	0.038	38.4	8020	

 Table S2 Comparison of the EMI shielding performance of the CMC GS composite paper with other reported materials

NW: nanowire; PES: polyethersulfone; CNT: carbon nanotube; PDMS: poly(dimethyl siloxane); rGO: reduced grapheme oxide; MWCNT: multi-walled carbon nanotube; SWCNT: single-walled carbon nanotube; PS: polystyrene; WPU: water-borne polyurethane; CNFs: cellulose nanofibers; CMC GS-1: U5/1-4-10/1-4-S15/1; CMC GS-2: U15/1-4-10/1-4-S5/1

Supplementary References

- [S1] J. Ma, K. Wang, M. Zhan, A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 5(80), 65283-65296 (2015). https://doi.org/10.1039/c5ra09507g
- [S2] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi,

Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science **353**(6304), 1137-1140 (2016). https://doi.org/10.1126/science.aag2421

- [S3] X.P. Shui, D.D.L. Chung, Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J. Electron. Mater. 26(8), 928-934 (1997). https://doi.org/10.1007/s11664-997-0276-4
- [S4] W.-L. Song, X.-T. Guan, L.-Z. Fan, W.-Q. Cao, C.-Y. Wang, Q.-L. Zhao, M.-S. Cao, Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 3(5), 2097-2107 (2015). https://doi.org/10.1039/c4ta05939e
- [S5] K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a cu-ni alloy integrated with CNTs. Appl. Surf. Sci. 311(351-356 (2014). https://doi.org/10.1016/j.apsusc.2014.05.067
- [S6] Z. Chen, C. Xu, C. Ma, W. Ren, H.-M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296-1300 (2013). https://doi.org/10.1002/adma.201204196
- [S7] D.-X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.-G. Ren, J.-H. Wang, Z.-M. Li, Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559-566 (2015). https://doi.org/10.1002/adfm.201403809
- [S8] D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang, Z.-M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772-18774 (2012). https://doi.org/10.1039/c2jm32692b
- [S9] N. Agnihotri, K. Chakrabarti, A. De, Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv. 5(54), 43765-43771 (2015). https://doi.org/10.1039/c4ra15674a
- [S10] Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26(2), 303-310 (2016). https://doi.org/10.1002/adfm.201503579
- [S11] S. Pande, A. Chaudhary, D. Patel, B.P. Singh, R.B. Mathur, Mechanical and electrical properties of multiwall carbon nanotube/polycarbonate composites for electrostatic discharge and electromagnetic interference shielding applications. RSC Adv. 4(27), 13839-13849 (2014). https://doi.org/10.1039/c3ra47387b
- [S12] M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: A comparative study. Carbon **60**, 146-156 (2013).

https://doi.org/10.1016/j.carbon.2013.04.008

- [S13] M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(14), 5126-5134 (2012). https://doi.org/10.1016/j.carbon.2012.06.053
- [S14] Y.L. Yang, M.C. Gupta, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131-2134 (2005). https://doi.org/10.1021/nl051375r
- [S15] Y. Huang, N. Li, Y. Ma, D. Feng, F. Li et al., The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8), 1614-1621 (2007). https://doi.org/10.1016/j.carbon.2007.04.016
- [S16] F. Moglie, D. Micheli, S. Laurenzi, M. Marchetti, V.M. Primiani, Electromagnetic shielding performance of carbon foams. Carbon 50(5), 1972-1980 (2012). https://doi.org/10.1016/j.carbon.2011.12.053
- [S17] L. Zhang, M. Liu, S. Roy, E.K. Chu, K.Y. See, X. Hu, Phthalonitrile-based carbon foam with high specific mechanical strength and superior electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 8(11), 7422-7430 (2016). https://doi.org/10.1021/acsami.5b12072
- [S18] P. Ghosh, A. Chakrabarti, Conducting carbon black filled edpm vulcanizates: Assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur. Polym. J. 36(5), 1043-1054 (2000). https://doi.org/10.1016/s0014-3057(99)00157-3
- [S19] W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang, M.-G. Ma, F. Chen, Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacreinspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583-4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- [S20] S. Zhao, H.-B. Zhang, J.-Q. Luo, Q.-W. Wang, B. Xu, S. Hong, Z.-Z. Yu, Highly electrically conductive three-dimensional Ti₃C₂T_x mxene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances. ACS Nano 12(11), 11193-11202 (2018). https://doi.org/10.1021/acsnano.8b05739