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HIGHLIGHTS

e This review highlights the gradient variations in the structural composition of musculoskeletal tissues and comprehensively examines

recent progress in the fabrication and application of biomimetic gradient scaffolds for musculoskeletal repair.

e The challenges and prospects of gradient scaffolds for clinical application are discussed.

ABSTRACT The intricate hierarchical structure of musculoskeletal tissues, includ-
ing bone and interface tissues, necessitates the use of complex scaffold designs and
material structures to serve as tissue-engineered substitutes. This has led to growing

interest in the development of gradient bone scaffolds with hierarchical structures

Unmineralized
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mimicking the extracellular matrix of native tissues to achieve improved therapeutic 8 i
ibrocartilage

outcomes. Building on the anatomical characteristics of bone and interfacial tissues,
this review provides a summary of current strategies used to design and fabricate o 77 Tendon-to-bone
biomimetic gradient scaffolds for repairing musculoskeletal tissues, specifically
focusing on methods used to construct compositional and structural gradients within

the scaffolds. The latest applications of gradient scaffolds for the regeneration of

Electrospinning

bone, osteochondral, and tendon-to-bone interfaces are presented. Furthermore,
the current progress of testing gradient scaffolds in physiologically relevant animal

models of skeletal repair is discussed, as well as the challenges and prospects of ( frdrogel &
Method of gra!

moving these scaffolds into clinical application for treating musculoskeletal injuries.

KEYWORDS Gradient scaffolds; Musculoskeletal tissues; Advanced manufacturing; Biomaterials; Tissue regeneration

Lei Fang and Xiaoqi Lin contributed equally to this work.

P< Feng Tian, fengtian@buct.edu.cn; Jiao Jiao Li, jiaojiao.li@uts.edu.au; Jiajia Xue, jiajiaxue @mail.buct.edu.cn
! Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
2 State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
3 School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW 2007, Australia

Published online: 27 November 2024

f\ SHANGHAI JIAO TONG UNIVERSITY PRESS @ Sprlnger



http://crossmark.crossref.org/dialog/?doi=10.1007/s40820-024-01581-4&domain=pdf

75 Page 2 of 46

Nano-Micro Lett. (2025) 17:75

1 Introduction

Exacerbated by a globally aging population, the treat-
ment of musculoskeletal conditions arising from trauma
and chronic diseases is becoming an increasingly impor-
tant healthcare concern [1]. Although natural bone tis-
sue can self-repair for injuries with a critical threshold
of approximately 2 cm, complete healing is usually only
possible for small or confined areas of bone loss. If the
defect area is complex or exceeds this critical threshold,
surgical intervention is necessary to facilitate the heal-
ing process. Bone transplantation is the primary surgical
method used for treating bone defects [2, 3]. Currently,
the categories of clinically used materials for bone repair
include autologous, allogeneic, and artificial bone grafts.
However, as the clinical gold standard, the use of autolo-
gous bone is constrained by supply shortage, donor site
injury, and additional complications, while the alternative
use of allogeneic bone experiences problems of poor tissue
integration and vascularization along with a potential risk
of immune rejection or infection. Using tissue engineering
strategies, artificial bone scaffolds have recently emerged
as an improved approach to bone repair. They offer the
advantages of flexible structural design, the capacity for
mass production, and the potential to incorporate biologi-
cally active factors, drugs, or external stimuli based on
individual requirements. While few products have been
translated into clinical applications, the advantages of arti-
ficial bone scaffolds have made them a mainstream trend in
current research into bone repair strategies [4, 5].

Bone is a highly dense and complex calcified tissue com-
posed of organic protein, inorganic minerals, and various
cell types [6]. Natural bone tissue and bone-containing
interface tissues often exhibit a combination of structural
and compositional gradients, with discrete or continu-
ous change in properties depending on the specific tissue/
interface region, demonstrating a high level of hierarchical
organization. In addition to the difficulties of repairing bone
tissue alone, pathologies that occur at the interface between
bone and other connective tissues pose significant challenges
to successful repair, with chronic impacts on human health
and quality of life, such as rotator cuff tears, patellar tendon
injuries, and osteochondral defects [7]. Clinically, injuries at
the tendon—bone interface are frequently treated with suture
anchors and tendon transposition, but these procedures are
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prone to the postoperative development of scar tissue, which
is mechanically inferior to the normal tendon—bone insertion
point and may lead to poor recovery or even recurrence. The
failure rate of surgical treatment for tendon—bone injuries
has been reported to reach 20%—95% [8—10]. For osteochon-
dral injuries, the most commonly used clinical procedures
include mosaicplasty [11], subchondral bone drilling [12],
and microfracture [13]. However, these methods frequently
lead to the formation of fibrocartilaginous or scar tissue,
resulting in joint resurfacing by tissues that are mechani-
cally inferior to healthy articular cartilage or do not integrate
well with surrounding tissues, thereby predisposing the joint
to degenerative conditions such as osteoarthritis [12, 14].
The successful regeneration of musculoskeletal tissue, both
in large bone defects and also as an essential component
of bone-containing interface tissues, is therefore critical to
the long-term healing of musculoskeletal injuries and has
prompted increasing research attention in the development
of artificial bone scaffolds.

Although a variety of strategies have been reported for
constructing bone scaffolds, their effectiveness at inducing
satisfactory healing has been suboptimal as these scaffold
designs mostly do not match the native gradients seen in the
majority of musculoskeletal tissues [15]. Gradients are an
inherent feature of biological structures, with crucial func-
tions in tissue physiology and development. With advances
in design and manufacturing technologies, the biological
gradients found in different types of musculoskeletal tis-
sues have been increasingly used as biomimetic inspirations
for constructing artificial bone scaffolds [14]. Arising from
different fabrication techniques, gradient bone scaffolds are
generally categorized into layered gradient and continuous
gradient. The former scaffold design is usually divided into
discrete layers, each with a different structure and active
ingredient. In the latter, the change in structure and active
ingredients of the scaffold form a continuous transition,
more closely replicating native tissue structures. Either
way, gradient bone scaffolds matching the compositional
and/or structural gradients seen in native musculoskeletal
tissues can lead to improved material-tissue integration and
regeneration of anatomically and physiologically similar
bone and bone-containing interface tissues [16]. They may
also enable better reconstruction of the intricate mechanical
environments that form a critical part of musculoskeletal
tissue function. Additionally, biochemical concentration gra-
dients may be incorporated into scaffolds, such as a growth
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factor gradient to enable the recruitment of endogenous
stem cells to the defect site to aid tissue regeneration [17].
The development of gradient scaffolds for bone and inter-
facial tissue regeneration has been partially captured in a
few recent reviews, some of which have discussed specific
fabrication techniques such as hydrogels [18] and addi-
tive manufacturing (biofabrication) [19], while others have
focused on specific tissue types such as osteochondral tissue
[12] and anterior cruciate ligament [20]. In this review, we
comprehensively summarize and critically analyze the lat-
est research advances on gradient artificial bone scaffolds
designed for the regeneration of different types of mus-
culoskeletal tissues, including bone, osteochondral tissue,
and the tendon—bone interface. We also present the current
evidence on different fabrication strategies used to realize
these gradient scaffold structures, including electrospinning,
additive manufacturing (biofabrication), and hydrogel fab-
rication methods. The preclinical effectiveness of gradient
bone scaffolds applied in animal models of musculoskeletal
injuries is discussed, giving insights into their potential for
future clinical application. Our review provides an up-to-
date summary of the most impactful developments in this
exciting area of research and offers perspectives on the status
and prospects of translating gradient bone scaffolds from a
laboratory setting into clinical practice.

2 Bone Tissue Engineering
and Scaffold-Based Strategies

Bone tissue engineering is a cutting-edge frontier in bio-
medical research and regenerative medicine. Harnessing the
power of advanced biomaterials, stem cells, and innovative
engineering approaches, the field of bone tissue engineer-
ing aims to revolutionize the treatment of bone and muscu-
loskeletal injuries, including those involving osteochondral
tissue and the tendon-to-bone interface. The design and
fabrication of gradient bone scaffolds provide a biomimetic
approach to regeneration, with a number of recent studies
highlighted in Table 1, which have been surveyed from the
literature in the last 5 years. Studies reporting new designs
of gradient scaffolds have been categorized by application
into cortical and cancellous bone, osteochondral tissue, and
tendon-to-bone interface, along with a summary of the cor-
responding method of fabrication, design of scaffold gradi-
ent architecture, selection of biomaterials, and outcomes of
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biological evaluation in vivo findings. The structural and
compositional features of native tissues and their extracel-
lular matrix (ECM) replicated by gradient scaffold designs
are explained in the below sections.

2.1 Cortical and Cancellous Bone

Bone is a tough mineralized tissue that provides weight-
bearing function to the human skeleton. As shown in
Fig. 1a, natural bone contains inorganic components,
mainly hydroxyapatite (HAp) crystals, which along with
other minerals such as magnesium, sodium, and carbonate
ions contribute to the hardness of bone to resist compres-
sive forces. Mineralized bone is responsible for its strength
to carry physiological loads. The organic components of
bone mainly consist of collagen I (Col I), which allows
the bone to withstand bending and tensile forces, and non-
collagenous proteins such as osteocalcin and osteonectin,
which play a role in mineralization and regulation of bone
metabolism [21]. Several cell types maintain bone function
including osteoblasts, osteoclasts, and osteocytes. Osteo-
blasts are mostly located on the bone surface, responsible
for forming the bone matrix by secreting organic sub-
stances such as collagen protein and inorganic salts [22].
Osteoclasts are present in the internal bone cavities and
are responsible for resorbing and remodeling bone tissue.
Osteocytes influence the activities of both osteoblasts and
osteoclasts, and contribute to the regulation of calcium
and phosphate balance [23]. Human long bone comprises
the exterior cortical bone, which serves as the primary
load-bearing structure, while the interior trabecular bone
distributes weight and the marrow cavity transports nutri-
ents [24]. The long bone cross section displays a struc-
tural gradient in the radial direction. Cortical bone, also
known as compact bone, forms the outer layer of bones
and is characterized by a solid and dense structure with a
minimal amount of open space. Osteons, also called the
Haversian system, are cylindrical structures resembling the
fundamental unit of cortical bone [25]. At the center of an
osteon is the Haversian canal, a central channel surrounded
by a concentric ring of lamellae housing blood vessels and
nerves, which provides nutrients and innervation to the
bone cells within the osteon. Cancellous bone, referred to
as trabecular or spongy bone, exhibits a porous structure
suitable for weight distribution. Together, cortical and
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cancellous bone form a functional gradient structure with
distinct composition, porosity and pore size distributions.

Morphologically, the porosity of cortical bone is typi-
cally 5%—10%, while that of cancellous bone ranges from
50% to 90% [26]. Pore sizes in cortical bone are relatively
smaller compared to cancellous bone, with diameters of
30-50 um (typically lower than 100 um). Meanwhile,
cancellous bone has larger pores which contribute to its
lighter and more flexible nature. The spaces between tra-
beculae create a network of interconnected pores that vary
in size, typically ranging from 300 to 600 um in diameter.
The differences in structure lead to distinct biomechanical
properties of cortical and cancellous bone. While cortical
bone is strong and hard, making it ideal for weight-bearing
and resisting bending or torsional forces, cancellous bone
has a trabecular architecture that is not as structurally
dense, providing lightweight strength and flexibility. The
Young’s modulus of cortical bone is 15-20 GPa, while that
of cancellous bone ranges between 0.1 and 2 GPa [27].
Because cortical and cancellous bone acts synergistically
to provide the necessary combination of strength, flex-
ibility, and adaptability to the skeleton, their unique func-
tional gradients are a key factor to consider in biomimetic
gradient scaffold design.

Designing a scaffold that replicates the cortical-to-cancel-
lous bone gradient is a sophisticated challenge that involves
faithfully mimicking the distinct stratification of these two
bone types while ensuring a seamless transition between
them. This innovative scaffold aims to support the regenera-
tion of both dense cortical bone and porous cancellous bone
in cases of bone defects, offering a comprehensive solution
for tissue engineering. Critical factors in the manufacturing
of these biomimetic scaffolds include achieving a continu-
ous, smooth transition in mechanical stiffness, alongside a
progressive increase in pore size and interconnectivity as
one moves from the cortical region to the cancellous region
[28]. This gradient design is crucial, as it not only meets
the mechanical demands of cortical bone but also promotes
the biological activities necessary for effective cancellous
bone regeneration. Such an approach positions the scaffold
as a robust candidate for complex bone tissue engineering
applications.

For instance, the study on gradient Voronoi scaffolds dem-
onstrated the application of TigAl,V titanium alloy, show-
casing excellent mechanical properties achieved through a
controlled gradient design that tailored porosity and pore

© The authors

size distribution [29]. By employing a Voronoi tessellation
method, this irregular porous architecture closely resembles
the trabecular structure of natural bone. Notably, the gradi-
ent Voronoi structure exhibited superior stability and impact
resistance compared to regular porous scaffolds, marking it
as a promising solution for bone tissue engineering.

Other research studies have explored the use of polymers
as substrates, implementing a radial design that mimics the
entire cross section of bone [30, 31]. These designs typically
feature larger pores at the center, gradually decreasing in size
and increasing in density toward the periphery, effectively
capturing the essence of natural bone architecture. Moreo-
ver, a particular study highlighted the meticulous design of
scaffold architecture to replicate the gradient changes found
in native bone [32]. In this case, the exterior of the scaffold
emulated the dense and robust properties of cortical bone,
while the interior transitioned into a more porous structure
akin to cancellous bone. This design is not only biomimetic
but also strategic, as it provides the necessary mechanical
support while allowing for the infiltration of nutrients and
cell growth.

2.2 Osteochondral Tissue

Osteochondral tissue is found at the surface of synovial
joints, containing stratified regions that form a complex
gradient and convey different intra-tissue and inter-tissue
functions [33]. Structurally, osteochondral tissue consists of
articular cartilage and underlying subchondral bone, while
the chondral region can be further divided into continuous
zones of superficial, middle, deep, and calcified cartilage
(Fig. 1b) [34]. These zones form gradient transition struc-
tures that include variations in mineral content, chondrocyte
morphology and composition, as well as structural porosity
[35-39]. The articular cartilage provides lubrication during
repetitive joint motion and distributes loading forces to the
underlying hard subchondral bone that provides mechani-
cal support. Due to its low metabolic activity and lack of
blood vessels and nerves, cartilage has a limited capacity for
self-regeneration that poses substantial challenges to repair
following injury [40].

Articular cartilage is composed of chondrocytes embed-
ded in a gel-like ECM, formed from large amounts of col-
lagen and polysaccharides secreted by the chondrocytes [38].
Collagen forms collagen fibers that enhance the strength and

https://doi.org/10.1007/s40820-024-01581-4
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toughness of cartilage, while polysaccharides attract and
retain water to endow cartilage with its elasticity and resist-
ance to compression [37]. The configuration and organiza-
tional pattern of chondrocytes and ECM in different carti-
lage regions generate a gradient of mechanical properties
that is depth dependent, featuring a progressive increase in
compressive modulus and strength from the superficial to
deep zones [41]. This results from the depth-dependent vari-
ation in biochemical composition of osteochondral tissue,
whereby collagen content and HAp concentration change
from predominantly collagen II and no HAp in the super-
ficial cartilage zone to Col I and abundant HAp in the sub-
chondral bone. Complementing this is the structural gradient
of osteochondral tissue with varying porosity, pore size, and
pore interconnectivity between layers. The articular carti-
lage contains mesopores estimated to range in size from 2
to 6 nm, with porosity of 60%—85% and pore sizes gradually
increasing from the superficial to the deep zone [11, 42, 43].
This transitions into the underlying subchondral bone, com-
prising mainly cancellous bone with high porosity from 75
to 90% and large pore sizes of 50 to 300 pm [44]. An ideal
osteochondral scaffold should consider a multilayered design
with transitional properties to match the structural, mechani-
cal, and biochemical gradients found in native joint tissue.

Osteochondral scaffolds encounter a significant challenge in
achieving an optimal balance between mechanical strength and
structural integrity. Discrete multilayer scaffolds designed to
mimic the unique layers of cartilage, osteochondral interface,
and underlying bone often encounter issues such as delami-
nation and mechanical mismatch between different layers. In
contrast, scaffolds with smooth mechanical transition designs
endeavor to reduce these mismatches by facilitating a gradual
transition between softer cartilage and stronger bone. However,
achieving this smooth transition is complicated by the signifi-
cant difference in mechanical stiffness between cartilage and
bone tissue[45]. To address this complex dilemma, contempo-
rary research is endeavoring to develop composite materials,
graded porosity and innovative hybrid scaffolds.

For example, Zadegan et al. [46] fabricated a three-layer
osteochondral scaffold using freeze-drying technology that
features a seamless transition between layers . This scaffold
integrates silk fibroin (SF) and HA, with the layers having
different compositions, resulting in a gradient of mechanical
properties. The most striking aspect of this design is the gradi-
ent structure, which has been carefully designed to reflect the
unique biological and mechanical properties of osteochondral

| SHANGHAI JIAO TONG UNIVERSITY PRESS

tissue. Clearfield et al. [47] employed a directional freezing
method to create a multidirectional scaffold that harnesses both
unidirectional freeze casting and lyophilization bonding. This
approach successfully replicated the distinct zonal structures of
superficial, transitional, calcified cartilage, and osseous zones
present in native tissue. The design offered graded pore sizes,
anisotropy, and mechanical properties, providing essential cues
for directing stem cell differentiation into chondrocytes and
osteoblasts.

Golebiowska and Nukavarapu [48] focused on developing
bioinspired zonal/gradient scaffolds for osteochondral inter-
face engineering using extrusion-based three dimensional (3D)
bioprinting. The study addresses the challenge of replicating
the complex hierarchical architecture of the bone—cartilage
interface. A key innovation lies in the gradient scaffold archi-
tecture, which includes seven zones with gradually changing
porosity and infill density to facilitate a smooth transition
between the cartilage and bone layers. This structure offers
a continuous transition in mechanical properties and pore
sizes, ranging from larger pores at the top (for cartilage) to
smaller pores at the bottom (for bone). The use of polylactic
acid (PLA) as the base material provided sufficient mechanical
support, while the integration of cell-laden hydrogel through
concurrent bioprinting allowed for selective cellularization of
the cartilage zones.

2.3 Tendon-to-Bone Interface

Tendons are mainly composed of densely arranged collagen
fibers and tendon cells (Fig. 1¢) [49], playing a crucial role
in transmitting force and facilitating coordinated movement
between muscle and bone. Tendons exhibit gradient transi-
tion at the interface with bone (Fig. 1d), which is divided
into four regions: tendon, non-mineralized fibrocartilage,
mineralized fibrocartilage, and bone [50]. This stratified
structure incorporates intricate structural, compositional,
and mechanical gradients, along with variations in cellular
phenotype and biochemical signals essential for maintain-
ing cell function. The gradient of cellular phenotypes along
the tendon-to-bone interface is gradual and continuous, with
no clear boundaries between different regions. The tendon
region primarily consists of tenocytes, while osteocytes are
the main cells found in the bone region [25, 51-53].
Compositionally, the tendon zone contains mostly Col
I, while the non-mineralized fibrocartilage contains both

@ Springer
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collagen II and collagen III with collagen II being more
prevalent [54]. The mineralized fibrocartilage contains
aggrecan and HAp crystals, along with collagen II and col-
lagen X. The bone zone marks the end of the transitional
area, comprising a matrix of mineralized Col I. A variation
in collagen fiber orientation also exists, giving the tendon
region a denser structure compared to the bone region. Col-
lagen fibers in the tendon zone are aligned in the direction of
force transmission, gradually transitioning to a more random
and oblique orientation throughout the fibrocartilage zones
and eventually becoming interwoven with the mineralized
matrix in the bone zone. The most common types of tendon
injuries are in the rotator cuff and Achilles, with different
mechanical properties and injury patterns that should be
considered when designing repair strategies. The ideal gra-
dient scaffolds for regenerating the tendon-to-bone interface
should imitate natural tissue transition by incorporating vari-
ations in the structure, composition, mechanical properties,
and cellular phenotype in a layered or continuous manner to
promote functional recovery [55].

Tendon-bone junctions are critical interfaces in the mus-
culoskeletal system, playing a pivotal role in the functional
integration of tendons and bones during movement. The cur-
rent scaffold function on the rotator cuff anatomical site has
underscored the importance of developing gradient scaffolds
that effectively mimic the natural composition and struc-
ture of the tendon—bone interface [56]. These scaffolds are
designed to facilitate the seamless transition between the
mechanically distinct tissues of tendons and bones, thereby
promoting enhanced integration and functional recovery.

For example, a woven scaffold with continuous mineral
gradients utilized a combination of electrospinning to create
nanofiber yarns with a core sheath structure, paired with tra-
ditional textile weaving techniques [57]. This method allows
for precise control over fiber orientation and the spatial dis-
tribution of mineral content within the scaffold. A novelty
of this study is the structural anisotropy, which achieved
different mechanical properties in different directions, cru-
cial for replicating the natural anisotropic properties of the
tendon-to-bone interface and for providing the appropriate
mechanical cues for cell behavior. Another scaffold was
designed with a continuous cocktail-like gradient, mim-
icking the natural transition from tendon to bone [58]. The
scaffold comprised a dual-network hydrogel of gelatin meth-
acryloyl (GeIMA) and hyaluronic acid, which also incorpo-
rated varying concentrations of nanoclay (NC). In addition,
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the scaffold was loaded with bone marrow mesenchymal
stem cells (BMSCs), achieving a smooth gradient transi-
tion through a four-layer structure that replicated the natural
tendon—bone interface. This scaffold created a gradient of
biological signals that promoted osteogenic and tenogenic
differentiation while inhibiting adipogenic differentiation,
thereby enhancing tendon-to-bone interface regeneration.

Another study applied decellularized tendon as the core
of the scaffold, retaining the natural ECM components and
tissue strength essential for regulating cell behavior and
facilitating in situ tissue regeneration [59]. This design fea-
tures a complex architecture comprising an acellular tendon
core, a middle layer of polyurethane (PU) and collagen I
yarn, and an outer layer of poly(L-lactic acid) (PLLA) and
bioactive glass (BG) nanofiber membrane. Each layer serves
a specific purpose, working in concert to promote effective
tissue regeneration and restore the functional integrity of the
tendon—bone junction.

The structural features of bone, osteochondral tissue, and
tendon-to-bone interface form natural gradients that pose
a challenge to recreate using artificial scaffolding strate-
gies. When designing gradient scaffolds to regenerate these
musculoskeletal tissues, not only should spatial gradients
be incorporated to mimic structural aspects, but also cel-
lular and compositional gradients to maximize tissue repair.
Bone repair is a complex process involving inflammation,
angiogenesis, soft tissue formation, tissue mineralization,
and ultimately bone remodeling to complete long-term
healing [2, 21, 60]. The progression of bone repair can be
influenced by multiple factors, such as growth factor com-
binations and concentrations, spatial or temporal delivery
of drugs, and selection of repair materials. Meanwhile, the
repair of osteochondral and tendon-to-bone interfaces is
even more complicated, requiring numerous intricate tran-
sitions between materials, pore structure, and biochemical
composition, as well as consideration of the potentially con-
flicting functions of biomolecules in regenerating different
tissues [60]. Due to the challenges of using uniform-phase
scaffolds in accurately replicating the intricate transitional
characteristics inherent to natural tissue interfaces, such as
bone—cartilage and bone—tendon, and hence suboptimal
physiological and functional restoration outcomes, there
is a marked preference toward employing gradient scaf-
folds to facilitate enhanced repair at musculoskeletal tissue
interfaces [61]. Emerging techniques for constructing gradi-
ent scaffolds have focused on addressing the challenges of
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integrating different materials and morphologies to create
stratified and connected layers. Meanwhile, other challenges
can be encountered in establishing a suitable biochemical
gradient for interface tissues because of the overlapping
as well as conflicting roles that common musculoskeletal-
related growth factors can play in tissue regeneration. For
instance, transforming growth factor (TGF)-p and bone
morphogenetic protein (BMP)-2 in the regeneration of both
cartilage and bone play overlapping/opposite roles [62]. The
next section will discuss specific fabrication approaches that
have been employed in recent studies to establish biomi-
metic gradients within biomaterial scaffolds to enhance the
regeneration of bone, osteochondral tissue, and the tendon-
to-bone interface.

3 Manufacturing Techniques for Gradient
Bone Scaffolds

The repair of musculoskeletal tissue often involves multi-
ple sites such as bone, articular cartilage, bone-to-cartilage
interface, and bone-to-tendon interface. Differences in tissue
composition, graded characteristics, and mechanical proper-
ties between cortical bone and cancellous bone, bone-to-car-
tilage, and bone-to-tendon interfaces require unique repair
approaches. Various scaffold designs have been adopted to
achieve complex tissue regeneration and improve implant
integration with host tissues. Fiber membranes are thin
structures composed of interconnected fibers, which pos-
sess high surface area-to-volume ratio, mechanical strength,
and porosity, allowing for efficient nutrient exchange and
cell infiltration. They can be fabricated using techniques
such as electrospinning, which enables precise control over
fiber diameter and alignment. These membranes provide a
nanofibrous scaffold for cell attachment, proliferation, and
tissue formation, which are a good choice for the regenera-
tion of small-sized bone or tendon injuries without thickness
requirements. Hydrogels are 3D networks of crosslinked
hydrophilic polymers that can absorb and retain large
amounts of water, which closely resemble the ECM and
provide a hydrated environment for cell growth. Hydrogels
exhibit excellent biocompatibility, tunable mechanical prop-
erties, and the ability to encapsulate bioactive molecules.
They can be formed through various methods, including
physical or chemical crosslinking, and can be designed to
mimic the specific properties of the target tissue. In addition,
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there are also 3D scaffolds composed of polymers, metals,
inorganic materials, and their composites prepared by bio-
fabrication techniques, such as fused deposition modeling
(FDM) and selective laser melting (SLM). Currently, fibrous
scaffolds, hydrogels, and other 3D scaffolds are the main-
stream approaches for repairing natural bone, cartilage, ten-
dons, or injuries at interface gradient regions. By selecting
different raw material compositions, bioactive substances,
and drug concentrations, and combining different scaffold
fabrication techniques, it is possible to achieve the desired
gradient variation in artificial scaffolds that are compatible
with the physiological and structural characteristics of the
target natural tissues.

Recent research on repair strategies involving gradient
scaffolds has shown promising outcomes in promoting hier-
archical tissue healing [63]. As shown in Tables 2, 3, 4,
new designs of gradient scaffolds composed of nano-micro
materials have been recently enabled by the development of
advanced fabrication techniques, such as 3D printing [64,
65], FDM [66], SLM [67], digital light processing (DLP)
[68], electrospinning [69, 70], mold-casting hydrogel fabri-
cation [71-73], and microfluidics [74, 75]. These techniques
can allow potentially complex, hierarchical gradients to be
fabricated in a precise and controlled manner to match the
stratified characteristics of native tissues, supplying the
biophysical and/or biochemical cues necessary for guid-
ing functional bone, osteochondral, and tendon-to-bone
interface regeneration. This section highlights the recent
breakthroughs in gradient scaffolds designed to regenerate
musculoskeletal tissues, constructed using a variety of fab-
rication techniques.

3.1 Gradient Scaffolds Made by Electrospinning
and Other Fiber-Forming Techniques

The ECM of most musculoskeletal tissues comprises an
intricate structure of collagen fibers, which directly inter-
acts with cells and serves as an active reservoir for regulat-
ing growth factor activity. A primary aim of engineering
musculoskeletal tissues is to mimic the ECM structure using
micro- and nanofibrous materials, prepared using a variety
of methods such as self-assembly [76], phase separation
[77], wet spinning, and electrospinning [78]. Among these,
electrospinning has been widely adopted in tissue engineer-
ing for producing nano-sized fibers or fibrous membranes
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with large surface area-to-volume ratio and high porosity,
which may imitate the collagen fiber arrangements found
in bone and related interfacial tissues [79]. Electrospinning
uses the electrostatic repulsive force generated from differ-
ences in surface charge to eject nanofibers from a viscoe-
lastic fluid [80]. As shown in Table 2, it has been a favored
technique for constructing anisotropic or gradient scaffolds
for musculoskeletal tissue engineering due to its flexibility in
processing various materials (including organic, inorganic,
and composite materials), adjusting a range of material prop-
erties (including diameter, porosity, and thickness), and real-
izing customized scaffold designs (such as aligned, hollow,
and core sheath).

Electrospun nanofibrous scaffolds with a variety of prop-
erties have been tested for their reparative effects in bone
regeneration, including those with different sizes, structures,
composition, morphology, porosity, and assembly [81].
The arrangement of fibers can be controlled by adjusting
the electrospinning parameters, resulting in aligned or ran-
dom structures. Different fiber structures also exhibit varia-
tions in porosity and morphology, which may influence cell
behavior. For example, aligned and random nanofibrous
membranes prepared from the same material were found to
affect the behavior of BMSCs, whereby cells migrated along
the direction of aligned fibers but exhibited random and dis-
ordered migration on random fibers [82]. Therefore, the bio-
mimetic structural characteristics of electrospun nanofibers
play a crucial role in promoting cell growth and guiding
tissue regeneration [83, 84]. Various methods are therefore
used to construct electrospun nanofibrous membranes with
oriented arrangements to confer tissue mimetic characteris-
tics, such as structural gradients in poly(lactic-co-glycolic)
acid (PLGA) nanofibrous membranes comprising graded
arrangements and porosities, constructed by adjusting the
solvent exposure [85]. Assisted by the introduction of mag-
netic poles, electrospun fibers can also be made to gradu-
ally transition from being highly aligned in the presence
of the magnetic field to being randomly aligned away from
the magnetic field, to mimic the structural gradients found
in native tissues [86]. In addition to biophysical guidance
conferred by nanofibrous materials, biochemical gradients
with variations in the density of bioactive substances play
a significant complementary role in directing cell behavior.
For example, protein gradients have emerged as a power-
ful means of enhancing tissue regeneration by directing
cell migration, extension, and differentiation. Combining
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specifically designed protein gradients with scaffolds made
from aligned polymer fibers can significantly improve tissue
regeneration outcomes by further accelerating cell prolifera-
tion and migration [87]. The formation of a protein gradient
on the fiber membrane can be achieved by multi-step immer-
sion of the membrane in protein solution, which may be
cumbersome, or by masking the membrane with a gradient
of ‘mask’ protein (such as bovine serum albumin (BSA)),
which forms a gradient by controlling the BSA concentration
or deposition time (Fig. 2a) [88]. The bioactive protein of
interest is then used to fill the gaps on the membrane that are
not blocked by BSA, resulting in a functional gradient that
may help direct anisotropic tissue regeneration.

To construct interfacial scaffold regions, the incorpora-
tion of specific types or varying concentrations of bioac-
tive substances is strategically implemented, resulting in
biochemically layered characteristics that may facilitate
anisotropic tissue repair. For example, by combining melt
electrospinning for microfiber fabrication and FDM of bio-
materials, melt electrowriting (MEW) that benefits both
technologies can be maximized to create a scaffold that rep-
licates the intricate structure and function of native osteo-
chondral tissue. In one study, a tri-layered fiber hydrogel
scaffold was constructed by MEW from triblock polymer
of poly (e-caprolactone) (PCL) and poly(ethylene glycol)
(PCEC) networks with depth-dependent fiber organization
[89]. GeIMA hydrogel loaded with marrow mesenchymal
stem cells (MSCs) and growth factors in different regions
in the fiber hydrogel scaffold exhibited the capability for
zone-specific delivery of growth factors, as shown in Fig. 2b.
By varying the fiber configuration and material composition
gradient, this bioinspired scaffold aimed to induce region-
specific cartilage and bone differentiation to restore func-
tionally stratified osteochondral tissue. In vivo experiments,
rabbit osteochondral defect models demonstrated that the
three-layer scaffold could enhance the wear resistance and
lubrication qualities of newly formed osteochondral tissue,
significantly improving the regeneration of both cartilage
and subchondral bone.

Given the specific voltage and temperature requirements
of electrospinning, there is a risk of denaturing the struc-
ture of natural polymer materials. For this reason, traditional
electrospinning is commonly applied to synthetic polymers
which lack bioactivity. Wet spinning is a method for manu-
facturing polymer fibers, where the polymer solution can
be extruded into a supportive solidification bath to prepare
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fibers without the use of high temperatures or pressures.
To construct fibrous scaffolds for tendon-to-bone healing
that incorporate natural polymers, wet spinning has been
employed to manufacture continuous composite microfibers
targeted at the hierarchical transition region between ten-
don and bone. In one study, two different types of wet-spun
microfibers were produced: PCL/gelatin and PCL/gelatin/
HA, whereby the microfiber composition and structure were
altered to, respectively, replicate the anisotropic arrange-
ment of tendon and mineral content of bone [90]. Uniquely,
the scaffold was constructed through textile assembling of
microfibers by knitting, creating 3D fibrous structures with
continuous topographical and compositional gradients to
mimic the native tendon-to-bone transition. The topological
structure and compositional variances within gradient scaf-
folds influenced the differential deposition of collagen pro-
teins across distinct structural regions. Specifically, staining
results revealed heightened levels of non-collagenous pro-
teins within the tendon segment, while the interface region
exhibited notably increased concentrations of collagen II
and collagen X. This collagen deposition profile mirrored
the structure of native tendon tissue, confirming the ability
of the scaffold to promote tissue regeneration replicating
natural ECM distribution patterns (Fig. 2c). Wet-spinning
reduces denaturation and inactivation of biomaterials due to
mild production conditions. However, organic solvents are
still required to formulate the spinning liquid, and non-envi-
ronmentally friendly coagulation baths are sometimes used.
In addition, it is difficult to synthesize fibers with nanoscale
diameter using this method, which may limit its ability to
produce scaffolds that regulate bone-related tissue regenera-
tion on microscopic levels.

Biomimetic structural gradients play a pivotal role in inter-
face tissue repair due to their ability to effectively mitigate
scar formation during tissue healing processes [91]. To mimic
the gradient structure of natural tendons, a SF/poly(l-lactic
acid-co-caprolactone) (SF/P(LLA-CL)) nanofibrous scaffold
was constructed by electrospinning with a syringe pump [92].
A dual-layer aligned-random nanofibrous scaffold was cre-
ated, where the upper layer consisted of aligned fibers with
diameters of 445+ 180 nm and the lower layer consisted of
randomly distributed fibers with diameters of 486 + 142 nm.
When used to repair Achilles tendon injuries in New Zealand
white rabbits, the gradient nanofibrous scaffolds significantly
enhanced tendon-to-bone healing compared to scaffolds
with random fibers only, evidenced by improved mechanical
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properties and bone regeneration at the interface region.
The functionalization of scaffolds with both fiber alignment
and a gradient of mineral content can confer more remark-
able repair effects compared to individual strategies [93]. In
another study, a photothermal welding technique was applied
to an electrospun scaffold to establish a gradient of fiber align-
ment, which was then modified with a graded mineralization
coating to mimic the natural tendon—bone interface, as shown
in Fig. 2d [94]. PU/indocyanine green (PU/ICG) nanofiber
scaffolds were created using electrospinning, with ICG act-
ing as a photothermal agent. Exposure to near-infrared laser
caused the fibers to weld at cross-points due to heat generated
by ICG, allowing for controlled fiber alignment from uniaxial
to random orientations by adjusting laser irradiation time and
intensity. The scaffolds, immersed in simulated body fluid for
varying durations, developed a dual-gradient structure with
increasing mineral deposition over time and decreasing fiber
alignment. This scaffold mimicked the natural tendon-to-bone
interface, supported cell growth across all regions, and his-
tological images taken at six weeks post-operation revealed
nearly complete healing of rabbit rotator cuff injury with no
scar formation in the dual-gradient scaffold group, in contrast
with poor healing in the control and single-gradient scaffold
groups. These findings suggest that multi-gradient biomimetic
scaffolds resembling natural tissues might be more effective at
promoting the repair of interface tissues.

Nanofibrous scaffolds, including those prepared using elec-
trospinning, are typically made as fibrous membranes exhibit-
ing a thickened 2D structure, which may be difficult to satisfy
the thickness requirements of certain musculoskeletal tissue
structures. It is challenging to create structurally intricate scaf-
folds solely through traditional electrospinning. To address this
problem, 3D fiber scaffolds with gradient structure can be gen-
erated by combining electrospinning with foaming method or
by assembling short fibers obtained by mechanical cutting of
continuous fibers down to the micron level [95]. Typically, a
hybrid fabrication approach combining multiple methods is
necessary to realize complex gradient scaffold designs and
circumvent the limitations of individual techniques. Future
strategies would benefit from the simultaneous generation
of structural and compositional gradients within scaffolds to
promote optimal healing at musculoskeletal tissue interfaces.
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3.2 Gradient Scaffolds Made by Additive
Manufacturing

Compared to scaffolds built up from 2D fibrous membranes,
scaffolds with a 3D structure may be more beneficial for
tissue repair, particularly for tissues exceeding a few millim-
eters in depth, by facilitating better infiltration and growth
of cells [51]. Various methods can be used for preparing 3D
scaffolds, such as gas foaming [96], dispersion shaping [97],
sacrificial components, and additive manufacturing [65, 98].
Among these, additive manufacturing including technologies
such as 3D printing and bioprinting is becoming increasingly
popular due to its precision and capacity to allow customi-
zation compared to conventional, more manual fabrication
techniques. Additive manufacturing allows the fabrication of
complex 3D structures layer by layer, enabling the precise
control of scaffold architecture, porosity, and mechanical
properties. Intricate and hierarchical scaffold designs with
highly precise internal and external geometry can be real-
ized through the controlled deposition of material building
blocks, which may be spatially tailored to the requirements
of the target tissue. Moreover, complex scaffold shapes and
geometries can be fabricated to create patient-specific scaf-
fold implants that can accommodate individual variations
in the anatomy or structure of the target tissue or organ. It
incorporates multiple materials with different properties into
a single scaffold, which closely mimics the structure and
function of native tissue while promoting tissue integration
and regeneration. Current additive manufacturing supports
a wide range of materials selection, including natural and
synthetic polymers, hydrogels, bioceramics, and compos-
ites. As shown in Table 3, variations in material composi-
tion and pore structure within the scaffold can be precisely
realized with additive manufacturing, for instance, through
layer-by-layer printing to create stratified structures suitable
for the regeneration of gradient tissues. These scaffolds are
expected to resemble the natural tissue environment, with
the necessary mechanical properties and bioactive functions
to promote cell attachment, nutrient diffusion, and tissue
regeneration [99].

Gradients in mineral content, cellular composition, and
structural porosity form important features in cortical and
cancellous bone. Additive manufacturing of gradient scaf-
folds for bone repair often presents a multilayered design
that includes anisotropic pore structures with varying pore
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diameters, shapes, spacing, and arrangements. Garg et al.
explored how pore and fiber sizes in electrospun scaffolds
affect macrophage polarization in vitro, revealing that
larger fibers and pore sizes promote macrophage polariza-
tion toward a regenerative M2 phenotype [100]. Conversely,
another study showed that gelatin scaffolds formed by cryo-
gelation with 30 pm pore size favored the M2 phenotype,
while 80 pm pore size induced the M1 phenotype [101].
The optimal pore size in scaffolds for musculoskeletal tis-
sue healing remains debated, and a definitive conclusion
of its impact on macrophage polarization has yet to be
reached. Combined with variations in material composi-
tion and mechanical properties, these gradient scaffolds can
help induce patterns of cell differentiation replicating the
processes necessary for the formation of bone and related
tissues [102]. In addition, as bone repair involves different
stages of healing, the repair outcomes may be enhanced by
supplementing the 3D scaffold with concentration gradients
of various bioactive substances.

In one study, a two-layered PLA-HAp scaffold with a bio-
mimetic gradient of pore sizes was fabricated by FDM to
replicate the structure of cortical and cancellous bone, as
shown in Fig. 3a [103]. The pore sizes varied from 430 pm
in the outer cortical region to 900 pm in the inner cancel-
lous region. Pore sizes in the range of 250-500 pm are
favorable for ECM secretion, while large pore sizes above
500 pm stimulate the growth of vascular tissues, thereby
accelerating the bone repair process. To endow the hard
scaffold with ECM-like properties, the base scaffold was
injected with a GelMA-based soft hydrogel encapsulat-
ing deferoxamine@PCL (DFO@PCL) nanoparticles and
manganese carbonyl (MnCO) nanosheets for suppressing
inflammatory response and promoting angiogenesis. DFO@
PCL nanoparticles showed an initial burst drug release of
22.67+0.68% at 1 day, followed by sustained slow release
of approximately 45% of the drug at 13 days. DFO inhib-
ited osteoclast differentiation by suppressing the electron
transport chain and negatively regulating the activation of
mitogen-activated protein kinases [104], synergistically act-
ing with the osteogenic properties of the base scaffold to
provide ‘osteoimmunomodulation’ function and leading to
enhanced bone formation. This hybrid scaffold showed sig-
nificant ability to induce in vitro osteogenic gene expression
by MSCs and downregulation of inflammatory mediators in
macrophages. The anti-inflammatory effects were the result
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of continuous release of CO and Mn2* from the scaffold,
while the interaction of DFO and MnCO was thought to
drive angiogenic processes. After implanting the scaffold in
a critically sized femoral defect in rats, micro-CT imaging
showed that compared with other groups, the defect area was
almost completely healed in the osteoimmunity-regulating
scaffold group, which had the highest new bone formation
rate (25.74% +2.96%). By providing multi-dimensional bio-
mimicry of natural tissues in structure, composition, and the
biological processes of repair, this scaffold was considered a
candidate for promoting large-scale repair of bone defects.

The regeneration of structurally biomimetic cortical bone
has been a longstanding challenge, as it comprises a dense
layer of exterior tissue harboring interior Haversian canals
with microscopic tubes or tunnels. The Haversian canals also
contain nerve fibers, blood vessels, and lymphatic vessels
to allow communication between osteocytes and nutrient
transport [25]. To replicate this complex structure, a scaf-
fold with radially gradient pores was fabricated using FDM
technology [26]. The scaffold comprised a cortical region
to mimic the Haversian channels and a cancellous region
with interconnected lattice structures. The outer cortical
region presented a densified radial structure mimicking the
cross section of long bone, with four holes of approximately
1200 pm diameter resembling Haversian channels, while the
large inner cancellous region contained trabecular beams
consisting of interconnected lattice strand patterns. PCL was
used as the primary scaffold material due to its good printa-
bility, incorporated with graphene oxide (GO) nanoparticles
at two different concentrations (0.25% and 0.75% w/w) to
enhance hydrophilicity and mechanical properties (Fig. 3b).
The scaffold showed elastic modulus matching the ranges of
values for cancellous bone with acceptable biocompatibility,
although its ability to induce bone regeneration remains to
be verified in vivo.

Although multilayered or gradient scaffolds can better sat-
isfy the regenerative requirements of different tissue types
for interfacial tissue regeneration, delamination between
scaffold layers poses a common challenge. Additive manu-
facturing provides a convenient preparation method for inte-
grated scaffolds featuring regions with different properties
while avoiding problems with separation between layers. For
example, low-temperature deposition manufacturing (LDM)
was applied to generate bilayered scaffolds through different
modifications to PCL as the base material in both layers for
osteochondral tissue repair [105]. As shown in Fig. 3c, the
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upper cartilage layer comprised PCL incorporated with por-
cine cartilage ECM and further coated with ECM hydrogel,
while the bottom bone layer comprised magnesium oxide
nanoparticles (MgO) modified with polydopamine (MgO @
PDA). Coating the ECM hydrogel improved not only the cell
affinity but also the interfacial force between the scaffold
layers. The tensile fracture energy of composite scaffolds
at the interface was not significantly different from that of
pure PCL scaffolds. The presence of ECM in the cartilage
layer was conducive to chondrocyte adhesion and migration,
endowing it with chondrogenic potential, while the ability to
release Mg?* in the bone layer conferred an osteopromotive
effect that was beneficial in early osteogenesis. The expres-
sion of osteogenic differentiation-related genes in the com-
posite scaffold group was approximately two times that of
the PCL scaffold, as was the cell proliferation profile. In vivo
implantation of this scaffold in a rat osteochondral defect
model resulted in complete regeneration of the cartilage tide-
marks after 12 weeks, with no tissue separation between the
cartilage and bone layers. The rate of new bone production
and bone density in the group with composite scaffolds was
1.4 times higher than in the control group.

Cellular components can be further integrated into gra-
dient scaffolds by bioplotting. For example, bioplotting
BMSC-laden scaffolds were developed for treating osteo-
chondral defects associated with osteoarthritis, combining
cartilage regeneration with inflammation management [106].
The bioprinted gradient scaffolds consisted of three distinct
layers, each with a specific function (Fig. 3d). The bottom
layer was a porous scaffold comprising PCL and p-tricalcium
phosphate (B-TCP) to mimic the structure of subchondral
bone. The middle layer was PCL loaded with kartogenin
(KGN) and methacrylated hyaluronic acid (HAMA) together
with BMSC:s for cartilage regeneration, printed in an alter-
nating pattern. The top layer was a coating of HAMA hydro-
gel encapsulating diclofenac sodium as an anti-inflammatory
agent that was sensitive to matrix metalloproteinase (MMP)
cleaving for release. The multiple functions of the scaffold
in facilitating simultaneous osteogenesis, chondrogenesis,
and suppression of inflammation were found to be effec-
tive in repairing osteochondral defects in a rat model of
injury-induced osteoarthritis. The scaffold-implanted joints
showed significantly improved joint function and inhibited
the worsening progression of osteoarthritis through carti-
lage regeneration. The 12-week micro-CT imaging results
from in vivo implantation indicated that the use of gradient
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scaffolding significantly enhanced the regeneration of new
bone. This study suggested that time-dependent release of
bioactive substances along a gradient scaffold to match dif-
ferent stages of the repair process can be a promising strat-
egy in musculoskeletal tissue engineering, particularly for
repairing interface tissues.

To achieve tendon-to-bone repair, bioplotting was applied
to generate a unique scaffold containing three different types
of gradients: structure, composition, and mechanics, to
mimic the native tendon, fibrocartilage, and bone regions
(Fig. 3e) [107]. A material gradient was constructed using
combinations of PCL, PLGA, and HAp in different propor-
tions to mimic the transition in composition and mechanics
within tendon—bone tissue, with increasing HAp content
from the top to bottom layer. This was complemented with
an increase in pore sizes from 150 pm in the densest tendon
region, to 150-250 pm in the intermediate fibrocartilage
region, and up to 300400 pm in the bone region. The opti-
mal pore sizes for tenogenic, chondrogenic, and osteogen-
esis differentiation were 150, 150-250, and 300-400 pm,
respectively. 150 pm pore size was selected for tendon and
transition zones to favor inward cell growth, while 300 pm
pore size was suitable for skeletal zones. Moreover, the
entire scaffold was coated with decellularized tendon, carti-
lage, and bone ECM from rabbits in the respective regions
to enhance tissue-specific structure and bioactive proper-
ties. When applied to a rabbit model of rotator cuff injury,
this triple gradient scaffold was able to restore a tendon-
to-bone interface resembling native tissue transition after
16 weeks, together with significantly improved biomechani-
cal properties.

The successes obtained thus far with additive manufac-
turing to fabricate scaffolds for the regeneration of muscu-
loskeletal tissues have mostly taken advantage of the abil-
ity of these technologies to offer customization and precise
control. Using computer-aided design, additive manufactur-
ing allows gradient structures to be generated that precisely
match irregular defects or complex scaffold geometries.
Achieving continuous compositional gradients allows for
better tissue simulation. Nevertheless, most current scaf-
folds only change composition or structure to achieve dis-
crete gradients. Transitions in properties within the scaffold
are stepped and discrete, not continuous. Mixed control
of parameters such as material composition and structure
through multi-system fabrication methods, or hybrid addi-
tive manufacturing platforms with multiple nozzles are
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noteworthy development directions for creating scaffolds
with continuous gradients [108, 109].

In addition, the widespread adoption of these tech-
nologies for the creation of clinically viable scaffolds in
real-world applications, particularly for bioprinting, relies
on solving practical issues. These include balancing the
universality and specificity of the currently limited selec-
tion of materials/bioinks for various sites and degrees of
injury, achieving high-resolution printing with both speed
and accuracy, enabling easy sterilization and off-the-shelf
storage of scaffolds, and maintaining cell viability or bio-
activity of incorporated substances [110]. To avoid slow
degradation that inhibits tissue regeneration, materials
need to be selected to match the rate of tissue regenera-
tion. However, the degradation needs of materials vary for
different sites and degrees of injury. Therefore, a wider
range of material selection is needed to meet the complex-
ity of native tissues and applicability to clinical injuries.
Differences between acellular and cellular scaffolds are
worth considering when designing gradient musculoskel-
etal scaffolds. While both need to fulfill biocompatibility
requirements, there are significant differences in function-
ality, design considerations and application environments.
Acellular scaffolds are engineered to possess specific
mechanical strength and rigidity that closely mimic the
native tissue they are intended to replace, ensuring proper
load-bearing capabilities. In contrast, cellular scaffolds
prioritize flexibility and a supportive microenvironment
that accommodates cell growth and movement in addition
to the above requirements. Acellular scaffolds must exhibit
long-term biocompatibility by ensuring that they do not
release toxic substances as they degrade, thus maintaining
a safe environment for surrounding tissues. Cellular scaf-
folds additionally need to enhance cellular interactions,
requiring surface modifications to promote effective cell
adhesion, proliferation, and overall functionality. Cellu-
lar scaffolds typically demonstrate higher regeneration
efficiency because they introduce exogenous cells to the
damaged area and actively support cell behavior, such as
migration and differentiation, which are crucial for tis-
sue repair. Acellular scaffolds mainly provide structural
support and may require additional factors or endogenous
cells to stimulate regeneration. The degradation rate of
both acelluar and cellular scaffolds should be carefully
calibrated to match the pace of tissue regeneration, allow-
ing for a seamless transition as new tissue forms. Cellular
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exogenous cells and their secretory factors to create an
optimal regenerative environment and directly participate
in tissue repair.

3.3 Gradient Scaffolds Made by Sequential Layering
of Hydrogels

Hydrogel materials used in tissue regeneration exhibit tis-
sue-like properties mimicking the native ECM, including
softness, inherent elasticity, and high water storage capac-
ity. They can be made to exhibit minimal immunogenicity,
controllable degradation rate, and excellent permeability,
providing a conducive growth environment that promotes
cell adhesion, migration, and repair function [111, 112]. As
shown in Table 4, hydrogel materials used to construct gra-
dient scaffolds are often manipulated by optimizing their
composition in different layers, including through the incor-
poration of gradients of cells and/or bioactive substances
during hydrogel formation, which is a unique capability
compared to pre-fabricated scaffolds. The mechanical prop-
erties of different layers can also be modulated by control-
ling the strength of cross-linking during hydrogel formation
[113], enabling the creation of anisotropic structures benefi-
cial for the regeneration of mechanically graded tissues such
as bone and interface tissues.

A direct method for fabricating the gradient scaffold using
hydrogels is to layer sequential hydrogel formulations fol-
lowed by cross-linking the hydrogels in different layers. In
arecent study, a bilayered hydrogel scaffold was developed
for osteochondral tissue regeneration based on sequential
formulation and cross-linking of cartilage and bone layers
[114]. The two layers presented a compositional gradient
of methacrylated sodium alginate (SAMA), GelMA, and
B-TCP of different proportions corresponding to cartilage
and bone regeneration. The hydrogel layers were formed by
photopolymerization of the C=C double bond in SAMA and
GelMA, which could be triggered by blue light to form inter-
penetrated covalent hydrogel networks to avoid delamination
of different layers of hydrogel. A biochemical gradient of
KGN release within the chondral and osseous layers was
also formed. A high concentration of KGN in chondral layer
induced chondrogenesis of the embedded BMSCs, and a low
concentration of KGN combined with $-TCP in the osseous
layer promoted better osteogenesis compared to 3-TCP only
without KGN. The chondral and osseous layers also showed

© The authors

a gradient of pore sizes, transitioning from 150-200 pm in
the top layer to 200-300 pm in the bottom layer, respec-
tively, matching the requirements for chondrogenic and oste-
ogenic differentiation. This hydrogel scaffold was found to
promote superior repair in a rat osteochondral defect model,
with the regenerated tissue showing a transition from hyaline
cartilage to hypertrophic cartilage and calcified bone.

Using a similar design strategy of layering gradient hydro-
gels and incorporating bioactive molecules for osteochon-
dral tissue engineering, a bilayer hydrogel was fabricated
using a one-pot method, with two seamlessly integrated but
distinct layers [115]. The upper layer comprised a GelMA-
PDA hydrogel for cartilage repair, while the lower layer of
GelMA-PDA/HAp hydrogel containing HAp nanoparticles
was formed through PDA-induced in situ mineralization
of calcium and phosphate ions. The bilayer hydrogel was
formed by simultaneously polymerizing the two hydrogel
layers, casting the lower layer followed by the upper layer.
The high viscosity of the pre-gel solutions prevented the lay-
ers from fusing during polymerization. Moreover, TGF-fp3
and BMP-2 were immobilized, respectively, in the cartilage
and bone layer to help induce tissue-specific differentiation.
Compared with pure GelMA hydrogel, the bilayer hydrogel
induced better osteochondral tissue repair after implantation
for 12 weeks in a rabbit full-thickness osteochondral defect
model, suggesting that the bilayer design was more effective
at promoting the regeneration of interfacial tissues.

Bilayer scaffolds with sequential layering of hydrogels
aim to separately replicate the characteristics of the carti-
lage and subchondral bone layers, but may be limited by
potential delamination between layers and lack of transi-
tional area between tissue regions. A continuous gradient
hydrogel was designed to mimic the anatomical, biologi-
cal, and physicochemical transition between cartilage and
bone in osteochondral tissue [116]. The hydrogel scaffold,
composed of a continuous collagenous matrix presented a
gradient distribution of HAp particles, resulting in a physical
gradient of stiffness from the softer cartilage-like region to
the stiffer bone-like region. The pores were open and inter-
connected within and between layers, contributing to the
overall structure and mechanical properties of the scaffold.
Biological evaluation using human BMSCs showed that the
scaffold supported cell proliferation under both osteogenic
and chondrogenic conditions, while its gradient of composi-
tion and stiffness preferentially directed cell growth in the
cartilage and bone sub-regions.

https://doi.org/10.1007/s40820-024-01581-4



Nano-Micro Lett. (2025) 17:75

Page 23 0of46 75

Other types of gradient hydrogel design approaches have
made use of bioactive metal ions, including trace elements
found in natural bone that have functions in promoting the
regeneration of musculoskeletal tissues. For example, mag-
nesium ions (Mg>"), zinc ions (Zn*"), and calcium ions
can promote bone growth while copper ions (Cu**) and
cobalt ions can promote blood vessel growth [117]. For
bone defects with osteoporosis, strontium ions can inhibit
osteoclasts and promote osteogenesis. Additionally, some
metal ions with antibacterial properties, such as silver and
copper ions, can be used to treat bone defects with infection
[118]. In one study, a bilayer hydrogel scaffold containing
metal ions was designed to mimic the natural osteochon-
dral structure (Fig. 4a) [119]. The upper layer consisted of
GelMA and hyaluronic acid (HA), with small pores and a
minor amount of magnesium carbonate hydroxide loaded
in the hydrogel. The lower layer was formed by a GelMA
solution loaded with a substantial amount of magnesium car-
bonate hydroxide and subjected to freeze-drying, resulting
in a scaffold with larger pores. The release of small amounts
of Mg?* from the upper hydrogel layer promoted cartilage
repair, while the long-term release of large amounts of Mg>*
from the lower freeze-dried gel enhanced mineralization and
bone regeneration. The scaffold suffered 70% weight loss
after 21 days in collagenase II solution (1 U mL™!). The
upper layer of the scaffold showed a cumulative release
of 200 ppm Mg>* over 21 days, while 100 ppm Mg>* was
released from the lower layer of the scaffold. The lower layer
showed very limited release of Mg>" after day 7, while the
upper layer maintained its initial release trend. In addition
to its gradient composition, the gradient porosity along the
scaffold resembled natural osteochondral tissue structure.
Micro-CT imaging of different scaffold groups implanted
in rabbit osteochondral defects for 12 weeks demonstrated
that the bilayer hydrogel scaffold with magnesium ion gra-
dients better facilitated simultaneous bone and cartilage
regeneration. In another study, a layered hydrogel featur-
ing a unique gradient distribution of copper and Zn>* in a
thiolate gelatin matrix was fabricated, mimicking the natu-
ral transition at the tendon-to-bone insertion site (Fig. 4b)
[120]. As osteoblasts were more likely to be attracted to a
copper-rich environment, while tenocytes were more likely
attracted to a zinc-rich environment, the hydrogel had an
increasing concentration of Zn>* from the bone region up
to the tendon region together with an opposite concentra-
tion gradient of Cu®*. The hydrogel precursors in the upper

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

and lower regions were fused during fabrication through a
one-step coordinative cross-linking process (the preparation
of the scaffold through a coordinated cross-linking reaction
completed in a single step), allowing the ions to form the
two concentration gradients as well as an intermediate tran-
sition zone containing both Cu** and Zn**. The different
regions of the scaffold both degraded about 70% on day 21.
Meanwhile, the cumulative release of Zn>* was 75% and of
Cu?* was 72% on day 21. Since the same trend was observed
in the ion release and degradation behavior, these two pro-
cesses were likely to be occurring simultaneously. In vitro
cultures indicated significantly elevated expression of COL
IIT and scleraxis (SCX) by tenocytes in the Zn-rich tendon
region, and of runt-related transcription factor 2 (RUNX2)
and osteocalcin (OCN) by osteoblasts in the Cu-rich bone
region at day 3 before the scaffold showed significant struc-
tural disruptions due to degradation. This simultaneous
reparative effect for both tendon and bone was confirmed
in vivo using a rat model of rotator cuff tear, where the gradi-
ent hydrogel scaffold showed better interface tissue regen-
eration compared to hydrogels with single metal ions after
8 weeks. The incorporation of Cu** and Zn?* also conveyed
an additional benefit of antibacterial properties, potentially
providing a dual function of infection prevention and tissue
regeneration in tendon-to-bone healing.

The gradient scaffolds prepared through hydrogels can be
adjusted with different gel components, active drug types,
and concentration gradients to form a multilayer or continu-
ous composite gel structure, which fits the needs of complex
bone interface repair. Also, buoyancy-driven gradients can
be formed when two miscible and solidifiable liquid phases
with a sufficient density difference are present. By introduc-
ing one liquid phase material into the other, the two phases
establish a gradient over time, which can then be maintained
by triggering a polymerization or gelation process. Molly
et al. succeeded in achieving a concentration gradient for
a variety of substances (GelMA, gellan gum, agarose, and
acrylate polymers) by this method, whereby a gradient con-
centration of BMP-2 could be released over a 28-day period
[121]. Glycosylated superparamagnetic iron oxide nanopar-
ticles loaded with growth factors placed in agarose hydrogels
were also able to form a concentration gradient of BMP-2
in the presence of magnetic field forces, which continued
to release BMP-2 at 28 days [122]. It is important to note
that the different layers of the hydrogel should ideally be
able to react or have strong interactions to form physical

@ Springer
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stem cells (hASCs)

In vitro results:

1 mL h~! thicker fibers:

PCL

368.25+29.47 um for PCL/gela-
tin, and 332.99 +41.85 um for

PCL/gelatin/HA
0.25 mL h™! thinner fiber:

Gelatin

HA
Continuous gradient scaffold

The potential of the wet-spun
microfibers to support cell

growth, alignment, and differ-

architecture:

entiation, as well as the ability
to induce the formation of an
osteogenic-like matrix

126.32 +7.87 um for PCL/gelatin,
and 182.50+22.22 um for PCL/

gelatin/HA
Mechanical properties:

PCL/gelatin fibers to represent the

softer tendon tissue

PCL/gelatin/HAp fibers to repre-

sent the harder bone tissue

PCL/gelatin fibers, the high-

est extrusion flow rate

(1 mL h™") resulted in fibers
with lower Young’s modulus
115.30+16.33 MPa, while

0.5mLh’,

)

241.10+41.92 MPa

251.80+25.51 MPa;

0.25mLhl,
PCL/gelatin/HAp fibers Young’s

modulus ranged from 35.39+6.19

t0 59.13 +7.87 MPa

or chemical cross-links or intermolecular forces such as
hydrogen bonds to avoid delamination. Future studies can
continue to explore the application of hydrogel scaffolds in
other types of musculoskeletal and interface tissue regions,
such as the intervertebral disk.

3.4 Other Methods for Fabricating Gradient Scaffolds

The three main categories of electrospinning, additive manu-
facturing, and hydrogel layering described above represent
the mainstream methods of preparing gradient scaffolds
for regenerating musculoskeletal tissues. Other emerg-
ing approaches to scaffold preparation have attempted a
combination of two or three methods to compensate for
the shortcomings of each. For example, 3D rigid scaffolds
with a gradient structure can be used to mimic cortical and
cancellous bone tissues and injected internally with soft
hydrogels to further impart ECM properties to the scaffolds
[103]. Different fabrication methods can also be integrated
to create innovative techniques that involve rotational gas
foaming [123, 124], freeze-drying [125], and microfluid-
ics [126]. For example, rotational gas foaming utilizes the
gases produced by a reaction to expand the scaffold pores,
thereby developing a 2D material into a 3D structure. In
one study, a 3D nanofibrous scaffold with a structural gra-
dient was fabricated by gradually reducing the amount of
pluronic F-127 incorporated into the nanofibers in each
successive layer [127]. The 2D nanofiber membranes were
then converted into 3D assemblies exhibiting a gradient in
pore sizes after the gas foaming expansion process, since
each sequential layer expanded less than the previous layer.
Another approach combined electrospinning with rotational
gas foaming to fabricate scaffolds possessing diverse pore
sizes or radial gradient structures, specifically designed for
cranial bone regeneration [123]. Meanwhile, scaffolds with
gradient structures can also be fabricated by freeze-drying
and microfluidics through manipulating the growth of ice
crystal and flow rate, respectively. For example, a scaffold
with reverse opal structure was created using PLGA micro-
spheres and HAp suspension [128]. The HAp was applied
layer-by-layer with decreasing concentration from bottom
to top. Subsequently, laser processing was used to generate
parallel channels that mimicked the parallel arrangement
of collagen fibers in natural tendons, resulting in a scaffold
with gradient changes in both composition and structure.

https://doi.org/10.1007/s40820-024-01581-4
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the hyaline cartilage phenotype to

ochondral defects and maintain
a large extent

promote the regeneration of oste-

favored hyaline cartilage ECM

production

(bone layer) have a compressive

strength of 260 kPa

mechanical gradient on the basis
of dual modification of SF

Articular cartilage: GeIMA + SF-
PTH (added ACs)

Structural biphasic scaffold with a
Subchondral bone:

Articular chondrocytes (ACs)

BMSCs
Layered gradient scaffold archi-

tecture:

GelMA + SF-MA (added

BMSCs)

Application:
Osteochondral

Another technique utilized layer-by-layer tape casting to
create a composite film for creating a tendon-to-bone tran-
sition [129]. Four consecutive layers were constructed with
varying ratios of PCL and calcium phosphate silicate, with
increasing mineral content from the tendon region to the
bone region, mimicking the natural tissue gradient. This
composite film was found to improve tendon-to-bone inte-
gration in a rabbit model of supraspinatus tendon repair.

4 Preclinical Performance of Gradient
Scaffolds in Musculoskeletal Repair

Preclinical testing in animal models of musculoskeletal
repair is a necessary step in the translation of innovative gra-
dient scaffold designs into clinical application. The majority
of scaffolds discussed in this review can be tailored to suit
a wide range of animal species or defect sizes, such as rats,
rabbits, goats, and horses. As seen in Table 1, nearly all
studies that conducted in vivo testing of gradient scaffold
designs noted significant reparative effects in bone, osteo-
chondral, or tendon-to-bone injuries. While these findings
suggest promise in future clinical use, it is imperative to rec-
ognize and record the constraints of testing in animals whose
anatomy and physiology have distinct differences compared
to humans. Certain limitations in the selection of animal
models cannot be avoided. Most importantly, constrained
by accessibility, study timeframe and cost, the vast major-
ity of preclinical animal studies testing gradient scaffolds
are conducted using small animals such as rats and rabbits
that have a very short lifespan and different tissue healing
capacities compared to humans, as well as young animals
with skeletal structure and physiology that do not closely
resemble elderly humans in whom musculoskeletal condi-
tions are usually found. Larger-sized animals such as pigs
and sheep, as well as aged animals are more anatomically
and physiologically similar to humans with musculoskeletal
conditions, but their use is greatly limited by cost, availabil-
ity, and ethical concerns.

4.1 Animal Model Sizes and Ages
All of the research discussed in this review that conducted

in vivo testing of gradient scaffolds for musculoskeletal
repair used small animals such as rats and rabbits. The

https://doi.org/10.1007/s40820-024-01581-4
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Fig. 2 Electrospinning for preparing gradient biomimetic scaffolds. a The preparation procedure of gradient protein on the electrospun fiber
scaffolds [88]. Copyright 2018, American Chemical Society. b The tri-layer scaffold for osteochondral repair constructed using melt electrowrit-
ing and UV-assisted stepwise infiltration and cross-linking and the transverse view of the 3D reconstruction images of bone repair at 24 weeks
post-surgery for the different groups (The off-white color, green color and red color in 3D reconstruction images represent the primary bone,
the regenerated bone and the implanted scaffold, respectively) [89]. Copyright 2020, Elsevier. ¢ A woven scaffold for biomimetic tendon repair
formed by wet electrospinning with a gradient of HAp and Sirius Red/Fast Green staining and DAB-immunostaining exposure revealed a min-
eralization gradient of collagen II and collagen X [90]. Copyright 2019, Wiley. d A dual-gradient electrospun scaffold prepared using photother-
mal welding and gradient mineral deposition for rotator cuff injury repair and the photographs of specimens retrieved at six weeks post-opera-

tion. [94]. Copyright 2022, Springer Nature

studies that used rats [103, 105, 106, 114, 116, 130]
included different strains of laboratory rats, such as female
Lewis rats (16 weeks old, average weight 454 g) [106],
female Fischer rats (12 weeks old, average weight 245 g)
[116], and male Sprague-Dawley rats (300 g) [103].
These ages correspond to adolescence or early adulthood
in human years, when these young animals exhibit superb
self-healing capacity in addition to the naturally superior
healing ability of prey species. Similarly, studies that used
New Zealand white rabbits [70, 89, 92, 94, 115, 131-135]

© The authors

to test gradient scaffolds involved young animals typically
prior to or at sexual maturity (5—7 months). For instance,
studies on bone regeneration have used rabbits that were
aged 3 months [131] and 6 months [133] while studies on
osteochondral and tendon-to-bone regeneration have used
rabbits aged 3 months [135] and 5 months [129], respec-
tively. However, in humans, the incidence of fractures
[136], osteoarthritis [137], and rotator cuff tears [138]

https://doi.org/10.1007/s40820-024-01581-4
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increases dramatically above 65 years of age. It is also
known that as the human body ages, progenitor cells nor-
mally responsible for musculoskeletal tissue repair exhibit
reduced numbers and regenerative capacity, frequently
contributing to the impaired healing outcomes seen in
elderly individuals [139]. Therefore, using young labo-
ratory animals resembling human adolescence and early
adulthood is an inherent limitation, as they model a period
of time characterized by excellent self-repairing capacity
and a relatively low prevalence of musculoskeletal dis-
eases, with likely different cellular and molecular mech-
anisms governing the repair of bone and related tissues
compared to aged animals with diminished regenerative
potential. Moreover, animal models of musculoskeletal
injury are often treated at the time of surgical defect crea-
tion, which does not accurately resemble clinical scenarios
whereby injuries have often progressed for some time, fre-
quently into chronic injuries before treatments are applied.
These factors should be considered when interpreting the
positive outcomes of regeneration obtained using gradient
scaffolds in animal models of musculoskeletal injuries,
which also call for future investigations using more physi-
ologically relevant models such as in aged animals and
chronic defects.

4.2 Comparison with Other Scaffolds Tested in Large
Animal Models

Although the studies discussed in this review have not
tested gradient scaffold designs using large animal models
of musculoskeletal repair, other types of scaffold implants
have been examined in sheep [140], horses [141] and goats
[142, 143]. For example, a porous calcium phosphate
bioceramic scaffold with 3D printed layers that had varied
pore size between layers (500, 400, 300, and 200 um) was
compared to a scaffold with constant 500 um pore size to
repair critical-sized bone defects in horses (Fig. 5a) [141].
The scaffolds were implanted into the ilium of horses
(aged 5-9 years, weight 275-375 kg) for 7 months. The
scaffolds with constant porosity showed significantly lower
total new bone formation and scaffold degradation com-
pared to gradient porosity scaffolds, which achieved an
enhanced degree of bone regeneration and remodeling. In
another study, experiments were conducted using a porous

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

multilayered titanium alloy implant with pore sizes rang-
ing from 300 to 400 pm in osteochondral defects of mature
goats with an average weight of 45 +5 kg (Fig. 5b) [143].
Experimental results at 24 and 48 weeks post-implantation
indicated that the multilayered scaffold was more effective
at promoting defect repair compared to bilayered scaffold
and blank groups. The findings suggested that under simu-
lated physiological loads, multilayered implants could pro-
vide early load-bearing capacity and effectively enhance
bone integration. Given that this animal model closely
approximated human adult bone structure and weight, the
study results were valuable in guiding the treatment of
clinically relevant large bone defects. There is a lack of
evidence for the outcomes of scaffold-based repair of the
tendon—bone interface in large animals.

These studies illustrate that musculoskeletal repair in
large animals, which more closely represent human skeletal
structure and physiology, may proceed differently compared
to the results seen in smaller animals. Again, this stresses the
importance of verifying new biomimetic scaffold designs in
physiologically relevant large animal models prior to con-
sidering clinical applications. For modeling musculoskeletal
injuries, large animals such as sheep, goats, horses, pigs, and
dogs have greater anatomical and physiological similarities
to humans. This is reflected both in the size scales of tissues,
allowing sufficient space for defect creation that mimics the
defect and scaffold sizes expected in humans, and also in the
rate of tissue metabolism and progression of tissue repair
in response to injury. The longer lifespan of large animals
makes them suitable for conducting longitudinal studies and
observing the long-term effects of treatments. In summary,
it is essential to consider both the benefits and drawbacks
when selecting specific animal models to test gradient scaf-
folds for applications in musculoskeletal repair. Despite the
advantages of larger animals, these need to be balanced with
their limitations in accessibility, cost, space requirements,
and ethical concerns. Non-human primate models may be
considered in late-stage preclinical investigations to more
accurately mimic the clinical setting [144].

5 Conclusions and Future Perspectives
Considering the existence of multiple gradients in mus-

culoskeletal tissues including variations in structure, bio-
chemical composition, mechanical properties, and cellular
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PCL-MnCO-GelMA-PLA-HA) [103]. Copyright 2022, Wiley. b Gradient scaffold design for regeneration of cortical and trabecular bone [26].
Copyright 2022, Wiley. ¢ Scheme of the preparation process of a bilayer scaffold for osteochondral repair and the 3D reconstruction images
of the subchondral bone regenerated in the defects in different groups at 12 weeks after surgery (MD/PCL: PCL-based scaffold incorporat-
ing MgO@PDA, ECM/PCL:ECM-incorporated PCL-based 3D printed scaffold, E-co-E/PCL: ECM/PCL coated with ECM hydrogel) [105].
Copyright 2023, Wiley. d A tri-layer scaffold for osteochondral repair made using 3D printing technology combined with hydrogel and 3D
reconstructed micro-CT images of the osteochondral defect areas in the blank group and scaffold group at 12 weeks post-surgery [106]. Copy-
right 2021, Elsevier. e A biomimetic tri-layer scaffold with gradient composition and structure for rotator cuff repair and safranin O staining of
the repaired tendon-to-bone site at 16 weeks postoperatively. (GBS-E: mechanics-graded biomimetic scaffold with decellularized ECM) [107].
Copyright 2023, American Chemical Society

phenotype, gradient scaffolds have significant potential in  analyzed gradient scaffolds that have been developed to
achieving faithful regeneration of bone and interfacial skele-  regenerate three main types of musculoskeletal tissues:
tal tissues. In this review, we have summarized and critically bone, osteochondral tissue, and tendon-to-bone interface.
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We highlighted the interesting design features seen in recent
studies and reported the advanced manufacturing strategies
used to create these gradient scaffold designs, including
electrospinning, additive manufacturing, and hydrogel fab-
rication techniques. Our review points to the advantages of
using synergistic techniques and integrated approaches for
producing gradient scaffolds, to more effectively replicate
native hierarchical tissue structure and musculoskeletal tis-
sue repair outcomes. Current preclinical investigations in
small animal models indicate promise in the ability of gra-
dient scaffold designs to improve the future treatment of
musculoskeletal injuries.

Despite rapid developments in gradient scaffold designs
for musculoskeletal repair in recent years, a number of

SHANGHAI JIAO TONG UNIVERSITY PRESS

challenges remain to be addressed before they may attain
wider clinical applicability. Firstly, possibly limited by the
available choices for fabrication techniques, current gradi-
ent scaffolds do not faithfully replicate all of the features
of native bone and interface tissues. Most scaffold designs
focus on biomimicry at the macroscopic tissue level, but
fail to provide mimicry for sub-structural tissue units. In
addition, current gradient scaffolds could benefit from a
better match with the gradients of ECM and cell distribu-
tions found in native tissues, as many designs still exhibit
sharp borders between scaffold layers rather than a smooth
transition. Even for scaffolds with smooth gradient transi-
tion of properties, the majority show gradient lengths that
span hundreds of micrometers to even millimeters, which is
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wildly out of proportion compared to the size of native tissue
gradients. In the future, gradient scaffolds with biomimetic
design and length scales may be produced using techniques
that provide increased control and precision, such as near-
field electrospinning [145].

Secondly, enhancing the ability of gradient scaffolds in
the modulation of cell behavior toward musculoskeletal
repair is an important development direction. Many studies
have introduced various types of bioactive substances, such
as growth factors, bioactive peptides, or immunomodulatory
molecules into gradient scaffolds to help regulate cell behav-
ior, but the establishment of functionally useful biochemical
gradients and the dosage of biomolecules require further
exploration. In this regard, it is important to understand how
degradation affects the gradient structure or composition of
a scaffold, and consider this factor in scaffold design such
that the rate of degradation matches the progress of tissue
regeneration. During the degradation of a gradient scaffold,
the gradient structure begins to disappear and the scaffold
components are not permanently retained in the body. The
retention time (or degradation time) of a gradient varies
depending on the chemical composition, structure, and

© The authors

even the preparation method of the scaffold. For example,
an electrospun SF scaffold underwent degradation in 1 U
mL~! protease XIV solution with a mass loss of 65% after
24 days [146]. In another study, SF scaffolds prepared by
electrospinning and freeze-drying also degraded gradually
over time when immersed in 5 mL of protease XIV in PBS
(2 mg L) solution, reaching a plateau at 11.86% degrada-
tion after 20 days [46]. Scaffolds made of synthetic polymers
tend to exhibit slower degradation than those comprising
natural polymers, and their degradation rate may also be
modulated by composition. For example, poly[(rac-lactide)-
co-glycolide] (85:15) scaffolds have a degradation time of
5-6 months, while poly[(rac-lactide)-co-glycolide] (50:50)
scaffolds degrade in 1-2 months [147]. Specific surface
area, which is associated with scaffold porosity, has a sig-
nificant effect on degradation rate, where higher ratios lead
to faster dissolution. For example, PCL scaffolds with 90%
porosity degraded by 50% at 72 weeks in vitro, while PCL
with 80% porosity degraded by only 10% [148]. However,
it is interesting to note that the time taken for scaffolds to
start regulating cell behavior may be much shorter than the
time required for significant degradation. In one study, a

https://doi.org/10.1007/s40820-024-01581-4
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hierarchically degradable bioactive bone scaffold was con-
structed by adjusting the ratio of hydrogel material (polyeth-
ylene glycol/GelIMA) added with decellularized bone matrix
(DBM) particles and BMP-2 [149]. First, the degradation
of DBM left inward growth channels for new tissues and
capillaries. The inward growth of new tissues and capillaries
then propelled secondary degradation of the scaffold. The
scaffold had degraded about 40%—60% at day 28, matched
by a similar trend of BMP-2 release from its different layers.
Remarkably, the scaffold showed very early stage effects
on cellular osteogenic differentiation. Alkaline phosphatase
(ALP) staining in the scaffold at day 3 was significantly
higher than that of the negative control. Gene markers of
osteogenesis such as RUNX2 and OCN also showed signifi-
cant and early upregulation in scaffolds over the period of
differentiation. Unfortunately, current studies usually only
explore the overall degradation rate of scaffolds in vitro
and rarely report the changes in gradient properties during
scaffold degradation. This is an issue that warrants investi-
gation in future studies. In addition, current evidence sug-
gests that the micro- and nano-morphology of scaffolds can
reciprocally interact with mechanical conditioning, protein
adsorption, and immunomodulation among other pathways
to regulate cell behavior [150, 151]. Future gradient scaffold
design strategies may benefit from integrating the control of
micro- and nanoscale topography with mechanical stimula-
tion to enhance musculoskeletal tissue regeneration, particu-
larly considering that the functional role of these tissues is
closely regulated by movement and force.

Thirdly, considering that the natural progression of in vivo
tissue healing and regeneration involves a complex and long-
term process, new gradient scaffold design need to meet the
demands of different phases during musculoskeletal tissue
healing. The development of stimulus-responsive materials
and their incorporation into “smart” scaffolds [152, 153]
coupled with the construction of biochemical, mechanical,
or other gradients may help to achieve more precise regula-
tion of cellular behavior and consequently the biological cas-
cades essential for long-term healing. The microenvironment
in which tissue healing occurs can also vary considerably
among patients depending on the physical condition of indi-
vidual, area of damage/disease, and intrinsic repair capacity,
among other factors. The development of personalized scaf-
folds constitutes an important step in satisfying the clinical
need to cater for variations in patient characteristics, which
may benefit from rapid developments in artificial intelligence

| SHANGHAI JIAO TONG UNIVERSITY PRESS

and medical imaging to assist scaffold design. For instance,
high-resolution imaging can be used to capture precise and
individualized information on musculoskeletal tissue defects
to enable the production of customized scaffolds, while arti-
ficial intelligence may be employed to efficiently compute
optimal scaffold design parameters to simultaneously satisfy
multiple design requirements [154—157].

Last but not least, there are significant problems to con-
sider in the large-scale manufacturing and scale-up of cur-
rent gradient scaffold design strategies. Highly biomimetic
scaffold designs typically involve a series of complicated
fabrication steps that create barriers to efficient and repli-
cable production on a commercializable level. There are
also technical barriers to creating gradient scaffold struc-
tures that are highly precise, nonlinear, or contain a mix-
ture of composite materials. The most popular methods for
fabricating gradient scaffolds currently involve hydrogel
materials, drawing from a limited selection of materials
that may also pose the issue of mismatch between scaffold
degradation rate and tissue regeneration rate, as well as the
accumulation of degradation products with adverse effects
[51]. For musculoskeletal tissue regeneration, hydrogel
materials typically also exhibit weak mechanical proper-
ties that are not suitable for load-bearing applications. It
is important to note here that although a range of animal
models have been used in the literature to probe the in vivo
outcomes of musculoskeletal repair using gradient scaf-
folds, there are fundamental differences between the ana-
tomical and biomechanical characteristics of the skeletal
system in animals compared to humans, and these differ-
ences need to be carefully considered when interpreting
the findings before potentially translating the scaffolds to
clinical application [12, 158]. The field of musculoskel-
etal regenerative medicine and development of gradient
implants would benefit from improved standardization
of the industry framework for evaluation and translation.
For instance, the development of standardized preclinical
evaluation methods and uniform evaluation criteria will
improve the consistency of research findings and acceler-
ate the commercialization of new discoveries [159]. With
the integration of sophisticated and biomimetic scaffold
designs, advanced manufacturing strategies, and standardi-
zation of steps to clinical translation, we can anticipate
gradient scaffolds to have a significant contribution toward
clinical applications in the treatment of challenging mus-
culoskeletal injuries and diseases.
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