Supporting Information for

Nitrogen-Doped Carbon Encased Bimetallic Selenide for High-Performance Water Electrolysis

Junhui Cao¹, Kexin Wang¹, Jiayi Chen¹, Chaojun Lei¹, Bin Yang¹, Zhongjian Li¹, Lecheng Lei¹, Yang Hou^{1, 2, 3, *}, Kostya (Ken) Ostrikov⁴

¹Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China

²Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China

³Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, People's Republic of China

⁴School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology Brisbane, QLD 4000, Australia

*Corresponding author. E-mail: <u>yhou@zju.edu.cn</u> (Yang Hou)

Supplementary Figures and Tables

Fig. S1 FESEM image of EG/CoNi-LDH

Fig. S2 TEM image of EG/CoNi-LDH

Fig. S3 XPS survey spectrum of EG/(Co, Ni)Se₂-NC

Fig. S4 Solar-energy driven water splitting with EG/(Co, Ni)Se₂-NC hybrid

Fig. S5 Solar-energy driven water splitting with EG/(Co, Ni)Se₂-NC hybrid and product collecting system

Fig. S6 XPS spectra of EG/(Co, Ni)Se₂-NC hybrid after OER test, **a** XPS survey spectrum; **b** high-resolution XPS spectrum of N 1s; **c** high-resolution XPS spectrum of C 1s; **d** high-resolution XPS spectrum of Se 3d

Fig. S7 a FESEM and b TEM images of EG/(Co, Ni)Se₂-NC hybrid after OER stability test

Fig. S8 Polarization curves of EG/(Co, Ni)Se₂-NC with different Co and Ni ratios, and EG/CoSe-NC and EG/Ni₃Se₂

Fig. S9 Polarization curves of EG/(Co, Ni)Se₂-NC, EG/(Co, Ni)Se₂, EG/CoSe-NC, EG/Ni₃Se₂, and Ir/C with mass activity

Fig. S10 C_{dl} plots of (Co, Ni)Se₂-NC, (Co, Ni)Se₂, CoSe-NC, and Ni₃Se₂

Fig. S11 High-resolution Co 2p XPS spectra from EG/CoSe and EG/(Co, Ni)Se₂-NC and high-resolution Ni 2p XPS spectra from EG/Ni₃Se₂ and EG/(Co, Ni)Se₂-NC

Fig. S12 Chronoamperometric *E-t* plot at 20 mA cm⁻² of EG/(Co, Ni)Se₂-NC hybrid, EG/(Co, Ni)Se₂, EG/CoSe-NC, EG/Ni₃Se₂ and commercial Ir/C catalyst

Table S1	Elemental	composition	of EG/(Co	Ni)Se ₂ -NC	via EDX	measurements
----------	-----------	-------------	-----------	------------------------	---------	--------------

Element	Line	Intensity (c/s)	Atomic %	Conc.	Units	Error 2-sig	
С	Ka	1.57	4.41	0.850	wt%	0.204	
Ν	Ka	0.27	0.635	0.143	wt%	1.037	
0	Ka	10.83	9.015	2.318	wt%	0.580	
Со	Ka	30.40	18.798	17.822	wt%	1.362	
Ni	Ka	36.40	19.815	18.786	wt%	1.620	
Se	Ka	9.95	47.327	60.081	wt%	12.339	
			100.000	100.000	wt%		Total

Table S2 Elemental composition of EG/(Co, Ni)Se2-NC via XPS measurements

	Height (CPS)	FWHM (eV)	Area (P) CPS (eV)	Atomic (%)
N 1s	566.4	-0.02	8834.91	0.44
C 1s	43555.82	1.29	72400.52	64.27
Co 2p	4655.47	1.11	42550.71	6.02
Ni 2p	3044.29	3.5	14041.36	6.94
Se 3d	7214.71	1.8	25341.37	16.51
O 1s	16730.05	2.71	52401.86	15.82

1		•		
Author	Catalyst	Current density J	Potential at the corresponding J (vs. RHE)	Electrolyte
This work	EG/(Co, Ni)Se ₂ -NC	10 mA cm ⁻²	1.49 V	1.0 M KOH
ACS Appl. Mater. Interfaces, 2019, 11, 8106	(Co,Ni)Se ₂ @Ni Fe LDH	10 mA cm ⁻²	1.51 V	1.0 M KOH
Mater. Lett., 2019, 235, 53	$Fe_{0.08}Co_{0.09}Ni_{0.83}Se_2$	10 mA cm ⁻²	1.50 V	1.0 M KOH
Nanoscale, 2018, 10, 22012	Co-Sn-Se,	10 mA cm ⁻²	1.53V	1.0 M KOH
J. Mater. Chem. A, 2018, 6, 18641	NiCoSe2@NiO@Co Ni2S4@CoS2/NF	30 mA cm ⁻²	1.54 V	1.0 M KOH
Electrochimica Acta, 2018, 265, 577	FCS@N-CT	10 mA cm ⁻²	1.56 V	1.0 M KOH
J. Mater. Chem. A, 2018, 6, 5999	Co LDH UTNSs	10 mA cm ⁻²	1.56 V	1.0 M KOH
ACS Sustain. Chem. Eng., 2018, 6, 10952	Y-S Ni-Co-Se/CFP	10 mA cm ⁻²	1.53 V	1.0 M KOH
J. Mater. Chem. A, 2018, 6, 7585	(Ni,Co) _{0.85} Se NSAs	20 mA cm ⁻²	1.52 V	1.0 M KOH
Chem. Commun., 2017, 53, 5412	CoNi ₂ Se ₄	10 mA cm ⁻²	1.39V	1.0 M KOH
ACS Catal., 2017, 7, 6394	(Ni,Co)Se ₂ -GA	10 mA cm ⁻²	1.48 V	1.0 M KOH
Electrochimica Acta, 2017, 250, 167	(Ni,Co)Se ₂ /C-HRD	10 mA cm ⁻²	1.48 V	1.0 M KOH
Adv. Funct. Mater., 2016, 26, 4661	NiCo ₂ S ₄ NW/NF	10 mA cm ⁻²	1.49 V	1.0 M KOH
Energy Environ. Sci., 2016, 9, 1771	Ni ₃ Se ₂	10 mA cm ⁻²	1.54 V	0.3 M KOH

Table S3 Comparison of OER performance of EG/(Co, Ni)Se₂-NC with other representative CoNi selenides based OER electrocatalysts