Supporting Information for

Rational Design of Layered SnS₂ on Ultralight Graphene Fiber

Fabrics as Binder-Free Anodes for Enhanced Practical Capacity of

Sodium-Ion Batteries

Zongling Ren¹, Jie Wen¹, Wei Liu¹, Xiaoping Jiang¹, Yanheng Dong³, Xiaolong Guo¹, Qiannan Zhao¹, Guipeng Ji¹, Ronghua Wang³, Ning Hu¹, Baihua Qu^{2, *}, Chaohe Xu^{1, 4, *}

¹College of Aerospace Engineering and The State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, People's Republic of China

²Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China

³College of Materials Science and Engineering, Chongqing University, Chongqing 400044, People's Republic of China

⁴MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, Chongqing University, Chongqing 400044, People's Republic of China

*Corresponding authors. E-mail: xche@cqu.edu.cn (Chaohe Xu); bhqu@xmu.edu.cn (Baihua Qu)

Supplementary Figures and Table

Fig. S1 SEM images of a GO, and b, c rGF

Fig. S2 The tensile strength of **a** rGF fiber and **b** rGF fabric. In the tensile experiment, the length of rGF fiber is 0.5 mm, and the size of fabric is 20 mm long, 5 mm wide, $14 \mu m$ thick

Fig. S3 a Optical photo of $SnS_2@rGF$ and $SnS_2@carbon cloth electrode. The weight of$ **b**rGF and**c**carbon cloth electrode,**d** $<math>SnS_2@carbon cloth electrode. SEM photos of the$ **e** $<math>SnO_2@carbon cloth and$ **f** $<math>SnS_2@carbon cloth$. In **Fig. S3a–d**, the diameter of all samples is 12 mm. It can be told obviously whether there is SnS_2 attached; rGF fabric samples are much lighter than the carbon cloth samples

Fig. S4 a-c SEM images, d elemental mapping images of the SnO₂@rGF

Fig. S5 EDX-STEM images of SnS2@rGF

Fig. S6 Thermogravimetric analysis (TGA) prifile of SnS2@rGF composites

In O₂ atmosphere, the SnS₂@rGF was heated to 700 °C, then turn into SnO₂. The remaining mass was 60.05 wt%, the mass percentage of SnS₂ was calculated by Eq. S1:

Mass Percentage = $\frac{\frac{M_{SnS_2}}{M_{SnO_2}} * 0.6005}{1} * 100\% = 67.2\%$ (S1)

Fig. S7 XPS spectra C1s region of GOF

Fig. S8 a cycle rate and **b** 2rd discharge-charge curves of the $SnS_2@rGF$, SnS_2 , and rGF electrode at a current rate of 0.5 A g⁻¹. **c** pristine, 50th cycle, and 100th cycle in a frequency range of 100 kHz to 0.1 Hz with AC voltage amplitude of 5 mV

Fig. S9 a-c SEM images, and **d** elemental mapping images of the SnS₂@rGF after 100 cycles

Fig. S10 XPS spectra of $SnS_2@rGF$ composites: **a** C 1s region, **b** S 2p region, **c** Na 1s region and **d** Sn 3d narrow scan spectra

Figure S10b shows that there is no peak corresponding to chlorine, so Na⁺ doesn't exist with a form of Sodium Perchlorate.

Refs.	Active	Substrate	If	Current	Electrolyte	Active Material	Reversible Specific	Specific Capacity
	Material		separated	Collector		Weight Percentage	Capacity before 50	(mAh g ⁻¹ , including
			Current			(%, including current	cycles (mAh g ⁻¹)	current collector)
			Collector			collector)		
[S1]	SnS ₂	Graphene,	yes	Copper foil	1 M NaClO ₄ in PC	32.24 wt%	600	194
		CNTs			and EC (1:1 by			
					volume) along with			
					5 wt% of FEC			
[S2]	SnS_2	Carbon	yes	Copper foil	1 M NaClO ₄ in PC	24.82 wt%	696	173
		hollow			and EC (1:1 by			
		structure			volume) along with			
					5 wt% of FEC			
[S3]	SnS ₂	Sea-sponge	yes	Copper foil	1 M NaClO ₄ in PC	21.17 wt%	530	112
		structure			and EC (1:1 by			
					volume) along with			
					5 wt% of FEC			
[S4]	SnS	CNTs	yes	Copper foil	1 M NaClO ₄ in PC	24.82 wt%	435	108
					and EC (1:1 by			
					volume) along with			
					5 wt% of FEC			
[S5]	SnS ₂	graphene	yes	Ni foam	1 M NaClO ₄ in PC	No collector density	582	/
					and EC (1:1 by	data		
					volume) along with			

Table S1 Comparison of sodium storage performance of different anode materials at current rate of 0.2 A g^{-1}

					5 wt% of FEC			
[S6]	SnS ₂	MWNTs, C	yes	Ni foam	1 M NaClO ₄ in PC	No collector density	910 (0.1 A g ⁻¹)	/
					and EC (1:1 by	data		
					volume) along with			
					5 wt% of FEC			
[S7]	SnS ₂	Carbon	no	/	1 M NaClO ₄ in PC	Not mentioned	1006	/
		paper			and EC (1:1 by			
					volume) along with			
					5 wt% of FEC			
[S8]	SnS ₂	Graphene	no	/	1 M NaClO ₄ in PC	52.5 wt%	1032	542
		nanoribbons			and EC (1:1 by			
					volume) along with			
					5 wt% of FEC			
[S9]	SnS	Carbon	Free-Standi	ng	·		444	/
		nanofiber	1 M NaClO	4 in PC and EC (1:	1 by volume) along with	n 5 wt% of FEC		
[S10]	SnS ₂	graphene	No	/	1 M NaClO ₄ in PC	Not mentioned	900	/
		foam			and EC (1:1 by			
					volume) along with			
					5 wt% of FEC			
This	SnS ₂	rGF fabric	no	/	1 M NaClO ₄ in PC	67.2 wt%	802	539
work					and EC (1:1 by			
					volume) along with			
					5 wt% of FEC			

All these data in this blank is found in original papers. The radium of electrode which is not mentioned in some papers is postulated as 12 mm, which actually has no influence on the calculation. The specific capacity (including current collector) is calculated on the basis of Eq. S2:

Specific Capacity = $\frac{\text{Reversible Specific Capacity Mentioned in Article}}{m_{active material} + m_{binder} + m_{collector}}$ (S2)

Comparison of the estimated mass loading based on commonly employed CF cloth (CeTech, WOS1002), Al foil (15 µm), Cu foil (9 µm), and our rGF fabrics.

Supplementary References

- [S1] J. Cui, S. Yao, Z. Lu, J.Q. Huang, W.G. Chong, F. Ciucci, J.K. Kim, Revealing pseudocapacitive mechanisms of metal dichalcogenide SnS₂/graphene-CNT aerogels for high-energy Na hybrid capacitors. Adv. Energy Mater. 8, 1702488 (2018). https://doi.org/10.1002/aenm.201702488
- [S2] Y. Liu, X.Y. Yu, Y. Fang, X. Zhu, J. Bao, X. Zhou, X.W. Lou, (David). Confining SnS₂ ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule 2(4), 725–735 (2018). https://doi.org/10.1016/j.joule.2018.01.004
- [S3] S. Chen, K. Xing, J. Wen, M. Wen, Q. Wu, Y. Cui, Hierarchical assembly and superior sodium storage properties of a sea-sponge structured C/SnS@C nanocomposite. J. Mater. Chem. A 6(17), 7631–7638 (2018). https://doi.org/10.1039/c8ta00833g
- [S4] P. He, Y. Fang, X.Y. Yu, X.W.D. Lou, Hierarchical nanotubes constructed by carbon-coated ultrathin sns nanosheets for fast capacitive sodium storage. Angew. Chem. Int. Ed. 56(40), 12202–12205 (2017). https://doi.org/10.1002/anie.201706652
- [S5] Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, X. Zhao, Few-layered SnS₂ on few-layered reduced graphene oxide as Na-ion battery anode with ultralong cycle life and superior rate capability. Adv. Funct. Mater. 25(3), 481–489 (2015). https://doi.org/10.1002/adfm.201402833

- [S6] Y. Zhao, B. Guo, Q. Yao, J. Li, J. Zhang, K. Hou, L. Guan, A rational microstructure design of SnS₂-carbon composites for superior sodium storage performance. Nanoscale 10(17), 7999–8008 (2018). https://doi.org/10.1039/c8nr01783b
- [S7] J.G. Wang, H. Sun, H. Liu, D. Jin, R. Zhou, B. Wei, Edge-oriented SnS₂ nanosheet arrays on carbon paper as advanced binder-free anodes for Li-ion and Na-ion batteries. J. Mater. Chem. A 5(44), 23115–23122 (2017). https://doi.org/10.1039/c7ta07553g
- [S8] Y. Liu, Y. Yang, X. Wang, Y. Dong, Y. Tang, Z. Yu, Z. Zhao, J. Qiu, Flexible paper-like free-standing electrodes by anchoring ultrafine SnS₂ nanocrystals on graphene nanoribbons for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(18), 15484–15491 (2017). https://doi.org/10.1021/acsami.7b02394
- [S9] J. Xia, L. Liu, S. Jamil, J. Xie, H. Yan et al., Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodiumion batteries. Energy Storage Mater. 17, 1–11 (2018). https://doi.org/10.1016/j.ensm.2018.08.005
- [S10] D. Chao, P. Liang, Z. Chen, L. Bai, H. Shen et al., Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 10(11), 10211–10219 (2016). https://doi.org/10.1021/acsnano.6b05566