Supporting Information for

Electrostatic Self-Assembly of 0D-2D SnO₂ Quantum Dots/Ti₃C₂T_x

MXene Hybrids as Anode for Lithium-Ion Batteries

Huan Liu^{1, #}, Xin Zhang^{2, #}, Yifan Zhu², Bin Cao², Qizhen Zhu², Peng Zhang², Bin Xu^{2, *}, Feng Wu¹, Renjie Chen^{1, *}

¹School of Materials Science & Engineering, Beijing Key Laboratory of Environmental Science and Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China

²State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

[#]Huan Liu and Xin Zhang contributed equally to this work.

*Corresponding authors. E-mail: chenrj@bit.edu.cn (R. Chen); binxumail@163.com (B. Xu)

Supplementary Figures

Fig. S1 a Digital photographs of SnO₂ QDs solution, MXene suspension, and SnO₂ QDs/MXene hybrid. **b** Zeta potential of SnO₂ QDs, MXene, and SnO₂ QDs/MXene-2. **c** SEM image of MXene nanosheets, and **d** corresponding particle size distribution of the SnO₂ QDs. **e** XRD patterns in low angle range and **f** Raman spectra of the samples

Fig. S2 a XPS curves, **b** the Sn 3d spectrum, and **c** N_2 sorption isotherms of SnO₂ QDs/MXene-52

Fig. S3 a CV curves of bare MXene and **b** pure SnO_2 QDs at a scan rate of 0.1 mV s⁻¹; Charge/discharge curves of **c** bare MXene and **d** pure SnO_2 at 50 mA g⁻¹