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 HIGHLIGHTS

• This review provides a detailed account of engineered plant cell wall (CW)-mimetic soft materials, which are designed to replicate 
the intricate composition, structure, and mechanical properties of natural plant CWs.

• Experimental methods to create CW-like materials are reviewed, and relevant characterization techniques, including mechanical, 
chemical, structural, and morphological analyses, are discussed.

•  The applications of CW-like materials in several fields, including food packaging, edible films, drug delivery, construction materials, 
and biocatalysis are highlighted.

ABSTRACT Plant cell wall 
(CW)-like soft materials, referred 
to as artificial CWs, are composites 
of assembled polymers containing 
micro-/nanoparticles or fibers/
fibrils that are designed to mimic 
the composition, structure, and 
mechanics of plant CWs. CW-like 
materials have recently emerged 
to test hypotheses pertaining to the 
intricate structure–property rela-
tionships of native plant CWs or 
to fabricate functional materials. 
Here, research on plant CWs and 
CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including 
cellulose, pectin, and hemicellulose, as well as organic polymers like lignin. Micro- and nanofabrication of plant CW-like composites, 
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characterization techniques, and in silico studies are reviewed, with a brief overview of current and potential applications. Micro-/nanofab-
rication approaches include bacterial growth and impregnation, layer-by-layer assembly, film casting, 3-dimensional templating microcap-
sules, and particle coating. Various characterization techniques are necessary for the comprehensive mechanical, chemical, morphological, 
and structural analyses of plant CWs and CW-like materials. CW-like materials demonstrate versatility in real-life applications, including 
biomass conversion, pulp and paper, food science, construction, catalysis, and reaction engineering. This review seeks to facilitate the 
rational design and thorough characterization of plant CW-mimetic materials, with the goal of advancing the development of innovative 
soft materials and elucidating the complex structure–property relationships inherent in native CWs.

KEYWORDS Synthetic plants; Biomimicry; Acellular wall; Composites; Living materials; Soft matter

1 Introduction

Plant cell walls (CWs) have garnered significant interest 
as a result of their composition, hierarchical structure, 
and unique mechanical properties, inspiring the engi-
neering of biomimetic materials. Plant CWs may have 
high strength, stiffness, and extensibility, depending on 
growth stages and tissue types [1–3]. To closely mimic 
the characteristic properties of CWs and construct arti-
ficial plant CWs, the contribution of each component as 
well as the arrangements and interactions of CW building 
blocks need to be uncovered. To this end, considerable 
effort has been devoted to investigating the biological 
mechanisms underlying CW formation [4–6]; however, 
the isolation of plant CW components for in-depth stud-
ies of their native state is non-trivial [7]. The selective 
removal of CW building blocks via chemical or mechani-
cal treatments may cause degradation and compromise 
corresponding interactions [8, 9]. To overcome the chal-
lenges associated with top-down CW investigations, 
bottom-up approaches such as developing artificial CWs 
have emerged [10–13].

CW-like materials generally comprise one to three 
biopolymer components produced by plants. These 
materials are classified into either two-dimensional (2D) 
or three-dimensional (3D) platforms. Fibers, monolithic 
composites, and films made up of polymers, particles, 
or their combination are considered as 2D constructs, 
and 3D models are fabricated using beads, droplets, 
or plasma membrane templates. The 3D constructs 
include microcapsules, microspheres, and coated beads 
[14]. Challenges and opportunities persist in building 
synthetic CW-like materials. Constructing the cross-
lamellate structure and the integration of wall polymers 
such as lignin remains a key challenge. Additionally, 

the biomimetic assembly of biopolymers to develop 
3D CW-mimetic composites is currently unexplored. 
Advancements in understanding the structure–property-
function relationships of CW combined with advanced 
material fabrication and synthesis approaches may 
hold promise to overcome these challenges. Simulation 
methods, such as finite element analysis and coarse-grained 
modeling, enable the prediction of assembled CW-like 
material properties, such as mechanical characteristics, 
thermodynamic interactions, and transport phenomena 
[15–17]. Structural characterizations help uncover the 
effects of the physiochemical properties of CW polymers 
and inter-fibril interactions on material properties [15]. 
Additionally, advanced approaches such as bacteria-enabled 
in situ and ex situ material syntheses, microfluidics, and 
additive manufacturing may offer solutions for creating 
more complex, functional, and scalable CW-like materials.

Current studies have concentrated on fabricating plant 
CW-like materials either to elucidate CW structures or for 
biomimetic applications. To the best of our knowledge, 
no comprehensive review of the existing literature on 
this topic has been published. Furthermore, the field is 
disjointed due to the use of various terms to describe plant 
CW-like materials. The terms “artificial”, “synthetic” 
plant CWs, wall-like materials, wall-mimicking materials, 
and in vitro grown CWs are all used interchangeably to 
describe plant CW-like materials in the literature. In this 
paper, we aim to consolidate the current knowledge of this 
field by reviewing key studies on native plant CWs and 
CW-like materials. After providing a general description 
of plant CWs, including their composition and micro-/
nanoarchitecture, we review the fabrication methods 
and characterization techniques for CW-like composites. 
Finally, the emerging applications of these materials are 
reviewed.
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2  Plant CWs: Function, Architecture, 
and Composition

The hierarchical structure and constituent elements of 
plant CWs are discussed herein to provide a fundamen-
tal understanding of how CWs may be mimicked. The 
main function of CWs is to provide structural resilience 
and protect cells against biotic and abiotic stresses, while 
passing nutrients, gases, and cellular signals to the plasma 
membrane. CWs must be strong to support the mechanical 
integrity of plants and be extensible to enable cell expan-
sion in growing cells [4, 5, 18]. All plant cells have a 
strong, extensible CW layer called the primary cell wall 
(PCW), while specialized cells, such as tracheary elements 
and wood fibers, encompass an additional secondary cell 
wall (SCW). Figure 1a presents the layers of CW in wood, 
including the middle lamella (ML), PCW, and SCW, as 
well as lumen. The SCW is composed of three sublayers, 

namely S1, S2, and S3, separating SCW from the lumen 
(i.e., the central void space). Each layer has unique 
arrangement of cellulose microfibrils (CMF), which play 
a key role in defining the physical and mechanical proper-
ties of plant CW [19]. The lumen in tracheary elements 
is responsible for water transport, and the CWs between 
adjacent cells are adhered to each other by the pectin-rich 
ML [3]. Both PCW and SCW layers contain CMF, which 
are frequently bundled together to provide much of the 
structural strength for the CWs [1, 4].

The precise composition of CWs varies between species 
and even among the specialized tissues within the same plant 
[20]. Figure 1b presents the variations in composition and 
the corresponding content within each layer of a lignified 
CW in wood. It is important to note that these are final 
compositions after the cell growth is ceased, and the actual 
compositions during the cell growth are different because 
not all components are synthesized and deposited at the 

Fig. 1  CW architecture and composition. a A cut-out schematic of a wood CW shows its layered structure, featuring a network-like arrangement 
in the PCW and aligned fibrils in the SCW. b The composition of wood CW in each layer after lignification. The light blue region shows the 
content of other compounds in the layers. c PCW schematic based on a molecular model, showing a load-bearing network of CMF in a matrix of 
pectin and xyloglucan. d A schematic of the SCW based on a molecular model, illustrating lignin deposits within an oriented cellulose matrix. 
The CMF are bound by xylan hemicelluloses, with limited interactions between cellulose and lignin. The PCW and SCW schemes were inspired 
by [29] and [37], respectively
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same time. The PCW is a composite material with both 
elastic and plastic properties, consisting of three structural 
polysaccharides, namely CMF (otherwise known as 
cellulose nanofibrils or CNF) (~ 15%-40%), hemicelluloses 
(~ 20%-30%), and pectin (~ 30%-50%) [2]. In lignified cells, 
the PCW also contains lignin (e.g., tracheid cell, up to 70%) 
[21]. The predominant hemicelluloses are xyloglucans in the 
PCW of all spermatophytes except grasses [22]. The SCW, 
which is formed after the plant cells stop growing, is thicker 
than the PCW. This layer consists of cellulose (~ 40%-48%), 
hemicelluloses (~ 20%-30%), and lignin (~ 20%-30%) [23]. 
In addition to the dominant structural polymers, growing 
CWs comprise small amounts of glycoproteins, also called 
structural proteins; however, they do not significantly 
contribute to the mechanical properties of CWs [18].

Information on the morphological features of plant 
CWs is being continuously updated, as current studies 
are limited to nonliving plant materials and in silico 
modeling [24–26]. The architecture of CWs depends on 
the orientation/arrangement of structural components 
[27, 28]. Figure  1c presents a recent model for PCW, 
consisting of a cross-lamellate cellulose fibril network 
embedded in a polysaccharide matrix [29]. Hemicellulose 
chains noncovalently bind to CMF, while the hydrated 
pectin molecules form a gel-like matrix, filling the space 
among the stiff cellulose networks. Since the PCW is 
formed during the growth phase of plant tissues, it must 
be extensible and capable of expanding alongside the 
growing plant cells [2, 5, 30]. During cell expansion, 
turgor pressure (i.e., the force from within the cell pushing 
the membrane against the CW) generates wall stresses and 
stores mechanical energy within the cell. Mechanical creep 
allows wall polymers to relax, facilitating the controlled 
expansion of CW. The stored mechanical energy drives 
cell expansion. This process is aided by wall-loosening 
agents, such as expansins, which disrupt crosslinks 
between CMF, allowing the fibrils to slide past each other 
more easily [4]. Additionally, plant cells are adhered to 
one another by a pectin-rich layer known as the ML [3].

Compared with PCW, SCW is stiffer and supports the 
plant weight; it is formed after the cell ceases to grow. 
It provides compressive and tensile strength, but not 
necessarily extensibility [2]. In cells containing a SCW, 
the PCW and ML become increasingly lignified, which 
are referred to as a compound middle lamella (CML) 
[21]. In the SCW S1 and S3 layers, CMF align roughly 

perpendicularly to the longitudinal axis of cell (Y axis, 
shown in Fig. 1a) [21, 31]. In the S2 layer, comprising 
the majority of CW, highly oriented CMF are directed 
within a specified angle (Z axis, shown in Fig.  1a), 
known as microfibril angle (MFA) [32–35]. Figure 1d 
presents a recent model of SCW, where hemicellulose 
binds to the CMF, and lignin is bridged to CMF through 
hemicelluloses, indicating that CMF and lignin do not 
interact directly [2]. Xylan and glucomannan (GM) 
are two of the most prevalent hemicelluloses in the 
SCW [23]. Lignin, composed of phenolic compounds, 
imparts strength, rigidity, and hydrophobicity to the 
SCW. Its composition can vary as a result of the random 
co-polymerization of coniferyl, syringyl, or p-coumaryl 
alcohols, known as monolignols, which are synthesized 
in the cytosol and transported to the CW. Once in the CW, 
these monolignols are polymerized through oxidation, 
facilitated by oxidase enzymes such as peroxidase [23, 
36]. The deposition of lignin and hemicellulose renders 
the water conduits waterproof, enabling efficient water 
transport throughout the plants and increasing the stiffness 
and strength of CW [23, 37].

3  Fabrication and Properties of Artificial 
Plant CWs

Artificial plant CWs have been constructed via bottom-up 
approaches using bacterial cellulose pellicle growth and 
impregnation, layer-by-layer (LbL) assembly, film casting, 
3D templating microcapsules, and particle coating. These 
methods, summarized in Figs. 2 and 3, are discussed in this 
Section.

3.1  Bacterial Pellicle Growth and Impregnation

Bacterial cellulose has high purity and degree of polym-
erization (DP), whereas mechanically fibrillated and chemi-
cally treated cellulose isolated from plant sources typically 
have lower or less uniform DP [38]. Leveraging these 
advantages, bacterial cellulose pellicles are cultivated, and 
secondary components are impregnated into the pellicles to 
construct artificial plant CWs using a bottom-up approach. 
To achieve this, cellulose-producing bacteria are cultured 
in media containing the constituent components of plant 
CWs, facilitating in vitro cellulose assembly that mimics 
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Fig. 2  Fabrication of plant CW-like materials via bacterial cellulose pellicle growth and impregnation or LbL assembly techniques. a A culture of cellulose-synthesiz-
ing bacteria, assembling cellulose within a growth medium, containing CW polysaccharides and other biopolymers. b Deep-etch freeze-fracture TEM micrographs of 
bacterial cellulose, showing differences in the arrangement of CMF with or without xyloglucan. Scale bars are 5 µm. Adapted (cropped and labeled) with permission 
[46].  Copyright Wiley, 1995. c Effect of expansin on the extension of hemicellulose-cellulose composites, showing a significant increase in displacement under a con-
stant load for cellulose-xyloglucan composites with the addition of expansin. Adapted with permission. Copyright Wiley, 2000 [39]. d Schematic of the LbL assembly 
method, showing the formation of alternating cellulose fibril and xyloglucan layers on a primer-coated substrate. e The thickness of CNC-xyloglucan films, formed 
via spin coating, as a function of deposited layer number demonstrates the linear growth of layers when the xyloglucan concentration is 0.5 or 1 g  mL−1. Adapted with 
permission [62]. Copyright American Chemical Society, 2010. f AFM topographical images show the non-uniformity of pectin and extensin layers in a pectin-extensin 
composite material, attributed to the imbalanced charge density between the components. Adapted with permission [65]. Copyright American Chemical Society, 2010
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the structures of natural CWs. Bacterial cellulose is synthe-
sized as large, randomly oriented ribbons, which has been 
used to simulate the biomechanical properties of CWs, such 
as extensibility, as well as physicochemical phenomena like 

water sorption kinetics [10, 39, 40]. Although artificial CWs 
can provide valuable insights, they exhibit significant struc-
tural differences compared with native plant CWs, where 
CMF are considerably thinner [41]. Moreover, native plant 

Fig. 3  Fabrication of plant CW-like materials via film casting and 3D templating techniques. a Schematic of the film casting technique for 
constructing a plant CW-like film by combining CW polysaccharides, followed by solvent removal through either evaporation, crosslinking, 
or filtration. b Nano-indentation modulus of in situ lignified cast films, showing that an increase in lignin content and a decrease in cellulose 
content reduced stiffness. Adapted under terms of the CC-BY license [69].  Copyright 2017, The Authors, published by Springer Nature. c Ten-
sile stress–strain of cast films, containing c-CLPs, showing an initial increase in both strength and elongation at break by increasing the lignin 
content (e.g., tensile strength at break increases from 132 to 160 MPa as c-CLPs increased from 0 to 10%), followed by a rapid decrease for 
films containing 20% and 50% c-CLPs [74]. Values next to c-CLP on the curves indicate the lignin content (wt%) of films. H bonding stands for 
hydrogen bonding. Adapted under terms of the CC-BY license [74]. Copyright 2019, The Authors, published by American Chemical Society. 
d LbL assembly of CW-mimetic microcapsules using liquid- or solid-based 3D templating and particle coating techniques, resulting in hollow 
microcapsules when the core was removed. e SEM images of microcapsules composed of CNC, isolated from bacteria or algae with varying AR, 
showing differences in the morphology of droplets and inter-droplet bridging. Core spheres are polystyrene particles, representing the oil drop-
lets. Adapted with permission [85]. Copyright Royal Society of Chemistry, 2013. f Plantosomes prepared using liposome templating mimicked 
the mechanism of turgor pressure in native plant cells by undergoing reversible deformations and the formation of microtubular protrusions 
when the pH was increased from 8 to 8.6. Adapted under terms of the CC-BY license [87]. Copyright 2020, The Authors, published by Springer 
Nature
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CWs are oriented in biologically determined patterns, iden-
tified by MFA, which contrast sharply with the random 3D 
weave of cellulose ribbons in bacterial pellicles. These dif-
ferences result in distinct mechanical properties between the 
two materials [42, 43]. MFA, describing the angle between 
the CMF and the long axis of the cell, plays a crucial role 
in determining the mechanical properties of plant tissues, 
particularly in how they respond to stress and strain, influ-
encing properties such as stiffness, flexibility, and resistance 
to bending or stretching [44, 45].

Figure 2a shows a representative culture of cellulose-
producing bacteria within a growth medium, enriched 
with CW polysaccharides and other biopolymers. This 
method was initially demonstrated in a series of studies 
by Whitney et  al., [10, 39, 46, 47] in which bacterial 
cellulose pellicles were assembled in hemicelluloses 
(e.g., xyloglucan and GM), followed by the addition 
of expansins (nonenzymatic proteins that mediate CW 
loosening and assist in extensibility). This technique was 
used to investigate how xyloglucan and GM bind to CMF 
and contribute to the formation of CMF networks within 
CWs. In a similar study based on bacterial cellulose, 
Gluconacetobacter xylinus (formerly Acetobacter xylinum) 
was grown in a hemicellulose-containing medium. The 
addition of xyloglucan to the culture media resulted in 
a preferential alignment of fibrils, which was attributed 
to the formation of crosslinks between bacterial CMF 
through hydrogen bonding. Figure  2b shows the 
transmission electron microscopy (TEM) micrographs 
of bacterial cellulose composites formed in the absence 
or presence of xyloglucan. The xyloglucan backbone, 
adopting a cellulose-like conformation, supported its 
binding to cellulose and facilitated CMF alignment 
[46]. Galactomannan (0.2 w/v%) and GM (0.5 w/v%) 
similarly underwent crosslinking with CMF and exhibited 
alignment, with a tendency to self-aggregate at higher 
galactomannan concentrations. This behavior is attributed 
to concentrations significantly exceeding the experimental 
entanglement concentration of approximately 0.23 w/v% 
for galactomannan [47]. The increased entanglement may 
cause polymers that do not normally bind to cellulose to 
become trapped within the cellulose networks.

To more closely mimic native CWs compared with 
composites containing only bacterial cellulose and 
hemicellulose, CW proteins (e.g., expansins) and other 
CW biopolymers (e.g., pectin) should be used to enhance 

extensibility, reflecting the properties of native plants. 
“Extensibility” refers to the ability of native CW or plant 
CW-mimetic materials to expand under a constant force 
due to the action of wall-loosening agents, which should 
not be confused with or used interchangeably with the 
extensibility of CWs under increasing tensile stress [48]. 
This property is crucial for artificial CW materials to 
replicate the ability of plant CWs to undergo extension, 
which is induced and mediated by expansins during cell 
growth. The effect of CW proteins on the mechanical 
properties of CW-mimic materials was examined via adding 
α-expansin (CsExp1) to hemicellulose-bacterial cellulose 
composites [39]. Figure 2c presents the effect of CsExp1 on 
the extensibility of hemicellulose-cellulose composites as a 
function of time. Here, extensibility was quantified by the 
extension rate: the rate of extension measured shortly after 
the addition of expansins, minus the rate observed before 
expansin addition [48]. Expansin increased the extensibility 
of cellulose-tamarind xyloglucan composite to a greater 
extent (96.3  µm   min−1) compared with cellulose alone 
(0.4 µm  min−1) and cellulose composites containing low 
viscosity xyloglucan (24.8 µm  min−1), GM (~ 5.3 µm  min−1), 
or galactomannan (~ 0.5 µm  min−1). This was attributed to 
the longer chain and higher molecular weight of tamarind 
xyloglucan, resulting in the formation of more crosslinked 
domains in the bacterial cellulose composites.

Several studies suggest that the dual digestion of cellulose 
and xyloglucan induces CW expansion, indicating the 
presence of a mechanical ‘hotspot’ involving both cellulose 
and xyloglucan [39, 49, 50]. Inspired by this mechanism, 
Gluconoacetobacter xylinus was used to fabricate CW-like 
composites of xyloglucan-cellulose and pectin-xyloglucan-
cellulose. Xyloglucan, in the presence of cellulose or pectin-
cellulose, formed compliant materials with a time-dependent 
creep behavior within biaxial constraints. When pectin 
was incorporated into the material, the material strength 
and stiffness decreased while the ultimate strain (i.e., the 
maximum strain before failure) increased. The decrease 
in modulus and increase in extensibility were attributed 
to changes in the architectural organization of CMF upon 
pectin addition, which resulted in greater inter-fibrillar 
freedom [51]. The Gluconacetobacter xylinus has also been 
used to assemble artificial apple CW-like composites by 
culturing the bacteria in a medium containing apple pectin 
and xyloglucan [8]. The composite was compared with 
other CW analogs fabricated by mixing components such as 
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bacterial cellulose, pectin, and xyloglucan. The composites 
produced from culturing bacterial cellulose in the presence 
of pectin and/or xyloglucan had mechanical properties 
more closely resembling native plant tissues. The bacterial 
cellulose-xyloglucan-pectin composites also had higher 
ultimate strain at a high relative humidity (i.e., ~ 95%), as 
the failure strain increased from ~ 0.05 in the homogenized/
mixed samples to ~ 0.3 in the cultured bacterial cellulose-
pectin-xyloglucan composites, which more closely 
reflects the extensibility of plant tissues (~ 50%) [42, 52]. 
The extensibility of the artificial CW-like film at high 
relative humidity was attributed to the hydration of pectin, 
facilitating the movement of CMF network under extension 
[8]. In a subsequent study, calcium ions were added to 
the bacterial cellulose-pectin-xyloglucan composite to 
resemble apple CW and study the effect of calcium ions on 
the composite mechanical properties. The effect of calcium 
on mechanical properties was analogous to that observed 
in the apple tissue, where pectin chains were crosslinked 
by divalent ions. In plant CW-like composites containing 
pectin, calcium crosslinked the pectin chains, as evidenced 
by an increase in failure stress from ~ 0.7 to 1 MPa when the 
calcium concentration was increased from 0 to 8% w/v [53].

The studies discussed above demonstrate that bacterial 
cellulose may be cultured in media containing various CW 
components to explore polymer interactions and assembly 
in complex CW-mimetic composites. As additional compo-
nents are incorporated (e.g., biopolymers, expansins, cal-
cium ions), the mechanical properties more closely mimic 
those of plant CWs under realistic conditions, such as high 
relative humidity. To better understand the interactions 
and binding kinetics of CW constituents, three hemicel-
luloses (i.e., xyloglucan, water soluble xylan, and galac-
toglucomannan) were adsorbed to in vitro-grown bacterial 
pellicles, and isotherms were obtained based on the equi-
librium concentration of adsorbed hemicelluloses. Xyloglu-
can had the highest affinity for cellulose. Additionally, the 
hemicellulose-bacterial cellulose pellicle films were ligni-
fied by depositing coniferyl alcohol monolignols onto their 
surface, followed by polymerization mediated by horserad-
ish peroxidase (HRP) and hydrogen peroxide. Xyloglucan 
and water-soluble xylan enhanced lignin formation on their 
respective cellulose matrices by facilitating the formation 
of aryl ether and 5–5’ interunitary linkages, respectively. In 
contrast, galactoglucomannan inhibited lignin formation due 

to steric repulsion between the galactosyl substituents and 
the monolignols [54].

In CW-like materials, tailoring the interactions of CW 
components for water absorption and transport is important 
to mimic realistic plant conditions [55]. Gluconoacetobac-
ter xylinus bacterial pellicles have been used to study the 
binding kinetics of polysaccharides to CMF, as well as to 
investigate how different compositions affect the water sorp-
tion–desorption kinetics of CW-like materials [40, 54]. CW-
like composites made up of varying amounts of bacterial 
cellulose pellicles, pectin, and xyloglucan were fabricated 
to gain a better understanding of water exchange properties 
in native fruit CWs. The data collected were fitted to water 
absorption models, including Standard Guggenheim-Ander-
son-de Boer (GAB) and Ferro-Fontán [56–58]. From these 
models, the water retention capacity (the amount of water 
adsorbed and/or absorbed by the composite), water conduc-
tivity (the rate at which water molecules move through the 
composite), and diffusivity (the rate at which water mol-
ecules spread evenly through the composite) in the artificial 
CW were measured. The addition of pectin to the culture 
media reduced cellulose bundle size and the porosity, result-
ing in a denser fibril network compared with pure cellulose. 
This decreased the water retention capacity (~ 8.16 to ~ 6.0 
 kgwater  kgdried

−1 Pa ×  10–8), water conductivity (~ 17.3 ×  10–16 
to ~ 11.9 ×  10–16 kg  m−1  Pa−1  s−1), and diffusion coefficient 
(~ 48.8 ×  10–11 to ~ 46.8 ×  10–11  m2  s−1) at 25 °C and 85% 
relative humidity. These values further decreased upon xylo-
glucan addition to the cellulose-pectin composites [40]. The 
significance of this study lies in the application of CW-like 
materials as a barrier to water exchange, inspired by the 
barrier properties of plant CWs, which helps preserve the 
moisture of plant-based products during commercial storage.

3.2  Layer‑by‑Layer Assembly Technique

Via dip coating, spin coating, or pipetting LbL assembly, 
alternating layers of plant CW components have been 
deposited on a variety of substrates (e.g., charged, metal, 
or biopolymeric surfaces). The precision of this technique 
in controlling material structure has enabled the creation 
of heterogenous domains within CW-like bulk composites 
[59]. Figure 2d presents the LbL assembly method via which 
alternating layers of CMF and xyloglucans are deposited 
on a primer-coated substrate. Depending on the intended 
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application of CW-like materials, CMF may be micro- or 
nano-engineered prior to assembly to incorporate specific 
functional groups or alter their morphology. In LbL 
studies, the substrate is first coated with a polyelectrolyte 
multilayer primer to ensure a uniform coating and minimize 
the effects of substrate composition and texture before 
depositing the first layer of materials [60]. This is because 
the LbL technique typically relies on charged polymers to 
enable interlayer adhesion; however, some studies have 
also reported the construction of multilayered films using 
only hydrogen bonding or van der Waals forces [14, 61, 
62]. Accordingly, CW-like films of alternating thin layers 
of cellulose nanocrystals (CNC) and xyloglucans were 
constructed via non-electrostatic interactions [62, 63]. 
CNC-xyloglucan films produced by spin coating were more 
uniform compared with the analogs generated by dip coating. 
At a constant CNC concentration (1 g  L−1), concentrated 
solutions of xyloglucan (e.g., 5 or 10 g  mL−1) could only 
build 2–4 bilayers as a result of polymer entanglement, 
after which the film thickness plateaued. In contrast, dilute 
xyloglucan solutions (e.g., 0.5 or 1 g  mL−1) allowed for the 
formation of an unlimited number of bilayers. Figure 2e 
presents the thickness of CNC-xyloglucan films formed 
by spin-coating as a function of the number of deposited 
layers, confirming the linear growth of layers for composites 
containing 0.5 and 1 g  mL−1 of xyloglucan [62].

As mentioned, charged biopolymers such as pectin are 
particularly advantageous for the LbL technique [64, 65]. 
The balance between the biopolymer charge densities is 
crucial in determining layer organization and architecture. 
Using electrostatically driven LbL assembly, pectin-extensin 
films were fabricated on silicon wafers. Extensins are posi-
tively charged hydroxyproline-rich glycoproteins, existing 
in the CWs of higher plants [66]. Since pectin and extensin 
have opposite charges, each layer adheres to the adjacent 
layer through electrostatic interactions. A non-uniform 
growth of the pectin-extensin LbL film was observed, result-
ing from diffusive mixing at the interface of the polymer 
layers, as confirmed by atomic force microscopy (AFM) 
topographical images (Fig. 2f). It was theorized that the film 
non-uniformity resulted from extensin being weakly charged 
while pectin was strongly charged. This imbalance in charge 
density led to non-linear growth of the pectin and extensin 
layers [65]. In both linear and non-linear growth of layers, 
LbL assembly has facilitated the investigation of interactions 

between specific components (e.g., cellulose and xyloglucan, 
pectin and extensin) in WC-like materials.

LbL assembly has also been adopted to study the 
interactions (particularly non-covalent) between CW 
polysaccharides and lignin model compounds in CW-like 
materials. Lignified CNC films were prepared using a 
dehydrogenation polymer (DHP), a model lignin derived 
from the polymerization of monolignols with hydrogen 
peroxide and peroxidase, to mimic wood CW lignification 
[67]. The DHP was prepared via the “Zutropfverbaten” 
method, entailing the slow, continuous coniferyl alcohol and 
hydrogen peroxide addition to a peroxidase solution, and was 
spin coated alternatively with CNC. The AFM topographical 
analysis confirmed that the DHP formed globular structures, 
which helped CNC adhere to the coating. Spectroscopic 
ellipsometry, along with classical or Tauc-Lorentz model 
fitting, were used to measure DHP thickness on CNC films. 
The apparent layer thickness of DHP increased from ~ 7.5 
to ~ 141 Å after 6 h of contact, followed by a decrease 
to ~ 80 Å after rinsing with water and drying. This suggests 
non-covalent interactions between DHP and CNC, primarily 
through hydrogen bonding and hydrophobic interactions 
[67]. Together, LbL techniques have enabled the precise 
investigation of interactions between two CW components, 
which would be challenging to achieve in systems with more 
complex compositions.

3.3  Film Casting

Film casting is a scalable and biologically relevant technique 
for fabricating CW-like materials. This method involves 
mixing several components of interest in a solution, 
followed by casting the mixture into a film, which allows 
for the investigation of interactions among CW components, 
particularly their effects on mechanical, morphological, and 
hygroscopic properties [68, 69]. Castings may be solidified 
by evaporation or filtering out the excess solvent, followed 
by physical and/or chemical crosslinking [70–74]. Figure 3a 
presents the construction of a plant CW-like film via casting 
wherein the solvent is either evaporated or filtered. Film 
casting has been used to visualize biomass recalcitrance 
in situ, specifically examining the effect of lignin content on 
cellulose accessibility [68, 69]. To investigate the impact of 
lignin content on its recalcitrant behavior during enzymatic 
hydrolysis, suspensions of lignin and CNF (0.4 wt%) were 
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prepared, and the lignin concentration was increased up to 
40 wt%, followed by casting the mixtures in Petri dishes. 
Small pieces of films were submerged in a Cellic CTec2 
enzyme solution (0.5 wt%) at 40 °C for 2 h. Increasing lignin 
content significantly impeded enzymatic cellulose hydrolysis 
because the CNF were embedded within the lignin matrix, 
restricting their accessibility, which was observed through 
the in situ AFM analysis of film morphology [68].

Artificially lignified films have also been fabricated 
via film casting for SCW studies [69, 70, 72]. Muraille 
et  al., constructed films from a single polymer (CNC, 
hemicellulose, or DHP), binary polymers (hemicellulose/
CNC, DHP/CNC, or DHP/hemicellulose), and ternary 
polymers (DHP/hemicellulose/CNC) [69, 70]. The films 
were either lignified by the in situ surface polymerization 
of DHP or mixing with lignin directly, followed by 
casting. As opposed to in situ surface polymerization, the 
mixing method led to higher film heterogeneity due to the 
polysaccharides-DHP phase separation, as well as water 
evaporation during film formation. Notably, the in  situ 
polymerized films were more hygroscopic than the cast films 
of lignin-polysaccharide mixture. Compared with the simple 
mixing-casting method by which lignin hydrophobicity 
was well expressed, in situ DHP polymerization resulted in 
more interactions between lignin and polysaccharides (e.g., 
CNC and hemicellulose), limiting the lignin contribution to 
hydrophobic interactions. Besides lignin, the composition 
and ratio of CNC and hemicelluloses had significant 
impacts on the hygroscopic properties of lignified films 
as a result of varying affinities between lignin and the CW 
polysaccharides. Accordingly, the increase in the water 
adsorption and retention of in situ polymerized films was 
attributed to the covalent bonds formed in the hemicellulose-
DHP during the polymerization process [70].

In another study, lignified composites were fabricated via 
film casting using varying ratios of CNC, hemicellulose, 
and DHP to analyze composite mechanical properties. 
Figure 3b presents the indentation moduli of bioinspired 
films (i.e., CNC/xylan, CNC/xylan/DHP, CNC/GM, and 
CNC/GM/DHP) and natural fibers. The indentation moduli 
of CNC/hemicellulose/DHP (4/1/1 ratio) films were within 
the same order of magnitude as the CW of natural fibers 
(15–25 GPa). Films composed of CNC/GM/DHP or CNC/
xylan/DHP had an indentation modulus of 11 or 22 GPa, 
respectively. All lignified films underwent a decrease in 
modulus compared with lignin-free films, except for the 

CNC/DHP films (not shown in Fig.  3b, ~ 55 GPa). For 
instance, the modulus of CNC/xylan films decreased from 
28 to 22 GPa by DHP addition. The decrease in mechanical 
properties was proportional to the reduction in CNC content 
in lignified ternary films (~ 66% CNC) compared with binary 
films (~ 80% CNC), which indicated that a higher cellulose 
content mitigated the impact of lignin on the mechanical 
properties [69]. Several studies have highlighted that reactive 
functional groups of cellulose (e.g., hydroxyl groups) and 
its surface roughness facilitate electrostatic and van der 
Waals interactions with both hydrophilic and hydrophobic 
polymers, such as lignin [75, 76], likely resulting in the 
improved mechanical properties.

Since the interactions between cellulose and lignin 
depend on lignin morphology, film casting has also been 
used to investigate the effect of lignin morphology within 
lignocellulose matrices on the mechanical characteristics 
of films. Figure 3c presents tensile stress–strain curves 
of nanocomposite films, containing varying contents of 
cationic spherical colloidal lignin particles (c-CLP). While 
many studies have reported that film stiffness and strength 
decrease as lignin content increases, incorporating ~ 10 
wt% of c-CLPs (hydrodynamic diameter ~ 102  nm) in 
CNF films increased the strength at break and toughness 
compared with pure CNF films. The well-defined spherical 
morphology of c-CLPs allowed lignin to fill the interstitial 
areas and void spaces, leading to effective stress transfer 
to the CMF and increased ductility and toughness. This 
feature closely resembles the biological role of lignin in 
natural plant CWs, where it supports the interconnection of 
cellulose network. In contrast, in other composites, lignin 
typically forms large aggregates that disrupt the interfibrillar 
hydrogen bonding within cellulose networks [75]. To 
mimic the covalent bond formation in lignin-carbohydrate 
complexes (LCC) within plant CWs, the casting method was 
used to form lignocellulosic composite films and hydrogels 
via physical entanglement or epichlorohydrin-mediated 
chemical crosslinking. Films and hydrogels were prepared 
from carboxyl-modified CNF, alkali lignin, and GM as a 
compatibilizer. Both types of crosslinks similarly altered 
physical and mechanical properties: strength and stiffness 
decreased, while hydrophobicity increased by increasing the 
lignin content. However, films with LCC-mimicking bonds 
had greater stiffness (and higher hydrophobicity) compared 
with those with physical crosslinks, with Young’s moduli of 
approximately 10.1 and 7.6 GPa, respectively [73].
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Film casting has also been used to study the interactions 
between cellulose and hemicelluloses, which have an 
opposite effect on mechanical properties compared with 
lignin [71, 77]. CNF-hemicellulose films were prepared 
using three types of CNF with similar dimensions and 
varying hemicellulose content, namely, holo-CNF (i.e., 
CMF bearing a high hemicellulose content), enzymatically-
treated CNF, and carboxyl-modified CNF, prepared via 
2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-mediated 
oxidation. The mechanical properties of films composed 
of chemically treated fibrils were compared with those made 
from fibrils subjected to less intensive mechanical 
processing. The mechanical processing which preserved a 
high amount of hemicellulose on the CNF resulted in films 
with the highest strength compared with those made with 
carboxyl-modified and enzymatically treated CNF. This 
trend was evident even at high relative humidity levels (i.e., 
50% or 90%). Dry, holo-CNF films had a Young’s modulus 
of 24.9 GPa and ultimate strength of 348 MPa. Notably, 
these films were much stronger than the ones composed 
of biaxially oriented polyethylene terephthalate. The 
remarkable mechanical properties of holo-CNF films were 
attributed to: (i) the intrinsic high modulus and strength of 
holo-CNF as a result of mild isolation processing and (ii) 
well-preserved hemicelluloses surrounding the nanofibers, 
increasing interfibrillar bonding and stress transfer among 
the fibrils [77].

3.4  3D Templating Microcapsules and Particle Coating

To fabricate synthetic plant CWs or tissues, one approach 
involves subjecting biopolymers to more geometrically 
relevant 3D constructs [78–81]. Coating of polysaccharides 
such as dextran, pullulan, and hemicelluloses onto 
liposomes [78, 79] and cells [81] originated in the early 
1990s. Figure 3d presents the construction of CW-mimetic 
constructs via liquid- or solid-based 3D templating of 
microcapsules and particle coating in a LbL fashion. 
CW-like core–shell particles have been developed using 
two distinct 3D templating strategies: (i) liquid cores, 
where the interior space of capsules is filled with either an 
emulsion or an aqueous phase, and (ii) solid cores, where 
colloidal particles are used as templates for the deposition 
and assembly of components. In the latter case, the core may 
be removed to generate a hollow polymeric shell. The solid 

templates may be silicon dioxide or carbonate microparticles 
such as manganese, calcium, or cadmium species [80], or 
crosslinked polymers (e.g., polystyrene) [82].

The solid core templating approach has been used to 
construct synthetic multilayer capsules based on electrostatic 
interactions. Inspired by the structure and composition 
of plant PCW, 3D templated solid-core microcapsules 
(diameter ~ 16 µm) were fabricated using calcium carbonate 
as a template and plant polysaccharides (e.g., cationic 
CNF, pectin, and xyloglucan) as a shell [80, 83]. The 
calcium carbonate particles were treated with citric acid 
(50 mM) for 3 h to generate hollow microcapsules. The 
microcapsules had properties that mimic those of plant 
CWs, particularly in terms of permeability and mechanical 
stability. The barrier properties of microcapsules were 
examined using fluorescein isothiocyanate (FITC)-labelled 
dextran molecules with varying hydrodynamic sizes (e.g., 
6.6, 12, or 54 nm). In water, only dextran molecules with 
a hydrodynamic diameter of 6.6 nm could penetrate the 
capsule wall, made of apple pectin, xyloglucan, and CNF. 
The wall consisted of a percolating network of CNF, with 
xyloglucan and pectin located among the nanofibers. When 
exposed to saline (NaCl, 10 mM), larger dextran molecules 
with a hydrodynamic diameter of 12 nm also permeated the 
capsule wall. The results indicated that capsule walls were 
responsive to saline, becoming more porous and permeable 
as a result of a salt-mediated decrease in the hydrodynamic 
size of pectin. The subsequent uptake/release of molecules 
using the same microcapsule for multiple cycles was 
possible by changing the media from water to saline and 
vice versa. Microcapsules containing water-soluble pectin 
had high integrity and robustness after multiple cycles of salt 
loading/unloading, which was attributed to the percolating 
CNF networks [80].

The permeability of microcapsules is tunable via tailoring 
the capsule wall composition. To investigate this effect, two 
types of microcapsules were assembled using 5 bilayers 
of cationic CNF and xyloglucan, with and without pectin. 
Increasing the xyloglucan and decreasing the pectin contents 
resulted in microcapsules with decreased permeability in 
saline solutions. Although the microcapsules in water were 
permeable to all sizes of FITC-dextran molecules (i.e., 6, 
12, and 54 nm), only the 6 nm dextran molecules and a 
small fraction of the 12 nm molecules permeated into the 
microcapsules in saline. The opposite permeability of this 
microcapsule in water with the above-described one was 
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explained by the citric acid-mediated physical crosslinking 
of capsule wall, decreasing the swelling degree and pore 
size. In saline, the low permeability of cationic CNF/
xyloglucan/pectin microcapsules was attributed to the 
electrical double layer (EDL) screening of charged polymers 
by NaCl, allowing nonionic interactions such as hydrogen 
bonding and van der Waals attraction among CNF. As a 
result, the capsule wall thickness decreased, resulting in the 
decrease in pore size [83].

Liquid core templating has also been used to create 
CW-mimetic constructs. This approach was inspired by 
the assembly of nanocelluloses in Pickering emulsions. In 
2011, varying concentrations of bacterial CNC (0 to 5 g  L−1) 
were used to stabilize hexadecane-water emulsions, forming 
liquid-core microspheres (diameter ~ 4  μm). The CNC-
coated oil-in-water droplets were stable at ambient condition 
for several months [84]. The droplet stability was associated 
with the irreversible interfacial adsorption of CNC and the 
formation of 2D cellulosic network at the interface. This 
study was further expanded by the same group to investigate 
how CNC origin and dimensions affect the stability of liquid 
core systems (i.e., oil-in-water emulsion) [85]. Particle 
aspect ratio (AR) had a significant impact on droplet surface 
coverage. Figure 3e presents scanning electron microscopy 
(SEM) images of the microspheres coated with CNC 
(AR ~ 47 or 160). Short CNC (length ~ 189 nm, AR ~ 47) 
densely coated the droplets with a surface coverage of more 
than 80%, whereas long nanocrystals (length ~ 4000 nm, 
AR ~ 160) formed a loose interconnected network with a 
reduced coverage of ~ 40% [85]. The high coverage achieved 
by shorter CNC was attributed to their ability in aligning 
side by side via the strong and long-range capillary attractive 
forces. However, obtaining uniform alignment throughout 
the droplet is challenging for elongated nanocrystals with 
a high AR.

To mimic the architecture and properties of fruit and 
vegetable parenchyma cells, liquid-core capsules with high 
mechanical strength were fabricated using a blend of short 
CNF (length < 1 µm) and CNC (length ~ 140 nm) via the 
Pickering mechanism. A crosslinked network of CNF-CNC 
was formed at the interfaces using isophorone diisocyanate, 
wherein a urethane bond was generated by reacting cellulose 
hydroxyl groups with isocyanate. In this reaction, urea 
bonds were also formed via reacting diisocyanate groups 
with water. As a result, the outer and inner layers of shell 
wall structure consisted of covalently crosslinked CNF-CNC 

and aromatic polyurea, respectively. Combining short CNF 
and CNC favored a close-packed arrangement, resulting in 
capsule walls with a high cellulose content. When the total 
dry content of CNF/CNC was 17 wt%, the capsules attained 
an indentation modulus of ~ 4.84 GPa, which was 6 times 
higher than that of polyurea capsules (~ 0.79 GPa) and 3 
orders of magnitude higher than that of capsules composed 
of dissolved cellulose (~ 0.0074 GPa). The high modulus was 
attributed to the close-packed structure of capsule wall outer 
layer, which was formed by the oriented CNF and CNC. This 
structure was reinforced by both covalent bonds (between 
the urethane matrix and CNF/CNC) and hydrogen bonds 
(between CNF and CNC or between the urethane matrix and 
CNF/CNC). The wall structure of capsules closely mimicked 
the CW of seedling stem cells in embryonic cucumber [86].

In another study, more complex microcapsules that 
mimicked both plant CW and membrane were fabricated via 
liquid-core 3D templating. The outer shell of microcapsules 
consisted of PCW polysaccharides, including chemically 
modified cationic CNF and pectin, and the inner shell 
consisted of a thin layer of lipids, including oleic acid, 
oleate, and structural plant phospholipids surrounding a 
water core [87]. The microcapsules (diameter ~ 27 µm) with 
a plasma membrane-like core, covered by a continuous fiber 
layer, were referred to as plantosomes. At pH > 7, oleic 
acid may self-assemble into organized structures including 
vesicles, micelles, and cubic phases [88]. By leveraging the 
pH-dependent phase behavior of lipids, plantosomes with 
vesicle-rich cores were developed to mimic the expansion 
observed in native plant cells during growth. Plantosomes 
absorbed water at a final pH of 8.6 in an ammonium acetate 
solution, a solute known to enhance the permeability of 
vesicle membranes. The water uptake was also attributed 
to the pH-mediated self-assembly of interior oleic acid/
oleate/phospholipids mixture into vesicles, increasing 
the plantosome radius and surface area. Figure 3f shows 
the plantosome radius change (~ 29%) by increasing pH, 
mimicking the physical expansion of plant cells. Notably, 
this is distinct from plant cell growth, which occurs when 
pH decreases. During expansion, the lipid molecules 
diffused from the core toward the outer shell, generating 
tubular structures that stretch across the plant CW-like 
shell, as shown in Fig. 3f. The formation of lipid tubular 
protrusions was attributed to the restrictive, cage-like CNF/
pectin wall, which limited indefinite expansion, allowing the 
lipids to protrude only through the pores of polysaccharide 
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wall. Upon the addition of magnesium ions (10 mM), the 
expanded plantosomes collapsed as a result of ion-mediated 
bridging and the merging of smaller vesicles into larger 
ones, causing the protrusions to disappear [87].

Through a similar liquid core templating strategy, 
CW-mimetic microcapsules were fabricated using 
alternating layers of pectin, xyloglucan, and CNC, 
deposited on giant unilamellar vesicles (GUV) via LbL 
assembly. The average diameter of microcapsules with 
10.5 layers of polysaccharides was ~ 25 µm. Upon glucose-
mediated osmotic shocks, the microcapsules underwent 
a significant reversible deformation as a result of shell 
elasticity. The GUV membrane (i.e., shell) permitted the 
microcapsules to expand and contract in response to the 
osmotic pressure changes, leading to the reversible shape 
changes. The indentation modulus of shells was in the range 
of ~ 300–900 kPa, resembling the plant CWs of Arabidopsis 
thaliana shoot apical meristem and epidermal cells/dark 
grown hypocotyl [14]. Implementing 3D templating for 
CW-like material fabrication enables the investigation 
of more realistic CW properties, such as biomimetic 
permeability, mechanical stability, and deformation/
expansion. Additionally, these CW-like materials respond 
to external stimuli, such as pH, humidity, and pressure in 
a biomimetic manner, providing insights into the dynamic 
behavior of plant CWs under varying conditions.

3.5  In Silico Studies

In silico studies of plant CWs using molecular dynamics (MD) 
simulations have been conducted to investigate how molecu-
lar interactions among CW components influence mechanical 
properties [15]. A comprehensive review on the in silico studies 
of plant biomass has recently been published, explaining the 
details of methodologies and mechanisms [89]. Here, we review 
several examples to illustrate the capabilities of MD simula-
tions in studying plant CW analogs. Zhang et al., developed a 
coarse-grained MD model that offers insights into molecular 
mechanisms of PCW mechanics. The model consisted of chains 
of beads that represented the physical parameters of various wall 
polymers and their interaction potentials. After energy equili-
bration, it successfully yielded modeling results that accurately 
reflect the complex structure of CWs, where each lamella fea-
tured aligned CMF, embedded within matrix polymers (Fig. 4a) 
[29]. The model enabled the analysis of stress–strain responses 

of individual CW components, showing that CMF bore the 
stress, even at a high content of pectin and under the interac-
tions of xyloglucans with CMF (Fig. 4b). This model also facili-
tated the mechanical analysis of single lamellae with varying 
CMF orientations, revealing distinct polymer movements and 
stress contributions that depended on orientation (Fig. 4c). Via 
cyclic loadings in the CW model, the mechanical mechanisms 
of energy dissipation in the wall were uncovered (Fig. 4d).

Overall, in silico models enable the study of CW 
structure–function relationships in ways that are not yet feasible 
experimentally. Coarse-grained models, in particular, simulate 
dynamic polymer behaviors that offer unique insight into the 
molecular mechanisms underlying macroscale mechanical 
behaviors of CWs. MD simulation has also been used to 
explore the structural, physical, and mechanical influences 
of hydration on wood CW. To construct a composite material 
mimicking softwood CW S2 layer via a bottom-up approach, 
CNC were modeled as a hexagonal packing of 36 chains each 
of which containing 10 monomer units [90]. CNC clusters 
were embedded in a composite matrix to mimic the CMF. 
Branched and unbranched lignin, GM, and xylan were modeled 
as multicomponent matrices with varying compositions to 
assimilate the distinct enriched domains surrounding the 
CMF. The CW S2 layer underwent highly anisotropic swelling 
with minimal swelling along the longitudinal direction and 
significant swelling in the transverse direction (170 times 
the longitudinal direction). The findings showed that the CW 
modulus and swelling along the longitudinal direction were 
mainly governed by CMF. Moreover, in contrast to CMF 
and lignin derivatives, hemicelluloses, interfacing lignin and 
cellulose, were ultrasensitive to water sorption. Therefore, water 
easily reached the cellulose-hemicellulose interfaces, disrupted 
the intermolecular hydrogen bonds, and weakened the fibril-
matrix interface. The modeling results also indicated that the 
CW modulus and swelling along the transverse direction were 
mainly regulated by hemicelluloses. Lignin was a hydration-
independent component, functioning as an interfibrillar space 
filler [90].

The mechanical behavior of wood CW under shear loading 
has been investigated using MD simulation to explore the 
underlying deformation mechanisms at the molecular scale. 
The shear loading was applied by pulling the outermost 
layers of cellulose in opposite directions. Figure 4e presents 
the molecular model of wood CW, encompassing cellulose, 
hemicellulose, and lignin [91]. The CW was modeled as a 
layered nanocomposite of stiff CMF and soft hemicellulose and 
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lignin matrices. Figure 4f shows the stress–strain response of 
CW model with 3 separate regimes, including an initial elastic 
regime and two plastic regimes (i.e., the yielding of matrix 
and matrix sliding on the cellulose surface). By subjecting the 
composite to the shear loading, an elastic deformation followed 

by plastic deformation was observed. The plastic behavior 
was a result of matrix yielding (onset of plastic deformation) 
along the cellulose surface at shear strain of ~ 0.03, followed 
by sliding at shear strain of ~ 0.18. In nature, this type of 
“self-healing” interface is found in materials with excellent 

Fig. 4  In silico studies of plant CWs using MD simulations. a Top and side views of a four-lamella CW after equilibration (Scale bars are 
200 nm) along with their corresponding close-ups (Scale bars are 25 nm). Reproduced with permission [29].  Copyright Science, 2021. b Stress–
strain behavior of PCW, consisting of CMF, xyloglucan, and pectin, showing that the stress is mainly tolerated by CMF. Reproduced with per-
mission [29]. Copyright Science, 2021. c Normalized average end-to-end length of CMF (LE/LE0, where LE is the average end-to-end length and 
LE0 is its initial value at strain of 0%) as a function of strain, applied via the uniaxial stretching of single lamellae at varying CMF orientations 
of 0°, 30°, 45°, 60°, or 90°. Reproduced with permission [29]. Copyright Science, 2021. d Stress–strain response of onion epidermal CW during 
cyclic loading and unloading, showing a large hysteresis, stemming from energy dissipation and irreversible (plastic) deformation in the epi-
dermal wall. Reproduced with permission [29]. Copyright Science, 2021. e Molecular model of wood CW, encompassing CNC, hemicellulose, 
and lignin molecules, assembled in a layered nanocomposite. M1 and M2 indicate the molecular orientation of CW matrix during yielding and 
sliding, respectively. Reproduced with permission [91]. Copyright Elsevier, 2015. f Stress–strain response in the CW model (blue), indicating 
3 separate regimes: an initial elastic regime and two plastic regimes. The unloading (red) and reloading (green) curves indicate the irreversible 
deformation of CW after yielding. Reproduced with permission [91]. Copyright Elsevier, 2015
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mechanical resilience [91]. In silico studies therefore enable the 
investigation of CW components at the molecular scale under 
stimuli, such as hydration, deformation/shear, and stretching/
reorientation. Table 1 presents a summary of advantages 
and disadvantages of varying methods used for the micro-/
nanoengineering of plant CW-like materials.

4  Characterization Techniques to Assess 
CW‑Like Materials

Natural CWs and plant CW-like materials have been char-
acterized from chemical, structural, and/or mechanical per-
spectives using varying techniques, summarized in Fig. 5. 
Here, we briefly describe these techniques and provide 
examples of analyses for both native and artificial CWs.

4.1  Morphological and Structural Analyses

4.1.1  AFM

AFM is one of the most frequently used microscopy tech-
niques for mapping the topography of intact plant CWs and 
CW-like composites at the nanoscale [92–94]. Compared 
with other microscopy techniques, AFM may be more 
advantageous under physiological conditions as it requires 
less sample preparation and typically avoids extensive dry-
ing processes. This is particularly important for studying 
CW-like materials that mimic the native, hydrated tissues 
[27]. Nanostructure and assembly of xyloglucan isolated 
from tamarind seed as a model system were investigated via 
AFM. Figure 6a shows AFM height images of self-assem-
bled bundles of xyloglucan chains. The topological image 
(Fig. 6a-i) showed that xyloglucan had a rod-like morphol-
ogy with length ~ 640 nm and height ~ 2.3 nm. Furthermore, 
an individual xyloglucan fibril had a helical structure with a 
period of ~ 115 nm and bending angle of ~ 128°. As observed 
in Fig. 6a-ii, xyloglucan chains were able to form parallel 
assemblies of fibers (shown with white arrows). The parallel 
assembly resembled the mechanism of xyloglucan linking 
to cellulose in PCWs, where a smooth, flat region of xylo-
glucan attached to cellulose through hydrogen bonds [95].

AFM has also been used to visualize and compare 
nanostructures in the native apple CW, reconstituted CW, 
and artificial CW-like composites. The artificial composite 
consisted of bacterial cellulose (26%), pectin (44%), and 

xyloglucan (20%), making up ~ 90% of dry polysaccharide 
mass in PCWs, and had similar morphological and 
structural features to native PCW models. Figure  6b 
shows the AFM images of artificial bacterial cellulose, 
bacterial cellulose-pectin, and bacterial cellulose-pectin-
xyloglucan composites [96]. CMF in a bacterial cellulose-
pectin-xyloglucan composite were thicker (~ 75  nm) 
compared with those in bacterial cellulose (~ 59  nm) 
and bacterial cellulose-pectin (~ 68 nm) composites. The 
thickness variations suggested that the bacterial CMF were 
coated with a monolayer of xyloglucan, consistent with 
PCW models. Composite roughness was determined by 
analyzing the AFM images and calculating the deviation 
of surface height values from the mean surface height 
over a given area. This deviation was then normalized by 
dividing it by the root mean square (RMS) roughness of 
surface. Therefore, the roughness value, a dimensionless 
quantity, indicated the degree of variation in the height 
of surface features. The roughness of artificial bacterial 
CWs (12) was comparable to that of natural CWs (13.1) 
[96]. Overall, AFM may combine nanoscale imaging with 
indentation-based mechanical measurements, providing 
unique insights into the structure–function of CWs and 
CW-like materials.

4.1.2  SEM and TEM

Electron microscopy techniques, such as SEM and TEM, 
have been extensively used to visualize the morphology 
and alignment of CMF and other CW biopolymers, such 
as hemicellulose, pectin, and lignin particles at the micro- 
and nanoscales [97, 98]. Deep-etch freeze-fracture TEM, 
which involves rapidly freezing the sample to prevent net-
work disruption by ice crystal formation and producing 
clear, high-resolution replica images, was used to inves-
tigate the morphology of CMF in CW-like composites. 
This technique, applied to bacterial cellulose pellicles and 
xyloglucan composites, revealed a highly aligned, cross-
bridged structure of CMF within the composites [46]. The 
association of xyloglucan with CMF enabled lateral align-
ment, which was not observed in the TEM image of xylo-
glucan-free composite (Fig. 6b). Thin strands of xyloglu-
can were detectable in the composite TEM image, which 
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were distinguished as bridges (length ~ 20–70 nm), linking 
adjacent fibers and creating a ladder-like structure [96].

SEM was used to examine the surface coverage and 
integrity of hollow CW-like microcapsules formed via 
water–oil emulsification. Since emulsions could not be 
imaged using SEM, styrene particles were used to replace 
the oil cores. Styrene-water emulsions were prepared with 
the same CW-like composition and emulsification technique 
to facilitate imaging. SEM images showed a homogenous 
distribution of CNC (nanorods) parallel to the droplet surface, 
independent of CNC length; however, a dense interfacial 
network was observed for short nanorods (length ~ 189 nm) 
compared with long ones (length ~ 4000 nm). Loose networks 
of long nanorods limited dense packing as a result of steric 
hindrance and resulted in a porous multilayer organization 
of CNC [85].

SEM has also been used to image the internal structure 
of physically and chemically crosslinked CW-like cellulose/
GM/lignin composites. SEM images showed that the pore 
of both kinds of composites became finer and denser by 
adding lignin (5–20 wt%). As presented in Fig. 6c-i, highly 
aggregated lignin balls were formed in the physical compos-
ites, whereas no apparent aggregation of lignin nanoparti-
cles occurred in the epichlorohydrin-mediated chemically 

crosslinked composites (Fig. 6c-ii), corresponding to the 
formation of covalent ether bonds between lignin-cellulose 
or lignin-GM [73].

4.1.3  QCM and QCM with Dissipation Monitoring 
(QCM‑D)

QCM is a surface-sensitive, real-time tool to determine the 
thickness of deposited layers in CW-mimetic materials, 
wherein polysaccharides adsorb to substrates such as films 
and beads. When a species is adsorbed to the QCM sensor 
surface, the increase in mass at the nanogram to microgram 
levels is correlated with the changes in the resonance fre-
quency of a quartz crystal resonator. The Sauerbrey equa-
tion is used to calculate the mass of adsorbed layers when 
the added layers are thin, rigid, and firmly attached to the 
sensor surface [64, 99, 100]. QCM has been used to evalu-
ate the LbL growth of pectin-extensin films [65]. Figure 6d 
presents the frequency shift of a QCM crystal (Δf) versus the 
number of deposited pectin and extensin layers. When pectin 
was deposited, Δf decreased, indicating successful pectin 
adsorption; however, upon extensin deposition, Δf increased, 
which was attributed to extensin low charge density (with 
only ~ 5% of monomers carrying charge). This resulted in 

Fig. 5  Varying techniques for mechanical, morphological, structural and chemical characterizations of natural and artificial plant CWs. Abbre-
viations are defined as follows: AFM (atomic force microscopy), SEM (scanning electron microscopy), TEM (transmission electron micros-
copy), SAXS (small angle X-ray scattering), WAXS (wide angle X-ray scattering), SANS (small angle neutron scattering), QCM (quartz crystal 
microbalance), QCM-D (quartz crystal microbalance with dissipation monitoring), FTIR (Fourier transform infrared), NMR (nuclear magnetic 
resonance), and SFG (sum frequency generation). Some abbreviations have been redefined here as per the request of a reviewer
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Fig. 6  Morphological and structural characterizations of plant CW-like materials. a AFM height images of xyloglucan chains and xyloglucan 
assemblies. Reproduced under terms of the CC-BY license [95].  Copyright 2015, The Authors, published by Springer Nature. b AFM images of 
bacterial cellulose, bacterial cellulose-pectin, and bacterial cellulose-pectin-xyloglucan composites. Adapted under terms of the CC-BY license 
[96] Copyright 2010, The Authors, published by Institute of Agrophysics. c SEM images of physically and chemically crosslinked composites, 
consisting of cellulose/glucomannan/lignin, showing the extensive aggregation of lignin particles in physically crosslinked composites com-
pared with the chemical analog. Reproduced with permission [73]. Copyright Elsevier, 2022. d QCM-based frequency changes (Δf) versus 
deposited pectin (Pect) and extensin (Ext) layer number. Reproduced with permission [65]. Copyright Langmuir, 2010. e QCM-D-derived nor-
malized frequency shift (Δf/n) of hemicelluloses, including xyloglucan (XG), galactoglucomannan (GGM), and water-soluble xylan (WXY), 
initially deposited on bacterial cellulose films, showing the effect of HRP adsorption on polysaccharides over time. Reproduced with permission 
[54]. Copyright Springer Nature, 2021. f QCM-D-derived dissipation shift (ΔD) versus Δf/n of hemicellulose adsorption to CNF. Reproduced 
with permission [54]. Copyright Springer Nature, 2021. g QCM-derived Δf for xyloglucan adsorption to CNC-spin-coated quartz crystals versus 
time. Reproduced with permission [62]. Copyright Langmuir, 2010. h The 2D SAXS pattern of water-swollen horizontally-oriented individual 
single flax fiber. Reproduced with permission [106]. Copyright American Chemical Society, 1998. i Azimuthal integration of X-ray diffracto-
grams in wet-spun filaments, obtained at a scattering vector of 15.8  nm−1. Reproduced under terms of the CC-BY license [112]. Copyright 2016, 
The Authors, published by Springer Nature. j A representative core–shell model, proposed for the structure of hydrated bacterial cellulose-xylo-
glucan composites. Reproduced with permission [119]. Copyright Royal Society of Chemistry, 2016
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material removal from the surface due to weak electrostatic 
interactions. The Δf of a total sorption cycle (pectin-exten-
sion adsorption) decreased, indicating LbL film growth [65].

QCM-D, an extended version of QCM technique, has 
been used to study the interactions between cellulose, lignin, 
and hemicelluloses, including xylan, galactoglucomannan, 
and xyloglucan [54]. QCM-D measures not only Δf but also 
a parameter related to energy loss or dissipation, known as 
dissipation shift (ΔD). While Δf reflects changes in the mass 
attached to the sensor surface, ΔD provides information 
about the viscoelastic properties of adsorbed layer. QCM-D 
is used to characterize mass deposits, which induce frictional 
dissipative losses because of their viscoelastic nature. 
Higher ΔD values indicate that the material is more viscous 
or energy-absorbing, whereas lower ΔD values suggest that 
the material is more elastic or energy-preserving [101]. 
Accordingly, QCM-D was used to determine the adsorption 
of hemicelluloses and lignin in the form of DHP on CNF to 
investigate the effect of cellulose, xylan, galactomannan, and 
xyloglucan on lignification. Figure 6e shows the normalized 
Δf profile during HRP adsorption to polysaccharide 
matrices. To study lignification, QCM sensors were spin-
coated with thick layers of CNF (> 4000 ng  m−2) and either 
used uncoated or coated with a thin layer of hemicellulose. 
HRP was then deposited onto these surfaces. The value of 
Δf/n (n denotes the overtone number) for the sensor coated 
with only CNF was the lowest (-15 Hz after 150 min) at 
all deposition time points and decreased most rapidly, 
indicating a higher amount of HRP adsorption and a faster 
adsorption rate on CNF-coated sensors compared with the 
hemicellulose-coated CNF, which had a Δf/n of ~ -5 Hz 
after 150 min. This increase in HRP adsorption to CNF was 
attributed to the hydrophobic interactions between CNF and 
HRP, which decreased by coating CNF with hemicelluloses. 
Figure 6f presents the ΔD of CNF-coated crystals versus 
Δf/n upon hemicellulose adsorption to CNF surface. The 
ΔD values for xylan, galactoglucomannan, and xyloglucan 
rapidly increased (from 0 to 1 ×  10–6) during the early stages 
of adsorption, implying the formation of a hydrated soft 
surface. This was followed by a gradual increase in ΔD as 
the adsorption layer became thick and difficult to harden 
[54].

QCM-D has also been used in situ to examine the kinetics 
of polysaccharide adsorption to CW-mimetic bacterial cellu-
lose-based films [40] and to the interfaces of droplets within 
emulsions [87]. Xyloglucan adsorption to CNC-spin-coated 

quartz crystals over time was monitored using QCM, as 
shown in Fig. 6g. As the xyloglucan concentration increased 
from 0.5 to 10 g  L−1, Δf decreased, with a significant drop 
in Δf observed within the first 5 min for all concentrations, 
indicating rapid adsorption during the LbL buildup of PCW-
like CNC-xyloglucan films. Subsequently, a slight decrease 
in Δf was recorded up to 60 min without reaching a plateau, 
which was attributed to the continuous self-rearrangement 
of xyloglucan chains on the surface, impairing the adsorp-
tion equilibrium [62]. In the fabrication process of PCW-
inspired plantosomes, the QCM-D measurements showed a 
significant decrease in Δf to -90 Hz and an increase in ΔD 
to 20 ×  106 after pectin adsorption to cationic CNF-coated 
crystals. In contrast, direct pectin adsorption to the crystal 
resulted in a decrease in Δf and an increase in ΔD. These 
Δf and ΔD values confirmed the formation of outer LbL 
CNF-pectin shell of plantosomes [87]. Combining QCM 
and surface plasmon resonance (SPR) can provide a more 
comprehensive understanding of interactions at interfaces, 
particularly in LbL assemblies. While QCM detects changes 
in the mass of adsorbed layer, including dry mass and any 
associated water, SPR measures changes in the refractive 
index of materials near the sensor surface, which occur when 
substances attach to or detach from the surface [102].

4.1.4  Scattering Techniques

Scattering techniques involve the use of radiation sources, 
such as X-rays or neutrons, to detect patterns scattered 
by the electrons or nuclei, respectively. For CW-like 
materials, scattering techniques provide information on 
the size, orientation, and/or arrangement of components 
that may not necessarily have a crystalline order [103, 
104]. Small-angle X-ray scattering (SAXS) probes 
nanoscale features [103], and wide-angle X-ray scattering 
(WAXS) is more suited for crystallographic studies and 
molecular scale characteristics [105]. SAXS was used to 
investigate the arrangement of CMF in native flax CWs, 
without requiring additional treatments often necessary 
for other techniques like electron microscopy. For a 
horizontally oriented fiber, the scattering pattern appeared 
in the vertical direction, as shown in Fig. 6h [106]. The 
SAXS pattern of CMF in a single flax fiber also showed 
well-defined streaks, which was attributed to the semi-
crystalline structure of microfibrils and void spaces among 
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microfibrils [106, 107]. Indeed, the anisotropic SAXS 
pattern from CMF is well known; the fluctuations in 
scattering density in the equatorial plane (on a 10 Å length 
scale) arise from the electron density differences between 
the crystalline CMF and the void spaces, i.e., regions of 
less dense material.

SAXS has been used to investigate CMF orientation in 
native primary and secondary CWs as well as in synthetic 
CW-like materials [103]. For investigations on the SCW, 
flax fibers were studied because of their composition and 
thick SCW, rendering them a suitable representative for 
SCW. SAXS was used to study the hydration effect on the 
microstructure of flax fibers, and a considerable structural 
change was observed for flax fibers in the wet and dry states, 
demonstrated by the scattering patterns. The azimuthal 
intensity of CMF followed a Gaussian distribution, and 
the full width at half maximum (FWHM) decreased from 
15° to 11° as the flax fibers transitioned from the wet to 
dry state. As water evaporated from the fibers and the 
scattering from water diminished, a meridional reflection 
appeared at a scattering vector of 0.095 Å−1. Upon fully 
drying, the meridional scattering intensity increased at a 
scattering vector of less than 0.06 Å−1, which indicated an 
increase in CMF alignment [108]. Although X-ray scattering 
investigations of SCW are more common than those of PCW 
because of the disordered cellulose packing and lack of fibril 
orientation, SAXS has successfully been used to determine 
the CMF orientation in PCW [109]. The changes in CMF 
orientation in native collenchyma CWs through various 
developmental stages were studied with SAXS. In the early 
growth stage, the SAXS pattern was isotropic, and upon 
further plant growth, it became anisotropic and vertically 
elongated, which suggested CMF alignment in a specific 
direction. Accordingly, the intensity profile of CMF initially 
exhibited a broad angular distribution (from 0° to 80°). As 
the development of CMF in the walls of collenchyma cells 
progressed, this distribution narrowed, eventually shifting 
to a range between 0° and 15° in the later stages of growth 
[110]. Using SAXS, the PCW structure of Chara corallina 
and Arabidopsis thaliana in the native hydrated state was 
analyzed, showing a bimodal microfibril angle distribution 
and indicating that the majority of CMF were oriented 
either longitudinally or transversely. These distributions had 
a broad scattering around mean microfibril angles of ~ 0° 
(longitudinally oriented microfibrils) and 90° (transversely 
oriented microfibrils).

WAXS has been used to determine the crystal type, 
crystallinity (%), and cellulose alignment and orientation 
within hydrated CW-like composites [103, 111]. WAXS 
diffractograms of wet-spun filaments, made by spinning 
CNF hydrogels or colloidal suspensions with solid contents 
typically between 2% and 7%, had the characteristic peaks 
of cellulose I crystals at a scattering vector of 15.8  nm−1. 
This indicated that the wet-spinning process did not affect 
CNF crystallinity. The degree of orientation fc = (180 
– FWHM/180) × 100 was calculated by extracting the 
FWHM from the azimuthal intensity distribution profile. 
Figure  6i presents the azimuthal integration of X-ray 
diffractograms, showing fibril orientations in wet-spun 
filaments, recorded at a scattering vector of 15.8   nm−1. 
Filaments made up of TEMPO-oxidized CNF (2%) had 
the highest degree of orientation (~ 83%), tensile strength 
(297 MPa), and Young’s modulus (21 GPa) [112]. WAXS 
has shown that CNF, produced via dry spinning, may be 
aligned within single-filament fibers, which is reflected 
in equatorial arc patterns in the diffractograms. The arcs 
were identified as the 11 0 and 200 cellulose planes, which 
confirmed the alignment of CNF. The degree of orientation 
had a maximum value of 0.68 for the filaments spun at a 
high spinning rate (216 mm  s−1) because of a high external 
shear force [113].

WAXS has also been used to study the alignment of 
bacterial CNF that were assembled into macrofibers via 
wet-spinning and stretching. These macrofibers mimicked 
the mechanical properties of native cellulose bundles, 
with tensile strength of 6–7 GPa and Young’s modulus 
of 120–140 GPa. The WAXS patterns that were obtained 
from an untreated bacterial CNF film showed reflections 
corresponding to the (200) and ( 110 ) planes, which indicated 
the random orientation of untreated nanofibers; however, 
the WAXS pattern of wet-spun aligned macrofibers had 
an arc pattern of ( 110 ) and (200) reflections, implying 
crystallite alignment along the longitudinal axis of 
fibers. As the stretching ratio (SR) increased, the more 
defined reflections and narrower FWHM in the scattering 
patterns confirmed a greater degree of alignment in the 
macrofibers [114]. In addition, WAXS can detect changes 
in the length of crystalline cellulose via the peak position 
of (004), which corresponds to a quarter of the unit length 
of cellulose. This allows for the analysis of the nanoscale 
load-bearing properties of cellulose under tension. Studies 
have demonstrated that cellulose can withstand significant 
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stress, exceeding 600 MPa, in PCW and SCW [115]. Further 
research on this characteristic is warranted to provide 
deeper insights into how nanoscale polymer deformations 
contribute to the overall mesoscale load-bearing abilities of 
CWs.

SANS has been conducted to examine hydrogen bonding 
patterns in cellulose Iβ. This technique was used to 
characterize films, prepared via aligning tunicate-derived 
CNC [116]. The hydrogen atoms participating in the 
intramolecular O3…O5 hydrogen bonds yielded spherical 
and well-defined positions in SANS diffraction patterns. In 
contrast, the hydrogen atoms on O2 and O6 appeared as 
non-spherical density peaks and were split across multiple 
locations (i.e., not well-defined), indicating poorly defined 
positions. This suggests the presence of multiple geometries 
with varying hydrogen atom arrangements. Neutron 
refinement, the process of obtaining agreement between 
experimental scattering data and the structural model, 
suggests a more complex and disordered hydrogen-bonding 
network for cellulose Iβ films compared with a single-crystal 
structure. This observation was demonstrated by the R-factor 
(also called the residual factor), which is a parameter 
describing how well the model and data agree. The R-factor 
was fairly high for cellulose Iβ films (0.2095) compared with 
the typical values for a single crystal structure (e.g., R-factor 
of 0.085 for β-D-cellotetraose) [117]. The neutron scattering 
length of hydrogen is negative (− 0.37 ×  10−12 cm), whereas 
that of deuterium is positive (0.667 ×  10−12  cm) [118]. 
Consequently, components of interest for SANS analysis 
can be deuterated (i.e., replacing hydrogen atoms with 
deuterium) to render the hydrogen bonds identifiable in 
SANS experiments.

To investigate the role of CW polysaccharides in 
the cellulose biosynthesis process, native bacterial 
cellulose and CW-like bacterial cellulose composites 
containing arabinoxylan (53%) and xyloglucan (27%) 
were characterized using SANS [119]. As opposed to the 
previous studies describing bacterial cellulose ribbons as a 
one-phase solid material, the SANS profile was well-fitted 
to a core–shell model. Figure 6j shows a representative 
core–shell model proposed for bacterial cellulose-xyloglucan 
ribbons, encompassing a core of impermeable cellulose 
crystallites and a shell of partially hydrated paracrystalline 
cellulose networks. The neutron scattering length density 
(SLD) of core (1.87 ×  10–10  cm−2) was different from the 
shell (< 3.66 ×  10–10  cm−2). The SLD discrepancies indicated 

that the strong hydrogen-bonded networks holding CMF 
together impaired the solvent accessibility to the core 
regions of ribbons. This resulted in varying degrees of 
solvent exchange, with about 60% solvent exchange within 
the core for pure cellulose and approximately 68% for the 
bacterial cellulose-xyloglucan composite. Furthermore, 
fitting-derived parameters indicated that both xyloglucan 
and arabinoxylan were deposited on the surface of bacterial 
cellulose ribbons via non-specific adsorption mechanisms. 
Such deposition provided additional hydroxyl groups in 
the shell of ribbons, facilitating solvent access to the core. 
Altogether, SANS analysis implied that only xyloglucan 
established strong interactions with the CMF of core region 
via crystallization/assembly [119]. The xyloglucan existence 
within the core region plays crucial roles in decreasing the 
total crystallinity, creating plant-characteristic Iβ allomorph 
and lowering the packing density by individualizing CMF 
[119, 120].

4.2  Mechanical Analyses

4.2.1  Uniaxial and Biaxial Mechanical Testing

For assessing the mechanical properties of CW-like films 
and bacterial pellicles, uniaxial and biaxial mechanical 
tests have been used. Uniaxial tensile testing provides 
characteristics such as tensile strength, Young’s modulus, 
work of fracture, and strain at fracture [10, 51, 53]. 
Similarly, uniaxial compression and flexural testing provide 
quantitative information about the strength, stiffness, 
and elasticity of films at different modes of deformation. 
Uniaxial tensile set-up may also be rationally modified to 
mimic the effects of in planta phenomena, including turgor 
pressure, creep, stress-relaxation, and extension, on CW-like 
matrices [39, 51, 121].

Accordingly, creep is often measured by customized uni-
axial constant-force extensometers where the top clamp is 
fixed, and the lower movable clamp applies force (e.g., 20-g 
force). Figure 7a shows the scheme of a uniaxial constant-
force extensometer, registering the time-dependent displace-
ment of viscoelastic CW-like materials at a constant tension 
[121]. The long-term extension of cucumber hypocotyl CW, 
analyzed by the extensometer, showed that the creep behav-
ior depended more on the activities of enzymes attached to 
or entangled in the CW, rather than the wall viscoelastic 
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properties. Subjecting CW to denaturants, high temperature, 
very low or high pH, or metal cations inhibited the creep 
activity, likely due to the enzyme deactivation. However, 
these treatments, except pH and copper ion  (Cu2+) expo-
sure, had no apparent effect on the CW viscoelastic behavior 
[121].

The uniaxial extensometer testing was also conducted on 
impregnated bacterial cellulose/hemicellulose composites, 
containing an expansin (CsExp1), to investigate molecular 
targets for the expansin in PCW. The expansin increased 
the extension of xyloglucan composites by ~ 75%, whereas 
it had no effect on GM or galactomannan composites. 
The expansin also enhanced the extension of cellulose-
only materials, although this increase was not detectable 
in a constant-load extension test as a result of inherent 

high material stiffness and insufficient external force [39]. 
Although the extensometer setup is straightforward and cost-
effective, the heterogeneity of cell tissues poses a challenge 
in determining the precise contributions of CW components 
to the mechanics of assembled plant tissues. This complexity 
arises from the interplay of tissue geometry, turgor pressure, 
and water flux [121].

A bulge-testing device has also been customized to 
perform biaxial tensile testing on highly hydrated CW-like 
composites, enabling the mimicry and analysis of biaxial 
deformations occurring during CW expansion. Figure 7b 
presents a scheme of biaxial tensile testing setup by which 
pressure is applied to plant CW-mimetic films or hydrogels 
from one side, and the corresponding deflection is registered. 
Given the cell’s spherical shape, the force exerted on the CW 

Fig. 7  Mechanical characterizations of plant CW-like materials. a Uniaxial creep test setup to measure the time-dependent displacement of vis-
coelastic CW-like materials at a constant tension. Adapted with permission [121].  Copyright Springer Nature, 1989. b A customized and unique 
biaxial tensile testing setup was used to apply pressure to films and hydrogels from one side while measuring the corresponding deflections, 
providing insights into their mechanical responses. Adapted with permission [51]. Copyright Springer Nature, 2002. c Topological image and 
indentation modulus of poplar fiber CW layers, obtained using AFM, which show three distinct regions, ML/PCW, S1 layer, and S2 layer. Cell 
corner is denoted as cc. Reproduced under terms of the CC-BY license [69]. Copyright 2017, The Authors, published by Springer Nature
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by the cell components and cytoplasmic membrane leads to 
uniform biaxial cell stretching. Films were secured to the 
orifice with O-rings and a lid, and deflection or pressure was 
measured using a linear variable displacement transducer 
(LVDT). According to the pressure–displacement curves, a 
substantial pressure (⪆ 400 kPa, may vary depending on the 
device geometry) was required to deform bacterial cellulose 
films, which indicated that the films had high stiffness and 
strength, as measured by this specialized biaxial tensile 
testing setup [51].

4.2.2  AFM Nano‑Indentation

AFM may be used for imaging (contact, tapping, or non-
contact modes) or mechanical property measurement (force-
distance mode) [122, 123]. AFM has been used to evaluate 
the mechanical properties of microscopic areas using the 
force-distance mode (e.g., nano-indentation), rendering it 
ideal for analyzing layers within plant tissues or CW-like 
materials [69, 86]. Nano-indentation enables measuring 
force versus displacement at a high resolution and small 
scales, furnishing mechanical properties, such as elastic 
modulus and hardness. To calculate the modulus from the 
force-distance curve, an appropriate contact model must 
be tailored to the specific contact geometry between the 
material and the cantilever tip. Hertz, Johnson-Kendall-
Roberts (JKR), and Derjaguin-Muller-Toporov (DMT) 
are common models used for flat and stiff films in varying 
conditions [69, 123, 124]. The Hertz model is commonly 
used for the contact between two elastic solids (e.g., flat and 
stiff films) under the assumption of small deformations and 
negligible adhesion forces. Therefore, this model fails to 
consider the viscoelastic properties of biological samples 
and is invalid at large deformations even for linear elastic 
materials [125, 126]. The JKR model is used for considering 
the contact between compliant materials with non-negligible 
adhesion forces. It accounts for the deformation of 
contacting surfaces and their corresponding adhesive forces. 
The JKR model is used to analyze the contact behavior of 
soft films or films with significant adhesion [127]. The 
DMT model is used for analyzing the contact between hard 
elastic materials with adhesive forces [126, 128, 129], which 
considers the adhesion between two surfaces [126]. The 
choice of model depends on the specific characteristics of 
composites, including stiffness, deformability, and adhesion.

For SCWs, AFM can measure the nanoscale indentation 
modulus and image detailed features of CMF, revealing 
structural aspects such as microfibril angles. These 
details are crucial for understanding how the CWs resist 
compression and provide mechanical support. These 
properties can be readily characterized for SCW materials 
such as wood, which are accessible and simple to prepare 
[130]. Muraille et al., probed the stiffness of poplar stem, a 
type of hardwood, and artificial SCW films using the AFM 
nano-indentation and DMT model. Due to the sharpness of 
AFM tips, the DMT model was used. Figure 7c presents the 
AFM image and indentation modulus of poplar fiber CW 
layers. AFM topological images and distinct moduli of CW 
layers confirmed three layers, including the ML/PCW (~ 17 
GPa) and two SCW layers (S1 ~ 21 GPa and S2 ~ 26 GPa) 
[69]. In comparison, SCWs from softwood such as spruce 
stem are generally softer (~ 15 GPa) [131]. In contrast, CWs 
from certain crop stalks can reach indentation moduli of 
16–20 GPa [132]. The indentation modulus of CW-mimetic 
ternary composites was 11 and 22 GPa for CNC/GM/DHP 
and CNC/xylan/DHP, respectively, agreeing with the values 
observed for the CW of poplar fibers [69].

AFM is also used to characterize the out-of-plane 
indentation mechanics of PCWs for two primary reasons. 
First, PCW samples are generally too soft and thin to resist 
in-plane compression for meaningful AFM measurements. 
Second, AFM nano-indentation can apply piconewton 
forces, inducing only nanometer-scale indentation in 
micron-thick PCWs, allowing for accurate measurement of 
the out-of-plane indentation modulus [49]. In some cases 
where isolating PCW for tensile testing is difficult, AFM is 
used to probe the nanoscale in-plane wall mechanics in their 
native state, assuming that the indentation is deep enough 
to involve the in-plane wall extension [49]. Interpreting data 
from living cell or tissue measurements requires caution, as 
factors such as turgor pressure and complex cell geometry 
can significantly influence the results [133]. In this context, 
the onion epidermal wall serves as a valuable model system 
for studying out-of-plane indentation mechanics, which are 
distinct from tensile mechanics and are influenced by matrix 
polymers, such as pectin.
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4.3  Chemical Analyses

4.3.1  NMR Spectroscopy

NMR spectroscopy provides valuable insights into the 
molecular structure and dynamics of native and artificial 
CWs via elucidating the local chemical environment of 
specific nuclei [134, 135]. NMR is sensitive to isotopes 
with non-zero spins, such as 13C and 1H in solid or 
liquid states. Cross polarization/magic angle spinning 
(CP/MAS) solid-state NMR (SS-NMR) spectroscopy 
has been conducted to investigate the interactions of 
cellulose-hemicellulose-lignin components [46, 47] and to 
quantify the crystallinity of native CWs and CW-mimetic 
composites with enhanced signal resolution compared 
with traditional SS-NMR [47, 120]. The crystallinity 
of cellulose within the composites was determined by 
calculating the ratio of the crystalline C4 peak area, found 
in the 85–92 ppm chemical shift region, to the total peak 
area in the 80–92 ppm region. The non-crystalline content 
of bacterial cellulose grown in a xyloglucan solution was 
47%, suggesting that xyloglucan significantly decreased 
the cellulose crystallinity, which was initially 80%-85% 
[47].

The solid state 13C NMR analysis also showed that 
composites encompassing cellulose and 80%-85% rigid 
xyloglucan segments were likely aligned with cellulose 
chains, which made the chemical shifts, particularly 
glucosyl C-1, different from the chemical shifts of the 
flexible portion of xyloglucan. Only a small fraction of 
xyloglucan in the composite performed as cross-bridges 
[46]. The NMR spectra of cellulose/GM composites 
showed that the mannan segments bind to cellulose, 
followed by the conformational transition to an extended 
form. Through resolution enhancement, additional peaks 
emerged between 102–103 ppm, attributed to the C-1 
atoms of mannan structural units adopting an extended 
"cellulosic" conformation, a pattern also observed in 
crystalline mannan. Integration of C-4 crystalline and 
non-crystalline signals implied a remarkable reduction in 
cellulose crystallinity from 80%-85% to 25% [46]. Note 
that crystallinity values obtained from different techniques 
should not be directly compared, as each method is based 
on distinct physical principles and may detect different 
facets of crystalline order [136].

SCWs of model plants Arabidopsis, maize, switchgrass, 
and rice were analyzed using SS-NMR to reveal lignin-
polysaccharide interactions and the effect of hydration on 
CWs [37]. The plants were cultivated in a closed chamber 
of 13CO2, enabling 13C labeling. This isotopic enrichment 
provided 2D carbon spectra with exceptional sensitivity 
and atomic resolution, facilitating the investigation of site-
specific hydration and lignin-polysaccharide interactions in 
their native state. Cross peaks arising from a sub-nanometer 
contact between two different atoms in the neighboring mol-
ecules provided the details of CW polymer spatial proximi-
ties. The intact maize stems had 74 intermolecular cross-
peaks in a long-mixing (1.0 s) 2D spectrum. As a result, 
lignin was found to predominantly bind xylan (Xn), not 
cellulose. The interaction between cellulose and lignin was 
minor, challenging the previously held belief that lignin acts 
as a glue, binding CMF and hemicellulose together [137, 
138]. Note that maize lignin mainly consists of syringyl (S), 
p-hydroxyphenyl (H), guaiacyl (G), and ferulate (FA) resi-
dues. Binding lignin to xylan depended on physical contact, 
particularly electrostatic interactions. This was based on 
the direct correlation between the number of physical con-
tacts with polysaccharides and the number of methyl ether 
groups (OMe) in lignin. Figure 8a shows a representative 
13C NMR spectrum of lignin-xylan-cellulose cross-peaks 
and the quantity of cross-peaks of lignin-polysaccharides 
and lignin constituent units-xylan. Accordingly, 80% of 
the OMe-Xn cross-peaks were strong or medium, implying 
the electrostatic-mediated physical contact between lignin 
methoxy groups and Xn polar entities. Additionally, “water-
edited” correlation experiments were conducted to study the 
site-specific hydration [139]. Water-edited 1H-13C spectra 
of SCWs suggested weaker water associations compared 
with PCWs, confirmed by 2–4 times slower 1H polariza-
tion transfer. Within just 4 ms of 1H mixing time, lignin and 
polysaccharide peaks in maize SCW reached only 20%-30% 
of their equilibrium intensity. This is notably lower than the 
60%-80% for pectin and 30%-40% for cellulose observed in 
Arabidopsis PCWs, which was attributed to the hydrophobic 
lignin, tighter polymer packing, and the lack of pectin with 
its water-stabilizing/binding property [37].
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Fig. 8  Chemical characterizations of plant CWs and CW-like materials. a A representative 2D 13C NMR spectrum of maize lignin (represented 
by S, G, H, and FA labels) and cellulose (i: interior, s: surface), showing cross-peaks that represent interactions between the components. S, G, 
H, and FA are maize lignin residues. Xn1-4 (2f, 3f), OMe, and cellu. stand for C1-C4 of xylan (twofold and threefold conformations, respec-
tively), lignin methoxy group, and cellulose, respectively. The spectrum provides information on the quantity of cross-peaks between lignin and 
polysaccharides or lignin and xylan. Reproduced under terms of the CC-BY license [37].  Copyright 2019, The Authors, published by Springer 
Nature. b FTIR spectrum of CNC-polyethyleneimine microcapsules, showing the peak associated with vibrational OH stretching at 3342  cm−1, 
which typically appears at 3500  cm−1. Reproduced with permission [140]. Copyright American Chemical Society, 2015. FTIR microspectros-
copy spectra of c initial, d stressed, or e relaxed plant cells, including parallel (positive, solid line) and perpendicular (positive, dashed line) 
polarization and subtraction (mainly negative, solid line) spectra. Reproduced with permission [143]. Copyright Oxford University Press, 2000. 
f Nano-FTIR spectra of SCW and ML of poplar fibers along with Nano-FTIR absorbance versus location of AFM tip for wavenumbers pertain-
ing to polysaccharides (1162  cm−1) and lignin (1269  cm−1). Absorbance normalization was conducted via standard normal variate (SNV) trans-
formation method: [(absorbance – average absorbance from all wavenumbers) / absorbance standard deviation]). Reproduced with permission 
[124]. Copyright American Chemical Society, 2022. g SFG spectrum of randomly-packed (red) and uniaxially-aligned (black) cellulose Iβ crys-
tals with corresponding AFM images (i) and (ii), respectively. Reproduced with permission [148]. Copyright Royal Society of Chemistry, 2014. 
h SFG spectra of the SCW of several land plants, including flax, ramie, cotton, Brachypodium, poplar, Arabidopsis, pine, maize, and switch-
grass. Reproduced with permission [148]. Copyright Royal Society of Chemistry, 2014. i SFG spectra of biological tissues, including algal CWs 
(Glaucocystis, Oocystis, Valonia, and Cladophora), cellulose biofilm produced from G. xylinus, Halocynthia mantle, onion epidermis, and Arab-
adopsis aerial tissue [148], showing that the relative intensity of the hydroxyl to alkyl signals was significantly greater for these PCWs (as shown 
in panel i) compared with most SCWs (panel h). The higher intensity suggested that PCWs had a lower degree of antiparallel CMF orientation 
over the SFG coherence length scale. Reproduced with permission [148]. Copyright Royal Society of Chemistry, 2014
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4.3.2  FTIR Spectroscopy and Microspectroscopy

FTIR is a versatile tool to analyze a chemical vibrational 
response to the infrared (IR) radiation, exposing the finger-
prints of functional groups within a material. The vibrational 
modes may shift depending on component interactions, 
which can provide information on chemical functional-
ity, molecular conformation, crystallinity, and hydrogen 
bonding [9, 128, 129]. FTIR spectroscopy has been used to 
probe native plant tissues and artificial CWs in biologically 
relevant environments and in situ processes. Accordingly, 
the FTIR analysis of artificial sphere-like CWs, comprising 
bacterial cellulose, pectin, and hemicelluloses, elucidated 
changes in cellulose allomorph, crystallization, and hydro-
gen bonding in the presence of pectin and hemicelluloses 
[68, 70, 111, 140]. Incorporation of xylan and xyloglucan 
into bacterial cellulose culture media led to a shift in the 
cellulose allomorph from Iα, typically associated with 
bacterial sources (characterized by wavenumbers ~ 3240 
and 750  cm−1), to Iβ, which is commonly found in higher 
plants (indicated by wavenumbers ~ 3270 and 710  cm−1). 
The FTIR analysis of cellulose-xylan and cellulose-xylo-
glucan composites showed a transition from ordered to dis-
ordered cellulose forms. This was reflected by a decrease 
in the peak intensity at 1111  cm−1 (C-O stretching) and an 
increase at 895  cm−1 (C1 frequency), indicating that pec-
tin and hemicelluloses disrupted hydrogen bonding among 
the CMF [111]. FTIR spectroscopy has also been used to 
investigate the interactions between components in the LbL 
shell of CNC-polyethyleneimine microcapsules, as shown 
in Fig. 8b. A peak at 3342  cm−1, which was associated with 
the stretching vibrations of OH groups, suggested a shift to 
a lower wavenumber compared with the expected position 
at ~ 3500  cm−1. Additionally, there was a noticeable shoulder 
peak at ~ 3290  cm−1. These spectral features indicated the 
formation of hydrogen bonds, suggesting the establishment 
of hydrogen-bonded networks between CNC and polyethyl-
eneimine [140].

FTIR microspectroscopy is an advanced version of 
conventional FTIR spectroscopy that uses a microscope to 
focus the IR beam onto a very small sample area, typically 
in the range of micrometers [141]. Combining a polarizer 
with FTIR, referred to as polarized FTIR microspectroscopy, 
has been used to investigate in situ changes occurring in 
intact CWs. This technique may provide insights into 
macromolecular orientation and interactions within the 

CW networks during deformations [142]. Figures  8c-e 
present the IR microscope spectra of hydrated onion tissue 
in original, stressed, and relaxed states, respectively. The 
spectra were obtained using incident polarized light, 
aligned both parallel and perpendicular to the stretching 
direction. Subtraction spectra were then obtained by 
subtracting the perpendicular polarized spectrum from the 
parallel one. Variation in the intensity of peaks was used 
to assess the orientation of CW polysaccharides. In the 
case of slight directional alignment (Fig. 8c), the parallel 
(solid line) and perpendicular (dashed line) spectra of 
onion cells exhibited minimal differences, which was 
also reflected in the subtraction spectrum. Upon applying 
a 10-g load (Fig. 8d), positive peaks became stronger in 
cellulose and polygalacturonic acid vibrational regions 
(~ 1200–950   cm−1). In the subtraction spectrum, new 
negative peaks were found at ~ 1745 and ~ 1605   cm−1, 
corresponding to the pectin ester and carboxylate groups, 
respectively. In addition, overlapping the peaks of glycosidic 
bonds in non-cellulosic polysaccharides (~ 1150  cm−1) with 
the intense cellulose peak (~ 1162   cm−1) suggested the 
co-alignment of polysaccharides with CMF. The difference 
in the intensity of parallel and perpendicular peaks indicated 
that polysaccharides were oriented in the stress directions. 
After removing the load (Fig. 8e), the absorbance intensity 
of peaks underwent a minor decrease compared with that 
of stressed cells, suggesting a partial recovery of stressed 
sample and a small elastic deformation. Comparing the peak 
intensities of the subtraction spectra between the original 
and stressed tissues further suggested a significant plastic 
deformation of the CW, indicating how mechanical stress 
affected the structural alignment and molecular interactions 
within the wall [143].

Polarized FTIR microspectroscopy has also been used 
to investigate the orientation of particular functional 
groups in the cell elongation directions [141, 143]. The 
double-bladed apertures of the microscope were used to 
set the focal range for a specific area of CW, and spectra 
from that area were recorded by aligning the polarizers 
both parallel and perpendicular to the long axis of cell. 
The difference between the spectra of elongated carrot 
CWs with polarizers oriented parallel and perpendicular 
showed the transversal orientation of vibrational modes of 
esters (~ 1740  cm−1), amides (~ 1650 and 1550  cm−1), and 
phenols (~ 1490 and 1600  cm−1). This confirmed that the 
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bonds within the carbohydrate region were aligned with 
the long axis of elongated cells [141, 142].

4.3.3  Nano‑FTIR Spectroscopy

Nano-FTIR is an advanced technique that integrates IR 
spectroscopy with AFM-enabled high-resolution spatial 
scanning, yielding the nanoscale chemical bond mapping 
of materials at ultrasmall quantities that would otherwise 
be nontrivial to achieve via conventional spectroscopy 
methods [144, 145]. Uncovering the spatial organization 
of biopolymers is integral to the formation and properties 
of CW-like materials. In nano-FTIR, the AFM tip, acting 
as an optical antenna, in the focused IR radiation region 
creates an enhanced near field at the tip apex, resulting in a 
spatial resolution in the order of tip radius. The near fields 
penetrate into the sample, enabling probing the subsurface 
material. The technique surpasses the Abbe’s diffraction 
limit (5–10 µm for conventional IR), enabling a resolution 
of 10–20 nm [145]. In a study on the CWs of intact and 
mutant poplar trees, nano-FTIR spectra of the SCWs and 
MLs of three poplar species (low lignin, high lignin, and 
low recalcitrance mutant) yielded the spatial variation in 
the composition and quantity of biopolymer building blocks. 
Figure 8f presents nano-FTIR spectra of SCW and ML of 
poplar fibers along with the detected scattering intensity 
versus the location of AFM tip for wavenumbers pertaining 
to polysaccharides and lignin. Polysaccharides and lignin 
were distinguished via the peaks at 1162 and 1269  cm–1, 
respectively. Nano-FTIR absorbance versus tip location on 
the CW uncovered that cellulose in the ML of poplars had 
a disordered structure with a greater spatial variability in 
polysaccharide and lignin contents compared with the SCW 
[124]. This technique may be valuable for analyzing CW-like 
materials, particularly those fabricated via LbL assembly.

4.3.4  SFG Spectroscopy

SFG spectroscopy is a non-linear optical technique that 
probes molecular vibrations at surfaces and interfaces, 
with inherent sensitivity to non-centrosymmetric structures 
within an optical medium. [146]. In SFG, the tunable IR 
laser pulses are combined with the up-conversion laser 
pulses (i.e., near-IR or visible) at the sample surface, 

resulting in the emission of new photons at the frequency 
that corresponds to the sum of the two input photons 
(ωSFG = ωvisible + ωIR, ω is the angular frequency of laser 
pulses, and subscripts visible and IR denote visible light 
and IR, respectively). When a sample absorbs ωIR, the 
SFG yield increases, and the resulting SFG spectrum 
contains vibrational spectral features. SFG is functional 
only for non-centrosymmetric materials. Therefore, the 
centrosymmetric amorphous medium is SFG-inactive [128]. 
In plant CWs, only crystalline cellulose, adopting the  P21 
space groups, fulfills the non-centrosymmetric requirement 
for SFG measurements. The  P21 space group represents 
a monoclinic crystal system for crystalline cellulose 
with twofold rotational symmetry along one axis. Other 
amorphous polysaccharides in the plant CW do not produce 
SFG signals. Hence, SFG selectively identifies crystalline 
cellulose segments interspersed in amorphous matrices, 
enabling the investigation of crystalline properties of native 
cellulose in PCW and lignocellulosic biomass in their native 
form without requiring the separation of building blocks 
[128, 147].

SFG spectroscopy has been used to study the mesoscale 
polarity (unidirectional versus bidirectional) of CMF in 
intact plant CWs [128, 148–151]. One study used SFG 
spectroscopy to investigate the 3D CMF assembly in vari-
ous PCWs, tunicate, and bacterial pellicles at the mesoscale 
(i.e., between nm and μm). The features of SFG spectra, such 
as the overall intensity and shape of peaks, were associated 
with the CMF assembly in each native material. As shown in 
Fig. 8g, studies on randomly packed and uniaxially aligned 
CNC films demonstrated that when cellulose was aligned 
through stretching, the SFG spectrum contained a strong 
signal at 2944 cm⁻1 (corresponding to the alkyl stretch 
region) and a weak signal at 3320 cm⁻1 (in the hydroxyl 
stretch region) [148]. This effect arises from the antiparallel 
ordering of nanocrystals during alignment, where the num-
ber of crystals oriented in one direction nearly equals those 
oriented in the opposite direction. This symmetry cancella-
tion between the OH dipoles of antiparallel CMF results in 
a minimal net polarity of hydroxyl groups. Disturbing the 
interactions between the nanocrystals resulted in randomly 
packed CNC films, the introduction of peaks at 2920 and 
2968  cm−1, and an increase in the intensity of hydroxyl peak 
[148]. To study the CMF assembly in various intact CWs, 
the characteristic peaks of SFG spectra were compared. In 
the SCW of land plants including flax, ramie, and cotton, 



 Nano-Micro Lett.          (2025) 17:103   103  Page 28 of 41

https://doi.org/10.1007/s40820-024-01569-0© The authors

and the vascular tissues of poplar, pine, Arabidopsis, Brach-
ypodium, switchgrass, and maize, the SFG spectra contained 
a single major peak at 2944  cm−1 and small peaks in the 
hydroxyl stretching region (Fig. 8h), closely resembling the 
features of the film with antiparallel aligned CNC. How-
ever, the spectra of bacterial biofilms, algal CWs, tunicate 
cellulose samples, and PCWs contained multiple peaks at 
2920, 2944, and 2968  cm−1 as well as larger hydroxyl peaks 
(Fig. 8i), resembling the spectra for films with non-aligned 
CNC [148]. Table 2 presents a summary of advantages and 
disadvantages of various morphological/structural, mechani-
cal, and chemical techniques used for the characterization of 
artificial plant CW-like materials.

5  Applications of CW‑Like Materials

CW-like materials have been developed to uncover the 
complex structure–property relationships of natural CW 
components or to fabricate functional soft materials 
for real-life applications. These materials are relevant 
to a wide variety of research fields and industries, such 
as biology, materials science, renewable energy, pulp 
and paper, agriculture, biomedicine, and food science. 
In the development of CW-like materials, plant CW 
constituents such as cellulose, hemicellulose, pectin, and 
lignin are frequently used. These materials are valued for 
their widespread availability, low cost, biodegradability, 
renewability, and non-toxicity [38, 154, 155]. Here, we 
provide examples of the current and potential applications 
of plant CW-mimetic materials.

Studying the mechanical and rheological properties of 
synthetic plant CWs may uncover interesting information 
about the textural properties of native vegetables and fruits 
[53]. CW models composed of bacterial cellulose, pectin, 
and xyloglucan have been studied alongside native apple 
tissues in the presence of calcium, which plays a crucial 
role in maintaining the texture and firmness of fresh fruits. 
It was found that the calcium impact on the mechani-
cal properties of artificial CW closely mirrored its effect 
on the native apple tissue. Additionally, higher pectin and 
xyloglucan contents were associated with a softer and less 
crispy fruit texture, resulting in greater extensibility. In this 
regard, synthetic CW composites made up of intact cellulose 
matrices from the corresponding native materials offer more 
accurate models for mimicking natural CW mechanics than 

reconstituted plant tissue films, especially at high relative 
humidity. Water sorption is a critical factor in tuning food 
texture. When fruits are stored, water loss through the skin 
can cause them to shrivel and lose quality. To this end, syn-
thetic CWs were used as models to investigate the effects 
of water and humidity on food texture and to explore their 
potential as texture modifiers for fruits and vegetables [40]. 
The synthetic CW composites, which included bacterial 
cellulose, pectin, and xyloglucan, underwent reduced water 
retention, water conductivity, and diffusivity compared with 
cellulose alone. This decrease was attributed to the reduction 
in void spaces as additional components were incorporated. 
The values obtained were comparable to those of real plant 
tissues, underscoring the suitability of this composite for 
mimicking the native tissue.

Food wastes resulting from spoilage and improper pack-
aging remain a challenge in developing a more sustain-
able society [156]. Pectin and cellulose films that mimic 
the mechanical and barrier properties of plant CWs have 
emerged as a solution to address this issue. Edible pectin 
films cater to the consumer demand for minimally processed 
foods and can be imparted with antimicrobial materials, 
such as silver ions, to extend shelf life and reduce pathogen 
growth [157, 158]; however, polysaccharide-based films 
are known to be susceptible to moisture sorption. The film 
composition significantly influences its moisture sorption 
properties [159, 160]. The addition of lignin may improve 
the moisture resistance of films, as demonstrated by sev-
eral studies [74, 161, 162]. For example, a composite film 
made from CNF with 25% lignocellulose CNF (contain-
ing 16% preserved lignin) yielded a 16% decrease in water 
vapor transmission rate (WVTR) compared with a neat CNF 
film. This decrease was attributed to lignin, performing as 
a chemical adhesive among the CNF, which impeded gas 
transmission through the film [162].

Biomass microcapsules with a CW-like shell offer tun-
able permeability, depending on the shell composition and 
fabrication method. These microcapsules have been used to 
deliver therapeutics through the gastrointestinal (GI) tract by 
leveraging factors such as pH and salinity, or to deliver cells 
to tissues via the porous shells. Several studies have reported 
promising results with CW-like microcapsules for these 
applications [83, 140, 163, 164]. For instance, the stimuli-
responsive microcapsules containing pectin, xyloglucan, and 
CNF showed reduced permeability to FITC-dextran mol-
ecules in a saline solution (or biological media) due to the 
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NaCl-mediate screening of charged polymers. When rinsed 
with water, the FITC-dextran molecules were subsequently 
released. The biocompatible nature of microcapsules may 
provide opportunities for targeted release of biologics in the 
GI tract [83].

Engineering CW-like materials for construction appli-
cations is crucial for a bio-based economy and addressing 
the demand for carbon-negative building materials. These 
materials may actively contribute to reducing carbon dioxide 
production [165, 166]. Lumber and engineered wood are 
well-established materials in construction and manufactur-
ing due to their low density and sustainability, particularly 
when compared with steel or concrete. However, the slow 
growth cycle of timber-grade trees limits the widespread 
use of lumber-based materials [167, 168]. Wood-like com-
posites prepared from biomass have been developed as a 
class of tough, hydrophobic biopolymer composites, which 
may supplement the timber industry [71, 73, 169]. Artificial 
lignification has enabled the fabrication of CW-like mate-
rials with hydrophobic characteristics, resembling natural 
analogs. Note that the materials developed thus far have not 
replicated the anisotropic properties of wood, and to the best 
of our knowledge, no study has demonstrated a bottom-up 
approach by which lignified materials with a high degree of 
anisotropy are fabricated. Many studies have developed bot-
tom-up approaches to produce highly aligned CMF within 
cellulose-only composites [112, 114, 170]. These materials 
have high strength and stiffness, but are often brittle and 
water sensitive [171, 172]. Studies on artificial CW have 
shown that incorporating low to moderate amounts of hemi-
cellulose or lignin fills the interstitial voids among CMF, 
which improves stress transfer and increases composite 
ductility and toughness [74, 77]. Recapitulating cellulose 
networks, in which long CMF are aligned to promote exten-
sive inter-fibril interaction, with matrix polymers serving as 
fillers to enhance this interaction, is essential for replicating 
the strength and extensibility of native CW.

In the pulp and paper industry, separation of cellulose 
from lignin and hemicellulose via thermomechanical and 
chemithermomechanical pulping are resource intensive. 
These processes require significant amounts of energy, 
raw materials, time, and labor; however, they may be 
optimized via understanding the interactions of cellulose, 
hemicellulose, pectin, and lignin within plant PCW 
and SCW. Through such explorations, a low degree of 
sulfonation pretreatment was applied to spruce wood 

chips, selectively modifying the PCW without causing any 
ultrastructural damage to the cell architecture. Sulfonation 
not only weakened the interactions between lignin-pectin, 
lignin-protein, and pectin–protein, but also softened and 
swelled the stiff, elastic materials. This was ascribed to 
the weakening of lignin-pectin bonds specifically, which 
loosened the pectin network. As a result, the increased 
softness of materials enabled significant electrical energy 
saving (up to 200 kWh  t−1) during the refining process of 
chips [173, 174].

Understanding the interactions among CW components 
may help convert biopolymers to chemical feedstocks. 
Synthetic CWs have been fabricated to identify the kinetics 
and thermodynamics of biopolymer adsorption to cellulose, 
along with the effects of matrix polymers on cellulose 
crystallization and lignification within cellulose networks 
[54, 90, 175]. These investigations may help increase the 
economic value of biomass by diversifying the range of 
chemical feedstocks derived from native CW components. 
As an example, lignin content or composition has been 
genetically engineered to facilitate the deconstruction of 
plant CW. This is in line with the “lignin-first” biorefinery 
concept, which entails isolating lignin catalytically without 
compromising carbohydrates, such as cellulose and xylan, 
to produce valuable aromatic derivatives. This concept is 
integral to the efficient recovery of carbon from biomass due 
to the recalcitrance and high content of lignin (e.g., ~ 25%) 
[176]. The intricate structure of plant CW components and 
their complex interactions, which may be better understood 
through plant-mimetic CW systems, hold significant 
potential for the production of valuable target materials, 
such as thermosets, thermoplastics, composites, CNC, and 
nanofibers [177–179].

Recently, there has been a growing interest in utilizing 
CW-mimetic materials to synthesize specialty chemicals via 
biochemical processes. In the biocatalysis sector, artificial 
CWs have been developed that contain catalysts to facili-
tate cascade reactions [180]. As an example, artificial plant 
CW-like materials containing cellulose and other polysac-
charides were doped with lipase and palladium nanoparti-
cles. In organic solvents (toluene, 1,4-dioxane, or 3-methyl-
3-pentanol), the composites converted racemic amine (equal 
amounts of two enantiomers) to an enantiomerically pure 
amine ((R)-2-methoxy-N-(1-phenylethyl)acetamide) with 
high yields (~ 70%-81%) [180]. The CW-mimetic materials 
facilitated efficient enzyme activation in organic solvents by 
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immobilizing enzyme on cellulose, which served as the sup-
port material. This approach allowed for multiple cycles of 
enzyme reuse, significantly lowering the cost of chemical pro-
duction. Altogether, CW-mimetic materials have been used in 
antimicrobial food packaging, edible films, stimuli-responsive 
microcapsules, lubricants for stress transfer, carbon-negative 
building materials, and heterogeneous biocatalysis. Thus, 
beyond providing a fundamental platform for understanding 
native plant CWs, CW-mimetic soft materials may open new 
opportunities in circular economy and sustainability.

6  Conclusions

Plants have remarkable mechanical and structural proper-
ties originating from hierarchical CWs, complex interactions 
among CW components, and their precise alignment and 
assembly. There are limitations in studying the properties of 
CW components and layers directly in planta, leaving key 
questions unanswered about how plants construct their CWs. 
Bottom-up assembly approaches using individual CW com-
ponents may provide valuable insights into the mechanical 
properties, spatial organization, and biopolymer interactions 
in plant CWs, aspects that are often difficult to investigate 
directly within plants. Moreover, CW-like materials fabri-
cated via bottom-up approaches hold promise across diverse 
fields, such as pulp and paper, specialty chemicals, biomedi-
cine, food science, and packaging. The fabrication methods 
include bacterial growth and impregnation, LbL assembly, 
film casting, 3D templating of microcapsules, and particle 
coating, all of which can be guided by in silico modeling. 
Although these techniques have successfully enabled the 
development of artificial CWs that mimic the structural and 
functional properties of natural CWs, scaling them up for 
industrial applications remains a significant challenge. For 
example, bacterial cellulose growth and LbL assembly are 
time-intensive processes, which may limit their economic 
viability for large-scale production. While film casting and 
particle coating methods are more straightforward, they 
often require highly controlled conditions, such as specific 
humidity, temperature, pH, and solvents, which may be chal-
lenging to maintain in an industrial setting. Additionally, 
the integration of these methods into existing manufactur-
ing processes requires significant modifications in terms 
of equipment and processing protocols. To advance the 
applicability of artificial plant CWs in industrial contexts, 

future research may focus on developing scalable fabrication 
techniques. Addressing these challenges may require opti-
mizing existing methods to reduce processing time and cost 
or developing entirely new approaches that are inherently 
scalable and suited for mass production. For example, com-
bining additive manufacturing technologies with advanced 
biomaterials may offer a promising pathway for the rapid 
and cost-effective production of CW-like materials at scale. 
Collaboration between academia and industry will be essen-
tial to successfully translate these laboratory-scale methods 
into practical, commercially viable solutions.

Natural plant CWs and CW-mimetic materials require 
detailed mechanical, chemical, morphological, and structural 
characterizations to uncover their intricate properties and 
unlock their full potential for various applications. For the 
mechanical analysis of CWs, multiaxial mechanical tests, 
AFM nano-indentation, and nano-FTIR spectroscopy have 
been carried out. Additionally, 1D/2D NMR, FTIR, and 
SFG spectroscopy have provided fundamental information 
on the interactions of CW components in native, hydrated, 
and stressed states. Morphology, crystalline structure, and 
intermolecular/interfibrillar orientations/interactions have 
been analyzed using microscopy, including AFM, TEM, and 
SEM, as well as scattering techniques (e.g., XRD, SAXS, 
WAXS, and SANS) and QCM-D, respectively. Efforts to 
replicate natural CWs have led to new insights into the 
structure–property relationships of CW biopolymers. While 
CW-mimetic materials provide valuable information on the 
interactions among plant CW components, the accuracy and 
applicability of these insights to real CW warrants further 
validation. Current CW-mimetic materials still lack the 
ability to replicate key CW properties, such as the cross-
lamellate wall structure of PCWs, integration of lignin in 
the SCWs, and stress–strain behaviors. Notably, mimicking 
CWs may enable the construction of strong, lightweight, and 
sustainable composites, biocompatible carriers for medical 
applications, and  biodegradable and smart packaging, 
among many other applications contributing to the United 
Nations sustainable development goals. Overall, via 
reviewing current literature on CW-mimetic materials, this 
paper aims to serve as a resource for guiding the fabrication, 
characterization, and application of new generations of plant 
CW-mimetic soft materials.
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