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Air‑Writing Recognition Using Wearable 
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HIGHLIGHTS

• Utilizing self-supervised learning, the proposed wearable wristband with a four-channel sensing array and wireless transmission 
module is developed for tracking air-writing and dynamic gestures.

• The model can learn prior features from unlabeled signals of random wrist movements, significantly reducing the dependency on 
extensive labeled data for training.

• The wristband system rapidly adapts to multiple scenarios after fine-tuning using few-shot data, enhancing user interaction through 
natural and intuitive communication.

ABSTRACT Wearable wristband systems leverage deep learning 

to revolutionize hand gesture recognition in daily activities. Unlike 

existing approaches that often focus on static gestures and require 
extensive labeled data, the proposed wearable wristband with self-
supervised contrastive learning excels at dynamic motion tracking 
and adapts rapidly across multiple scenarios. It features a four-chan-
nel sensing array composed of an ionic hydrogel with hierarchical 
microcone structures and ultrathin flexible electrodes, resulting in 
high-sensitivity capacitance output. Through wireless transmission from a Wi-Fi module, the proposed algorithm learns latent features 
from the unlabeled signals of random wrist movements. Remarkably, only few-shot labeled data are sufficient for fine-tuning the model, 
enabling rapid adaptation to various tasks. The system achieves a high accuracy of 94.9% in different scenarios, including the prediction of 
eight-direction commands, and air-writing of all numbers and letters. The proposed method facilitates smooth transitions between multiple 
tasks without the need for modifying the structure or undergoing extensive task-specific training. Its utility has been further extended to 
enhance human–machine interaction over digital platforms, such as game controls, calculators, and three-language login systems, offering 
users a natural and intuitive way of communication.
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1 Introduction

Gesture recognition, acknowledged as an intuitive and nat-
ural mode of communication, interprets intentional hand 
movements to convey significant information and has gar-
nered substantial attention in the field of human–machine 
interaction [1–3]. Common techniques for capturing hand 
movements include image recognition, radar systems, and 
wearable technology [4–6]. Bulky devices such as high-
resolution cameras, accelerometers, or radar systems are 
not suitable for daily wear [7–9]. In contrast, wearable 
devices offer an attractive alternative for monitoring hand 
movements and intentional gestures, as they can be seam-
lessly integrated into various accessories [10–12]. The 
choice of device placement significantly impacts both 
wearing comfort and the effectiveness of data acquisi-
tion [13, 14]. Given that most tendons and muscle groups 
responsible for hand movements are located beneath the 
wrist skin, wristbands offer an optimal placement option 
compared to positioning devices on the fingers or the back 
of the hand [15], providing high-sensitivity devices with 
the opportunity to precisely track subtle movements. The 
direct mapping of specific gestures has been widely rec-
ognized and developed. Wang et al. proposed a gesture 
recognition wristband by integrating a triboelectric nano-
generator and a piezoelectric nanogenerator, achieving 
a maximum accuracy of 92.6% in recognizing 26 letters 
[16]. Similarly, Wu et al. deployed seven triboelectric 
nanogenerator sensors into a smart wristband, successfully 
classifying 21 hand motions and enabling wireless con-
trol through air gestures [17]. These wristband-integrated 
systems enable static gesture recognition through specific 
finger gestures. However, the one-to-one mapping between 
specific gestures and information restricts the conveyable 
data, and excessive correspondence places a significant 
burden on the user. Therefore, there is an urgent need to 
develop intuitive mapping rules and recognition systems 
that align with user habits and cognitive processes.

Dynamic gestures based on air-writing utilize direct hand-
writing mapping rules for characters, which can optimize 
user experience and enhance information density [18–20]. 
Air-writing involves tracing letters or numbers by moving 
hands or fingers in free space to form a virtual text interface. 
It has proven valuable in scenarios where conventional writ-
ing methods are impractical, especially in translating sign 

language, improving experiences in augmented reality or 
virtual reality, and facilitating various gesture-driven inter-
faces [21–23]. For example, Liu et al. utilized a stretchable 
and conductive hydrogel strain sensor to recognize the entire 
dynamic process of air-writing 26 English letters [24]. This 
approach of recognizing multi-stroke characters significantly 
enhances the richness of dynamic information by tracking 
the spatial writing process while preserving the user’s natu-
ral habits [25].

However, the diversity in character forms and writing 
styles presents significant challenges for the recognition 
process. Recent advancements in deep neural networks for 
processing time-series or array data from wearable devices 
have opened up new possibilities for feature extraction and 
classification in complex tasks [26–28]. In combination 
with convolutional neural network algorithms, Li et al. 
designed a virtual text-entry interface using gloves inte-
grated with unimodal sensors for finger air-writing appli-
cations involving letters and numbers [29]. Although these 
algorithms have the capability to analyze and learn ges-
tures captured by wearable devices, they are constrained 
by conventional supervised learning methods, which heav-
ily rely on extensive manually labeled data for single-task 
execution, making them both time-consuming and labor-
intensive [30–33]. Adapting these systems to new users 
or incorporating new scenarios requires the collection of 
large amounts of new labeled data or modifications to the 
model architecture. This raises development and mainte-
nance costs, and extends system deployment time, under-
scoring their limitations in generalizability and scalability. 
Consequently, improving data processing efficiency and 
optimizing learning and training procedures to enhance 
user experience in air-writing systems is a significant 
challenge.

This study presents the development of a wearable 
fiber wristband designed for dynamic gesture recogni-
tion in human–computer interactions utilizing the time-
series cross-view fusion contrastive (TS-VFC) learning 
algorithm, as depicted in Fig.  1. This general learn-
ing framework can rapidly adapt to multiple scenarios 
without requiring extensive labeled data collection. The 
wristband, meticulously designed to accommodate the 
anatomical and muscular dynamics of the wrist, features 
an array of four flexible iontronic devices, coupled with 
a Wi-Fi module for wireless communication, ensuring 
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comfort during prolonged daily use. Each device consists 
of ultrathin electrodes (25 μm) made from silver nanow-
ires (AgNWs)/improved polyvinyl alcohol (PVA) and a 
hydrogel dielectric layer with microcone structures (Fig. 
S1). Consequently, its output signal exhibits high sensi-
tivity and precision in capturing subtle gestures. The TS-
VFC learning method collects unlabeled random motion 
data from the wrist, creating a latent time space (LTS) 
that encapsulates prior features. It enables the model to 
be fine-tuned for new users or scenarios with few-shot 
labeled data, thus eliminating the need for extensive 
training or model redesign. Our experiments demonstrate 
that transfer learning, with just 5-shot labeled data, can 
achieve accuracy rates of up to 94.9%. This capability 
allows the pre-trained model to rapidly adapt to different 
gesture recognition tasks, including directional move-
ments and air-writing of numbers and letters. Moreover, 
we showcased practical applications such as game control, 
calculator operation, and login systems, underscoring the 
practicality and potential for human–machine interaction. 
This wristband system effectively translates hand gestures 
into digital commands, making it a promising candidate to 
facilitate the interaction of diverse electronic interfaces.

2  Experimental Section

2.1  Materials

Acrylamide (AM, 99%), sodium carboxymethyl cellulose 
(CMC), N,N’-methylenebisacrylamide (MBAA, 99%), poly-
ethylene glycol diacrylate (PEGDA), lithium chloride (LiCl, 
99%), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide 
(TPO) and ethylene glycol (EG) were procured from Sigma-
Aldrich. The photoinitiator used was lithium phenyl(2,4,6-
trimethylbenzoyl) phosphinate (LAP) obtained from the 
Tokyo chemical industry, Tokyo, Japan. polydimethylsi-
loxane (PDMS) precursor and curing agent (Sylgard 184) 
were purchased from Dow Corning. AgNWs dispersions 
(DT-AGNW-N30-EOH) were supplied by Ditto Technology 
Co., Ltd. (South Korea). Improved PVA was purchased from 
Zhuzhou Shifeng New Blue Sky Materials Co., Ltd. (China). 
All chemical reagents were analytical grade and used without 
further purification.

2.2  Preparation of Iontronic Device

The device was fabricated by following the procedure out-
lined in Fig. S1. Initially, a resin mold featuring hierarchi-
cal microcones was created using a Stereolithography 3D 
printer (Formlabs Form 3). Subsequently, the PDMS precur-
sor and curing agent were coated onto the mold at a weight 
ratio of 10:1 and cured at 80 °C for 1 h. The resulting cured 
PDMS, with complementary patterns, was then peeled 
off and utilized as the second mold for the hydrogel. The 
hydrogel was prepared using AM as the monomer, CMC 
as the nanofiller, MBAA and PEGDA as crosslinkers, LiCl 
as conductive salts, and TPO as the photo-initiator. Specifi-
cally, the AM (16 wt%), CMC (2 wt%), MBAA (0.3 wt%), 
PEGDA (0.3 wt%), EG (5 wt%), and TPO (0.1 wt%) were 
dissolved in a 6 M LiCl aqueous solution at room tempera-
ture. Both AM and CMC were used for the hydrogel poly-
mer networks, and the inclusion of EG was beneficial for 
enhancing the dehydration resistance. EG not only protects 
the polymer interactions by forming stable ion clusters with 
 Li+, effectively reducing the hydration of the lithium salt, 
but also enhances the mechanical and electrical stability of 
the hydrogel system by forming hydrogen bonds with the 
AM/CMC network. Subsequently, the solution was trans-
ferred to the second PDMS mold, which was exposed to UV 
light (365 nm) for 6 min to polymerize into a cross-linked 
ionic hydrogel with hierarchical microcones. A commercial 
AgNWs dispersion was used for the flexible electrodes. The 
AgNWs were dispersed in ethanol at a concentration of 
0.01 mg  mL−1. The typical diameter and length of AgNWs 
are 20–40 nm and 10–20 μm, respectively. Before use, the 
solution was stirred vigorously for 3 min until the nanowires 
were evenly dispersed in the solution. The AgNWs solution 
was then sprayed onto a 25 μm improved PVA substrate 
using an air spray gun and left to air dry until the solvent 
had completely evaporated, resulting in the formation of 
AgNWs-coated PVA electrodes. As illustrated in the cross 
section of the SEM image in Fig. S1, the ultrathin electrode 
effectively converts pressure into capacitance changes with 
high sensitivity. This improved PVA material remains sta-
ble at room temperature and is durable under daily human 
activities and exposure to sweat, exhibiting solubility only 
in hot water (above 65 °C), as shown in Fig. S2. Finally, 
the iontronic sensing device was assembled by sandwich-
ing the ionic hydrogel with hierarchical microcones between 
two flexible AgNWs/PVA electrodes. This iontronic device 
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demonstrated superior sensitivity compared to traditional 
sensors using elastomeric dielectrics such as PDMS [34].

2.3  Design of Wireless Signal Acquisition Module 
and Software System

The wireless signal acquisition module contains a micro-
circuit board that includes a microcontroller, capacitance 
conversion chip, Wi-Fi wireless component (ESP-01S, see 
Table S1 for power consumption), and lithium polymer bat-
tery. Shielded wiring (AFPF, 0.035  mm2) was employed in 
our setup to minimize errors and prevent noise from radio 
frequency and electromagnetic interference (see Fig. S3 
for the quantitative comparison of noise reduction). This 
compact module captures and measures wrist movements, 
transmitting them to the host computer at a rate of 12.5 Hz. 
To facilitate communication with the wireless module, a 
server based on the TCP/IP protocol was established on 
a computer for data transmission. Moreover, a graphical 
interface was developed using the PyQt library in Python 
to enhance the visualization of digital signals collected 

from microcontrollers. Three different applications for 
human–machine interaction were developed to suit vari-
ous scenarios. Therefore, the computer continuously col-
lects real-time capacitance signals and transmits them to the 
learning network for multitask recognition. Informed written 
consent was obtained from all human subjects before par-
ticipation in the experiments.

2.4  Time‑Series Data Augmentation

In self-supervised contrastive learning, the design of diverse 
data augmentations plays a pivotal role in minimizing the 
distance between different views of the same sample while 
maximizing the distance from other samples [35, 36]. Tra-
ditional approaches for data augmentation in self-supervised 
contrastive learning typically create two random variants in 
the same direction from a sample x, resulting in two views, 
x1 and x2 , using the same augmentation cluster U , x1 ∼ U 
and x2 ∼ U . However, multiple experiments demonstrated 
that incorporating different data augmentation methods can 

Fig. 1  Illustration of the wearable wristband and air-writing prediction process. a Wristband containing four sensing devices (D1–D4) equipped 
with a wireless Wi-Fi module for air-writing recognition. b (i) Exploded view of the design layout of iontronic device, including AgNWs/PVA 
electrodes and photocurable ionic hydrogel with hierarchical microcones. (ii) Brief block diagram of the wristband system and the customized 
user interface. c Real-time prediction and display of air-writing through TS-VFC learning. Rapid adaptation process of directions, numbers, and 
letters: learning prior features from random wrist movements as LTS via TS-VFC learning, and fine-tuning with few-shot labeled data for rapid 
adaptation to diverse tasks
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enhance model representation robustness (Tables S2 and S3) 
[37]. Hence, we employed two distinct types of augmen-
tations: strong and weak. Weak augmentations introduced 
limited variations to the original signal, such as time shift-
ing and scaling. In contrast, strong augmentations introduce 
more significant perturbations in the shape of the signal 
while preserving its temporal trends. Upon conducting sys-
tematic research on various data augmentation methods (as 
presented in Table S2), we utilize scaling and jittering to 
generate weak augmentations, and jittering along with per-
mutation to generate strong augmentations [38]. For each 
input of unlabeled data x , we define weak and strong aug-
mentations as xs and xw , respectively, where xs ∼ Us and 
xw ∼ Uw.

2.5  Details of TS‑VFC Learning

Our TS-VFC learning process comprises three main parts: 
encoder, cross-view fusion module, and projection head. For 
an input sample x ∈ R4×32 , where the signal contains 4 chan-
nels and the window size is set to 32, high-dimensional fea-
tures are extracted using an encoder. We define Z = fenc(x) , 
Z =

[
z1,z2,⋯ zT

]
 , where T  indicates the total timesteps, 

zi ∈ Rd , and d denotes the feature length. In this task, we set 
the timestep T = 9 and feature length d = 128, Z ∈ R128×9. 
Thus, we acquire two augmented views Zs and Zw , which 
are the inputs of the fusion cross-view module.

We introduce a cross-view fusion method that facilitates 
semantic communication between views at different stages 
[39]. Ablation experiments (Table S3) show that the gener-
alization ability and accuracy of the model can be improved 
through fusion between views at different stages. The spe-
cific method is as follows: in the total range of timestep T  , 
Tr steps are arbitrarily chosen to split the high-dimensional 
feature vector Z into two parts, and we define them as 
Zk = {k|0 ≤ k < Tr},Zg = {g|T − Tr ≤ g ≤ T} .  Vk  i s 
obtained using the Transformer model, where Vk = ftra

(
Zk
)
 , 

which is used to fuse temporal view information Zg . The 
strong augmentation produces Vs

k
 and the weak augmentation 

produces Vw
k

 . For Vs
k
 generated by strong augmentation, con-

catenation fusion is performed with Zw
g

 generated by the 
weak augmentation, and vice versa. The generated fused 
feature vectors are defined as Vs

k,g
 and Vw

k,g
 . The Transformer 

is used for further feature extraction from the views to 

achieve cross-view fusion. It contains two main parts, multi-
head attention and multiplayer perceptron block. We stack 
four identical layers to generate the regression features. 
Inspired by the BERT model, we include token c as a repre-
sentative vector in the input features of the model [40].

The projection head is responsible for mapping the views 
to the LTS to learn more discriminative representations. 
Assuming that N input samples exist, two different augmen-
tation methods provide two views for each sample, 2N  in 
total. For Vi

k,g
 from the cross-view fusion module and another 

augmented view Vi+

k,g
 from the same sample, we consider 

them as positive pairs, while the remaining 2N − 2 samples 
are treated as negative pairs. Therefore, the objective is to 
maximize the similarity between positive pairs and minimize 
the similarity between negative pairs. The loss function 
LTS-VFC is defined as:

where sim(u, v) = uTv∕‖u‖‖v‖ denotes the cosine similarity 
between u and v . � symbolizes a temperature parameter and 
1[m≠i] ∈ {0,1} represents an indicator function, only when 
m ≠ i , 1[m≠i]=1.

The loss function of fine-tuning stage: upon completing 
the pre-training of the model, few-shot labeled data for spe-
cific tasks were collected to fine-tune the model. The cross-
entropy loss function Lfine is expressed as

2.6  Code and Data Availability

The source code used for TS-VFC Learning and source data 
in this study are available at https:// drive. google. com/ drive/ 
folde rs/ 18fM5 DNxor 0Ahy7 CXhHW jc5MG nI2cI Yrv? usp= 
shari ng.

3  Results and Discussion

3.1  Sensing Mechanism and Properties of Iontronic 
Device

The detailed illustration of the pressure-sensing mecha-
nism of the iontronic device is presented in Fig. 2a. The 

(1)LTS-VFC = −

N�

i=1

log
exp(sim(Vi

k,g
,Vi+

k,g
)∕�)

∑2N

m=1
�[m≠i] exp(sim(V

i
k,g
,Vm

k,g
)∕�)

,

(2)Lfine = −
∑N

i=1
yi log(ŷi).

https://drive.google.com/drive/folders/18fM5DNxor0Ahy7CXhHWjc5MGnI2cIYrv?usp=sharing
https://drive.google.com/drive/folders/18fM5DNxor0Ahy7CXhHWjc5MGnI2cIYrv?usp=sharing
https://drive.google.com/drive/folders/18fM5DNxor0Ahy7CXhHWjc5MGnI2cIYrv?usp=sharing
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photocurable hydrogel employed as the dielectric layer in 
the device plays a critical role in sensing. When voltage is 
applied across the AgNWs electrodes (Fig. 2b), cations and 
anions within the hydrogel migrate and gather at interfaces 
between electrodes and hydrogel, creating an electric dou-
ble layer (EDL) [41, 42]. The crucial characteristic of this 
layer is its nanometer-scale thickness, resulting in extremely 
high capacitance. Hierarchical microcones are incorporated 
within the dielectric hydrogel layer to enhance the contact 
area variation under pressure [43, 44]. Figures 2b and S1 
display hierarchical microcones with two different heights  
(680 and 500 μm), diameters (450 and 350 μm), and a spacing  
of 1200 μm. As demonstrated in the finite element simula-
tion in Fig. S4, the low pressure primarily influences the 
contact area variation of the higher microcones. As the 
pressure increases, smaller microcones sequentially contact 
the upper electrode after the compression of the taller ones. 
The resulting high interfacial capacitors  (CEDL1,  CEDL2…
CEDLn) are crucial for achieving high sensitivity because 
they undergo significant changes with variations in the con-
tact area owing to the pressure-induced deformation of the 
microcones.

Sensitivity, mathematically expressed as S = ∂(ΔC/C0)/∂P, 
C0 represents the initial capacitance without any applied 
pressure, ΔC expresses the variation in capacitance after 
applying pressure, and P denotes the applied pressure. Fig-
ure 2c illustrates the capacitance response curves of the ion-
tronic devices, both with and without hierarchical micro-
cones. In the case of the device featuring the microcones, 
sensitivity reaches 353   kPa−1 within the lower-pressure 
range and 25.8   kPa−1 in the higher-pressure range, out-
performing the device with a flat hydrogel layer across the 
entire pressure range. Owing to its high sensitivity and broad 
sensing range (150 kPa), the device maintains a high pres-
sure resolution throughout the pressure range. Thus, even 
under a preloaded high pressure of 42 kPa, the device can 
discern slight pressure variations (1.5 kPa), as depicted in 
Fig. 2d. Furthermore, it shows a fast response and recovery 
times of 5.6 ms during both loading and unloading pres-
sures. Furthermore, as illustrated in Fig. S5, the device 
exhibits excellent stability throughout the repeated loading 
and unloading processes at different pressures (2.5, 8, 13, 22, 
43, and 80 kPa). No significant differences in capacitance 
values were observed at the same pressure levels. Further-
more, the device exhibits stable and synchronous response 
during repeated bending at different angles (30°, 45°, 60°, 

and 80°), as shown in Fig. S6. To assess device durabil-
ity, a cyclic pressure of 30 kPa was applied over 15,000 
cycles, and the capacitive response is shown in Fig. S7. The 
inset displays the waveforms from the last few cycles of the 
device, which remained nearly unchanged throughout the 
test. Additionally, Fig. S8 illustrates that the output signal 
essentially maintains the same level after 11,000 cycles of 
bending at 65°, ensuring long-term use in daily activities.

3.2  Rapid Adaptation of Multi‑Scenario Tasks 
by Contrast Learning

Previous studies on wrist recognition models were limited by 
their specificity to individual tasks, lacking the adaptability 
to handle multiple scenarios [22, 23]. We aim to develop 
a robust and general model that can rapidly adapt to wrist 
movements in unfamiliar scenarios for daily tasks. Figure 2e 
depicts a block diagram that illustrates the entire prediction 
process. The wristband contains four iontronic devices worn 
on the wrist, complemented by an attached wireless Wi-Fi 
module to ensure user comfort and create a self-contained 
system (Fig. S9 and Movie S1). Instead of using labels to 
classify the four capacitance signals, the proposed model 
employs unlabeled random wrist-motion signals for self-
supervised contrastive learning, distinguishing it from tra-
ditional supervised algorithms. Using this approach, features 
from the sensor signals are autonomously learned, result-
ing in a separable feature space that enables classification 
for different tasks. The fundamental principle involves cal-
culating the similarity between the identical and different 
samples, creating the LTS with a strong representation of 
the signals generated by the smart wrist to represent prior 
index finger movements. Consequently, new users can rap-
idly engage in transfer learning for various tasks, facilitating 
the division of distinct samples. When undertaking a new 
task, only few-shot of wrist-motion data specific to that task 
need to be collected. These signals are then projected onto 
the LTS. Through metric calculations, primarily based on 
cosine similarity, and comparisons of these features with 
real-time inputs, precise predictions of wrist motion gestures 
can be displayed on the screen, even for tasks not included 
in the training set of the model.

To achieve rapid adaption to wrist motions across mul-
tiple scenarios, we propose a TS-VFC algorithm trained 
with a large amount of unlabeled time-series data. Figure 2f 
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illustrates the detailed architecture and workflow of the 
proposed algorithm, which contains three distinct stages. 
In the pre-trained stage, unique wrist movements and pos-
tures, generated by new users wearing the wristband, result 
in randomly changing signals from the devices. These unla-
beled signals are utilized to create a general LTS through the 
TS-VFC learning process. First, data augmentation meth-
ods are employed to generate two correlated views for each 
time series. These views are referred to as positive pairs 
as they originate from the same wrist-motion signal, while 
sequences with different actions serve as negative pairs. A 
variety of data augmentation methods, including both ‘weak’ 
and ‘strong’ approaches, are used to produce these correlated 
views (Refer to the Experimental Section for details on data 
augmentation methods). Subsequently, an encoder, compris-
ing three one-dimensional convolutional layers (Table S4), is 
utilized to extract high-dimensional latent features from the 

generated views [45]. A cross-view fusion module is intro-
duced to calculate the time-series contrast loss by merging 
views at different stages. The transformer architecture (Fig. 
S10) serves as the implementation of this module owing to 
its robust feature extraction capabilities and high efficiency 
[46]. A neural network projection head composed of two 
linear layers is employed to map feature vectors to the LTS 
[47]. Finally, the similarity function minimizes the distance 
between pairs of positive samples in the LTS, thereby train-
ing the potent feature encoder that can be applied to various 
downstream tasks.

In the fine-tuning stage, building upon the pre-trained 
model weights, we collected few-shot label data and intro-
duced a traditional supervised learning model to fine-tune 
the LTS. The fine-tuning process is essential for achieving 
transfer learning, ensuring that the LTS can effectively han-
dle complex wrist movements across different scenarios. To 

Fig. 2  Sensing mechanism and properties, and TS-VFC algorithm architecture. a Schematic of the sensing mechanism of iontronic device. b 
Scanning electron microscope (SEM) images of ionic hydrogel with microcone structure and AgNWs/PVA electrode. c Normalized change 
of capacitance as a function of pressure over 150 kPa. d Response of tiny pressure (1.5 kPa) variations when high pressure (42 kPa) has been 
preloaded. Response and recovery time of the device (5.6 and 5.6 ms). e Illustration of general prediction process, including preparation of wrist-
band with attached sensing devices and wireless module, TS-VFC learning of random motions, few-shot fine-tuning, and real-time signal pre-
diction. f Details of TS-VFC learning model architecture. During the pre-training step, the overall architecture of the proposed TS-VFC model 
performs contrastive training through unlabeled random data. The encoder is then fine-tuned through supervised learning given few-shot labeled 
data. Finally, the encoder is used to encode real-time signals, metric distance from encoded label data, and complete signal category prediction
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accomplish this, a classifier in the form of a linear layer 
was integrated into the last layer of the encoder. This super-
vised training step facilitates the adaptation of the model to 
the specific task at hand. Recognizing the diversity in user 
writing habits within the same scenario, which can manifest 
as variations in writing time, intensity, and pause time for 
each stroke, it is essential to normalize these writing habits. 
The normalization process helps minimize signal deviations 
within the same action, as illustrated in Figs. S11 and S12. 
For real-time signal prediction, the encoder is used to map 
the signals generated by the real-time wrist movements of 
the user into high-dimensional features. These features are 
then compared with the prior movements already embedded 
in the LTS through metric calculations, enabling the predic-
tion of wrist-motion categories [48, 49].

3.3  Prediction of Four/Eight Directions and Game 
Control

When the user points their index finger in different direc-
tions with the wristband, the corresponding capacitance 
signals from the four devices are captured from the wireless 
module. Real-time direction predictions can be achieved by 
fine-tuning the labeled motion data specific to directions. 
Figure 3a illustrates the corresponding signal waveforms 
when the index finger moves in eight different directions. 
Moving the index finger horizontally to the right represents a 
right command (0°), and moving it diagonally upward to the 
right by 45° indicates an upper right command (45°). Nota-
bly, discernible differences exist in the time-varying outputs 
of Signal 2, even for similar gestures (such as left and lower 
left). The proposed model is designed to effectively adapt 
to new actions introduced into a few-shot labeled dataset 
while preserving the information from the original actions. 
The training process does not need to be strengthened, and 
the model does not need to be redesigned for newly added 
actions. While initially trained to recognize four basic direc-
tions (left, right, up, and down), the proposed model can 
effortlessly expand its capabilities to recognize four addi-
tional directions (45°, 135°, 225°, and 315°) by simply 
supplementing the corresponding few-shot labels. Images 
of real-time predictions are illustrated in Fig. 3b, demon-
strating continuous changes in the four-channel signals 
and corresponding predicted results on the interface. The 
entire recognition process for both four and eight directions, 

encompassing prior motion learning, is demonstrated in 
Movies S2 and S3, respectively. The distinction is that for 
the four directions, only 3-shot data are required in each 
direction for a total of 12 actions for transfer learning. Con-
versely, for the eight directions, only 5-shot data are required 
in each direction to complete the fine-tuning.

To validate the performance of the model, confusion 
matrices were generated for recognizing either four or eight 
directions in the test set after 80 transfer training epochs. 
These matrices indicate that the proposed model achieved 
average accuracies of 94.7% for the four directions (Fig. 
S13) and 82.0% (Fig. 3c) for the eight directions, respec-
tively. To improve the accuracy of predicting eight direc-
tions, adding more labeled data (e.g., from 5-shot to 10-shot) 
during the fine-tuning phase is effective. As shown in Fig. 
S14, the accuracy of predicting the eight directions reached 
87.5% with 10-shot. Our proposed algorithm allows users to 
customize the number of training samples, enabling adjust-
ments based on personal needs. For example, users can 
choose a smaller number of labeled data for rapid adaptation 
or a larger number of labeled data to improve accuracy. We 
employed the t-distributed stochastic neighbor embedding 
(t-SNE) algorithm to perform dimensionality reduction on 
the high-dimensional features extracted from the encoder 
to provide further insight and analysis of the recognition of 
these actions (Figs. 3d and S15) [50]. In this feature space, 
the feature points of each category are accurately mapped to 
their corresponding positions for these directions, underscor-
ing the robustness of the proposed model in this scenario. 
To demonstrate the practical interaction capabilities of the 
wristband, we utilize direction recognition for controlling a 
Sokoban game. As indicated in Fig. 3e, the capacitive out-
puts generated by the index finger motions are captured and 
transmitted by the wireless module, subsequently read by a 
computer program to predict the direction. This prediction 
is then used to control the movement direction of the game 
character in a customized game (Movie S4).

3.4  Prediction of Air‑Writing Numbers and Letters

Based on the excellent direction recognition ability of 
the wristband, we extend its functionality to handle more 
complex tasks, such as recognition of numbers and letters, 
by analyzing the features of the signals generated when 
the index finger moves in different directions. Figure 4a 



Nano-Micro Lett.           (2025) 17:41  Page 9 of 15    41 

illustrates the scenario of air-writing numbers with the 
wristband, along with the interface displaying the four-
channel signal and prediction. The number “8” is identi-
fied by extracting the capacitance signals during the writing 
process. The consecutive writing process is divided into four 
steps (①–④), with each sensor producing corresponding sig-
nals that exhibit continuous but different waveforms. In addi-
tion, mathematical operators (such as +, −, =) are included 
in the learning scope to develop the calculator system, and 
their waveforms differ from those of the numbers, following 
the writing format, as illustrated in Fig. S11. To standardize 

the writing methods, the finger returns to its initial posi-
tion after completing the last stroke of each character. The 
four-channel signal diagram for all numbers “0–9” and six 
operators are presented in Fig. S16. The proposed model 
achieves an average accuracy of 81.2% in predicting 16 cat-
egories of numbers and symbols with only 5-shot learning 
for each category (Fig. S17), eliminating the necessity for 
a large volume of labeled data for training. As illustrated in 
Fig. 4b, employing the t-SNE algorithm to visualize these 
features and project them onto the feature space reveals that 
each category forms distinct clusters.

Fig. 3  Demonstration of direction prediction and game control. a Waveforms of real-time four-channel signals of eight directions. b Photos of 
real-time prediction for direction recognition with the wristband. c Confusion matrix for prediction of eight different directions, with an average 
accuracy of 82.0%. d t-SNE projection of high-dimensional latent features of labeled data for eight-direction recognition using transfer learning. 
e Demonstration of game control and screenshots of the game interface
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Similar to the number prediction approach described 
earlier, the wristband can recognize all 26 English let-
ters through air-writing pattern tracking. Considering the 
letter “E” as an example, the waveform characteristics of 
the corresponding signal are analyzed. Figure 4c demon-
strates that it takes four strokes to write the letter “E,” 
specifically down-right-right-right (①–④), with the finger 
returning to the initial position after the last stroke. Since 
the strokes from ② to ④ are identical, it is evident that the 
separated signal features are also similar. Furthermore, 
four function keys were added to develop the keyboard 

input system encompassing 26 letters and four function 
keys. The specific writing methods for these function keys 
are defined in Fig. S12. The four-channel signal diagram 
for all letters “A–Z” and four functional keys is presented 
in Fig. S18. Owing to the increased complexity of these 
actions and the consequently greater semantic informa-
tion collected from the four-channel signals, the proposed 
model achieves an average accuracy of 94.9% for letter 
and function key recognition with only 5-shot learning 
(Fig. S19). Figure 4d displays the test set containing these 
30 categories, extracted using the proposed model, and 

Fig. 4  Demonstration of air-writing numbers and letters. a Photo of real-time number prediction, as well as detailed process and waveform of 
air-writing “8”. b t-SNE projection of high-dimensional latent features for the test set using transfer learning. c Photo of real-time letter predic-
tion, as well as detailed process and waveform of air-writing “E”. d t-SNE projection of high-dimensional features for test set of 26 letters and 
four function keys. e Comparison of accuracy in air-writing 26 letters and 4 function keys by the same user at different times and by 4 different 
users. f Accuracy trends for different tasks during fine-tuning training epochs: under the weights of a pre-trained model, supervised training is 
conducted with few-shot labeled data by adding a linear layer behind the encoder model. g Ablation experiment study of different variants of the 
TS-VFC model and using different data augmentation methods for number prediction. TS-C model without view fusion and Transformer archi-
tecture, and TS-VC model with the Transformer architecture. AU (TS-VFC model) uses “scale + jitter” for weak augmentation and “jitter + per-
mutation” for strong augmentation. AU1 uses “scale + jitter” for both weak and strong augmentation, and AU2 uses “jitter + permutation” for 
both weak and strong augmentation
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projected into the latent space using the t-SNE algorithm 
for dimensionality reduction. A significant distance exists 
between each category within this space, enabling char-
acter recognition within this scenario by calculating the 
distances between each category.

Movie S5 showcases the steady and continuous recog-
nition of the letters “K B G I F M V P.” When the same 
user writes these letters at different times, as shown in Fig. 
S20, the four-channel signal changes are only slightly dif-
ferent. While prolonged wear may lead to sliding between 
the wristband and skin, which could affect device output 
and recognition precision, the simultaneous operation of 
the four sensing devices and TS-VFC learning algorithms 
ensures consistent performance even when slight posi-
tional shifts of the wristband occur over time (Figs. 4e, 
S21 and S22). Despite potential variations among individ-
uals, the proposed model can consistently learn the writing 
characteristics of new users. When four users with differ-
ent wrist sizes write these eight letters, the changes in the 
four-channel signals are illustrated in Fig. S23. As shown 
in Fig. S24, the wrist of the overweight male (user 4) is 
relatively thick, with a circumference greater than 20 cm, 
while the slender female (user 3) has a thinner wrist with 
a circumference less than 15 cm. The wrist sizes of users 
1 and 2 are average, approximately 17.5 cm. Although 
these signals may be different, new users only need to pro-
vide few-shot labeled data to achieve the desired predic-
tion effect (Figs. 4e and S25–S27). Considering that some 
symbols have the same strokes but are arranged in differ-
ent relative positions, to demonstrate that the wristband is 
capable of restoring, reproducing, and reflecting the spatial 
trajectory of the strokes rather than just recognizing the 
strokes, we designed additional air-writing symbol experi-
ments. The writing sequence of the symbols with the same 
stroke features and their corresponding four-channel sig-
nals are shown in Fig. S28. Through our TS-VFC learning 
with 5-shot, the prediction accuracy can reach 88.6% (Fig. 
S29). Given the widespread use of commercial acceler-
ometers for motion tracking, a comparison was conducted 
to evaluate the performance of our proposed device. We 
collected signals from air-writing letters A to H using the 
accelerometer, as shown in Fig. S30. The similarity matri-
ces for the signals corresponding to these 8 letters from 

both sensors were calculated (Fig. S31), and the accuracy 
of predictions was trained using TS-VFC learning under 
the same conditions (Fig. S32). The results demonstrate 
that the flexible sensing device provides superior perfor-
mance for continuous and accurate monitoring of subtle 
wrist movements during air-writing applications.

Figure 4f illustrates the capability of the pre-trained 
model learned by the TS-VFC algorithm to adapt to different 
scenarios. Without any fine-tuning training (epoch = 0), the 
pre-trained model already initially adapts, and it can achieve 
over 80% accuracy within the transfer training period of 40 
epochs. Following 80 epochs of fine-tuning training, the 
accuracy and MF1-score results that correspond to each 
scenario are presented in Table S5. Our pre-trained TS-VFC 
model demonstrates robust prediction capabilities across 
multiple scenarios. In addition, taking the number prediction 
scenario as an example, we perform ablation experiments by 
constructing different model variants to compare with the 
TS-VFC model, aiming to demonstrate the effectiveness of 
each component. The TS-C module lacks both view fusion 
and Transformer architecture, while the TS-VC module 
incorporates the Transformer architecture. As illustrated 
in Fig. 4g, the experiment results reveal that the proposed 
TS-VFC model improves accuracy by over 4% for these two 
variants. This is attributed to the use of the Transformer to 
achieve view fusion at different stages, which helps positive 
samples from the same class generate more discriminative 
features. The comparison of ablation experiments for other 
tasks, including direction and letter prediction, is provided 
in Table S3. Subsequently, we explore the effects of weak 
and strong data augmentation on the TS-VFC model. As 
indicated in AU1 and AU2 (Fig. 4g), when only two weak 
or two strong augmentations are used, the accuracy falls 
by approximately 9% compared to the proposed TS-VFC 
model. Evidently, merely using weak augmentation (AU1) 
fails to learn more discriminative features owing to minor 
data variations. Conversely, relying solely on strong 
augmentation (AU2) prevents the model from recognizing 
the original signal during prediction. To validate the 
rationality of the proposed data augmentation method 
selection, we conducted a detailed study on the impact of 
various augmentation techniques on the TS-VFC model in 
number and letter prediction, as shown in Table S2.
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3.5  Demonstration of Air‑Writing Input System

For the air-writing input system developed based on the 
wristband (Fig. 5a), signals from the wristband are trans-
mitted to the computer through the wireless module for fur-
ther processing and recognition, with the prediction results 
displayed on the interface in real time. The calculator system 
serves as a ubiquitous calculation tool in our daily lives, and 
Fig. 5b presents the continuous variations in the four-chan-
nel signals while air-writing the equation “2.9 × 5 + 6/3 =”. 
The corresponding characters were identified in real time, 
and the final result of the Eq. (16.5) can be obtained after 

entering the symbol “=”. Movie S6 depicts the operational 
process of the calculator, demonstrating rapid and stable 
distinguishing between different numbers and symbols by 
air-writing with an index finger.

As depicted in Fig. 5c, the signal variations when air-
writing greetings in three languages (English, Chinese, 
Korean), are switched using the function key “SHIFT.” The 
word “HELLO” is initially air-written with the wristband, 
and waveforms of responses are displayed on screen in real 
time, with corresponding words recognized. The “SHIFT” 
and “SPACE” functions are represented by specific strokes 
(Fig. S12), and their waveforms differ from those of the 

Fig. 5  Illustration of the calculator, keyboard input, and login system based on air-writing. a Schematic of air-writing input system. b Wave-
forms of four signals during the calculation operation process, and a screenshot of the calculator interface. c Screenshots of keyboard input inter-
face, and waveforms of four signals of air-writing words “hello”, “你好” and “안녕”. d Schematic of multi-language login system based on the 
wristband. Real-time prediction of inputting username and password, and screenshots of login interface
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other letters. Upon switching the input method, “你好” and 
“안녕” continue to be entered and are successfully recog-
nized, as demonstrated in Movie S7. A further developed 
login system that supports multi-language input is illustrated 
in Fig. 5d, and users can access various language systems by 
switching their handwritten username inputs. In the scenario 
where the user enters the password “abc” corresponding 
to the username “lee” in the login system, which does not 
match the preset correct password “sun,” the interface will 
automatically prompt “Password error.” Upon entering the 
correct username and password, users can freely switch to 
the login system in different languages following successful 
authentication. Each interface is shown in Fig. 5d, and the 
overall process of handwritten input, password verification, 
and interface display is shown in Movie S8. The capability 
to convert air-written characters into signals comprehensi-
ble to computers, without the need for learning proprietary 
touch symbols, minimizes user burden, and it is particularly 
useful for individuals with visual impairments.

4  Conclusions

Leveraging the innovative capabilities of TS-VFC learn-
ing, we introduced a wearable wristband designed to con-
form to wrist anatomy (see Fig. S33 for the breathability 
experiment of the wristband material), facilitating rapid 
adaptation to diverse scenarios of dynamic gesture track-
ing. As indicated in Table S6, compared with other rep-
resentative studies of wristband systems, our innovative 
approach enables transfer learning utilizing unlabeled data. 
Each iontronic sensing device within the wristband, fea-
turing hierarchical microcones and ultrathin flexible elec-
trodes, has demonstrated exceptional performance, boast-
ing a high sensitivity of 353  kPa−1 and a board response 
range of 150 kPa. Moreover, we designed a compact circuit 
with a Wi-Fi module for the wireless acquisition of four-
channel signals from the array. Following the formation 
of the LTS during the pre-training stage in the model, the 
wristband system has proven effective in handling various 
tasks across multiple scenarios. These include the predic-
tion of precise eight-direction commands and air-writing 
of numbers and letters. Despite the encoder in the model 
comprising only three layers of one-dimensional convolu-
tions, it can adapt to new gesture recognition tasks without 
requiring architectural redesigning or extensive training for 

specific tasks. With minimal labeled data, the model can be 
fine-tuned for generalization to new tasks, even those not 
originally included in the training data. Moreover, practical 
applications, such as game control, calculator operation, 
and login systems, were demonstrated, highlighting the fea-
sibility and potential of human–machine interaction. This 
self-supervised wristband system seamlessly integrates 
with a user, offering an intuitive means of communica-
tion and control of digital interfaces through gestures that 
align with everyday habits. It has the potential to provide a 
more natural, immersive, efficient, and personalized digital 
experience in the future.
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