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HIGHLIGHTS

• The significance and challenges associated with high-sulfur loading and lean electrolytes in lithium–sulfur batteries are comprehen-
sively reviewed.

• Catalytic properties of MXenes-based electrocatalysts are optimized via d-band center tuning, internal electric field constructing, 
single-atom seeding, and cocktail effects introducing.

• The structure–activity relationships between MXenes-based electrocatalysts and lithium–sulfur battery performances are comprehen-
sively summarized.

ABSTRACT Lithium–sulfur batteries (LSBs) hold significant promise as advanced 
energy storage systems due to their high energy density, low cost, and environmental 
advantages. However, despite recent advancements, their practical energy density 
still falls short of the levels required for commercial viability. The energy density is 
critically dependent on both sulfur loading and the amount of electrolyte used. High-
sulfur loading coupled with lean electrolyte conditions presents several challenges, 
including the insulating nature of sulfur and  Li2S, insufficient electrolyte absorption, 
degradation of the cathode structure, severe lithium polysulfide shuttling, slow redox 
reaction kinetics, and instability of the Li metal anode. MXenes-based materials, 
with their metallic conductivity, large polar surfaces, and abundant active sites, 
have been identified as promising electrocatalysts to improve the redox reactions 
in LSBs. This review focuses on the significance and challenges associated with 
high-sulfur loading and lean electrolytes in LSBs, highlighting recent advancements 
in MXenes-based electrocatalysts aimed at optimizing sulfur cathodes and lithium 
anodes. It provides a comprehensive discussion on MXenes as both active materials and substrates in LSBs, with the goal of enhancing 
understanding of the regulatory mechanisms that govern sulfur conversion reactions and lithium plating/stripping behavior. Finally, the 
review explores future opportunities for MXenes-based electrocatalysts, paving the way for the practical application of LSBs. 
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1 Introduction

The increasing dependence on fossil fuels causes large-scale 
emissions of greenhouse gases and harmful pollutants and 
thus exacerbates the global energy crisis and intensifies envi-
ronmental issues [1, 2]. Under this background, renewable 
energy sources like solar, wind, and biomass have garnered 
significant attention for their inexhaustibility and environ-
mental sustainability in the past decades [3, 4]. However, the 
inherent intermittency and instability of these energy sources 
limit their practical applications, creating an urgent need for 
advanced energy storage systems capable of converting and 
storing renewable energy for stable and continuous power 
supply [5]. Among the available systems, rechargeable bat-
teries have been widely applied in powering mobile devices, 
smart grids, and electric vehicles [6]. Lithium-ion batter-
ies (LIBs) dominate the market for portable electronics, yet 
their energy density is approaching its theoretical maximum, 
making them inadequate for the growing demands of next-
generation power applications [7]. Moreover, commercially 
available LIBs, with a relatively low energy density of no 
more than 300 Wh  kg−1, cannot meet the demand for longer 
endurance, such as more than 300 miles for electric vehicles 
[8], which require an energy density of 500 Wh  kg−1.

Compared to LIBs, lithium–sulfur batteries (LSBs), 
involving the multi-electron redox conversion mecha-
nism, have emerged as a promising alternative, which can 
offer superior energy storage capabilities [9–12]. By uti-
lizing elemental sulfur as cathode and Li metal as anode, 
LSBs can theoretically deliver an energy density as high 
as 2600 Wh  kg−1, approximately six times higher than that 
of conventional LIBs [13–15]. Energy density relying on 
sulfur loading is a key metric for assessing the practical 
performance of batteries. In general, low-sulfur loading 
and excessive electrolyte usage in LSBs enable signifi-
cantly improved specific capacity (> 1000 mAh  g−1), rate 
performance (> 40C), and cycling stability (> 1500 cycles) 
[16–18]. However, low-sulfur loading and high electrolyte-
to-sulfur (E/S) ratios will greatly reduce energy density and 
increase electrolyte costs, limiting commercial viability 
[19]. LSBs usually operate at an average voltage of 2.15 V 
(lower than 3.60 V of typical LIBs), so an areal capacity of 
4.0–8.0 mAh  cm−2 seems to be required to compete effec-
tively [19]. Research has shown that a sulfur loading less 
than 2.0 mg  cm−2 cannot achieve the energy density of 500 

Wh  kg−1 under any E/S ratio (Fig. 1a, b) [20, 21]. Moreover, 
if the E/S ratio exceeds 10 µL  mg−1, the electrolyte should 
account for more than 50% of the total weight (Fig. 1c) [21]. 
However, when the E/S ratio is reduced from 5.0 to 2.0 µL 
 mg−1, it can boost the specific energy by over 50%. That 
means achieving an energy density above 500 Wh  kg−1 
requires high-sulfur loadings (> 5.0 mg  cm−2) as well as low 
E/S ratios (< 5.0 µL  mg−1) [22]. In the past decade, signifi-
cant improvements have been achieved especially in enhanc-
ing specific capacity, sulfur utilization, and cycling life of 
LSBs; however, they are generally realized under low-sulfur 
loading (< 2.0 mg  cm−2) and excessive electrolyte usage, 
with an electrolyte-to-sulfur (E/S) ratio exceeding 15.0 μL 
 mg−1 [23]. Hence, significant challenges remain in devel-
oping advanced materials capable of operating under high-
sulfur loading and lean electrolyte conditions to meet the 
practical application and commercialization requirements.

As a class of two-dimensional (2D) materials, MXenes 
have shown significant potential in energy storage appli-
cations [26, 27]. MXenes are synthesized by selectively 
removing A layers from MAX phases [28], which are gen-
erally represented by the formula of  Mn+1XnTx. In this 
formula, M denotes a transition metal (e.g., Ti, V, Zr, Nb), 
A represents a group IIIA or IVA element (e.g., Al, Ga, 
Si), X corresponds to carbon (C) or nitrogen (N), and  Tx 
refers to surface terminations like − O, − OH, − F, and − Cl 
(Fig. 2a, b) [29]. Currently, over 150 MAX phases and 
more than 30 types of MXenes have been experimentally 
synthesized, with new variants continuously emerging [24, 
25]. Unlike many other single-composition 2D materials, 
MXenes exhibit diverse compositions and possess unique 
properties, including metallic conductivity, large active 
surfaces, strong mechanical strength, and high surface area 
[26]. These characteristics make MXenes highly promising 
for applications in electrocatalysis, electromagnetic shield-
ing, energy storage, and biomedicine [27].

Recently, novel MXenes-based electrocatalysts have 
emerged in large numbers for LSBs [30, 31]. As hosts for 
sulfur and Li, they provide suitable structures and abun-
dant catalytic active sites that promote the conversion of 
high-concentration lithium polysulfide (LiPSs), facilitate 
the nucleation/decomposition of  Li2S, and inhibit the 
growth of Li dendrites, thereby improving the practical 
energy density of LSBs [32, 33]. However, a comprehen-
sive overview of MXenes-based electrocatalysts for high-
energy–density LSBs is still lacking, which is essential 
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to address the significant challenge posed by high-sulfur 
loading and lean electrolyte conditions. This review aims 
to explore recent advancements over the past five years, 
providing insights into novel MXenes-based electrocata-
lysts with high stability and excellent electrochemical 
performance. It also examines the structure–activity rela-
tionships of MXenes to reveal how they synergistically 
optimize the redox conversions of LiPSs and  Li2S, and 
promote uniform Li deposition, ultimately bridging the 
gap between practical and ideal LSB systems. Finally, the 
review discusses the design principles for high-efficiency 
electrocatalysts, as well as theoretical calculations and 
in situ characterizations of catalytic mechanisms, making 
it highly relevant to researchers in the fields of chemistry, 
materials science, and energy storage.

2  Electrochemical Reaction Mechanisms 
of LSBs

A typical LSB usually consists of sulfur cathode, separator, 
electrolyte, and Li metal anode, whose electrochemistry is 
based on the multi-electron reversible redox between S₈ mol-
ecules and Li metal [34–38], involving the sulfur reduction 
reaction (SRR) during discharge and sulfur evolution reaction 
(SER) during charge as shown in Fig. 1d [39–41].

2.1  The SRR of Sulfur Cathode

S8 (solid) → LiPSs (liquid) (contributing ~ 25% theoretical dis-
charge capacity)

(1)S
8
+ 2Li

+
+ 2e
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→ Li

2
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Fig. 1  a Plots of sulfur loading versus specific energy at different E/S ratios [20].  Copyright 2020, Elsevier. b Effect of E/S ratios on energy 
density of LSBs, and c mass ratios of various components at different E/S ratios [21]. Copyright 2019, Wiley–VCH. d Schematic of LSB elec-
trochemistry [24]. Copyright 2016, Royal Society of Chemistry. e Schematic of sulfur redox reactions for LSBs [25]. Copyright 2020, Elsevier
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LiPSs (liquid) →  Li2S (solid) (contributing ~ 75% theoreti-
cal discharge capacity)
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During the initial stage of the discharge process, the S–S 
bonds in solid rhombic  S8 are cleaved, and the resulting sul-
fur atoms combine with  Li+ to form liquid  Li2S8 at a voltage 
of ~ 2.4 V (Eq. (1)). This is followed by the reduction of 
 Li2S8 to the lower-order polysulfide  Li2S4 within the volt-
age range of 2.3 to 2.1 V (Eqs. (2) and (3)). This conversion 
occurs near thermodynamic equilibrium [42]. Subsequently, 
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Fig. 2  a The brief representation of MAX [24].  Copyright 2021, WILEY–VCH. b The schematic diagram of preparation process of MXenes 
[28]. Copyright 2024, WILEY–VCH
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liquid  Li2S4 is further reduced to solid  Li2S2 or  Li2S in the 
voltage range of 1.9 to 2.1 V, with both reduction processes 
occurring simultaneously (Eqs. (4) and (5)) [43]. Finally, 
the remaining  Li2S2 converts to  Li2S through a single-phase 
reaction (Eq. (6)). Notably, the reduction of  Li2S2 to  Li2S 
is typically considered the rate-determining step in sulfur 
chemistry due to the sluggish solid-to-solid conversion 
kinetics and high overpotentials (Fig. 1e) [44, 45].

2.2  The SER of Sulfur Cathode

In the charging process, solid  Li2S is first oxidized to 
LiPSs and undergoes delithiation through oxidation and 
disproportionation reactions [46, 47]. The formation and 
consumption of  Li2S6, along with the deposition of insulat-
ing  Li2S, slow down the conversion process, requiring higher 
overpotentials to drive the reaction [48]. Due to the electro-
chemical inertness of  Li2S, additional activation energy is 
needed for its decomposition.  Li2S requires extra activation 
energy for decomposition due to its electrochemical inert-
ness [49]. The overall decomposition of  Li2S occurs in two 
steps: first, a  Li+ ion dissociates from the  Li2S structure, 
and then the dissociated  Li+ ion diffuses away from the LiS 
cluster [50]. The decomposition barriers for  Li2S are con-
siderably larger than the  Li+ diffusion barriers, indicating 
that the breaking of the Li–S bond is the rate-limiting step 
in the process.

During SRR/SER, the insulating nature of sulfur and  Li2S/
Li2S2 greatly affects the electron transport and increase the 
internal resistance of battery, resulting in inefficient sulfur uti-
lization [51, 52]. Due to intrinsic metallic conductivity, pris-
tine MXenes as sulfur host or separator modifier can reduce 
the battery resistance [32, 33, 49, 50]; however, their limited 
porosity goes against high-sulfur loading. As sulfur loading 
increases and E/S ratio reduces, the cathode will suffer the 
severe LiPSs diffusion problem [53, 54]. Meanwhile, if the 
electrolytes contain high-concentration LiPSs, the deposition 
of  Li2S becomes slow and it begins to uncontrollably accu-
mulate, further aggravating the solid/liquid interface passiva-
tion [55, 56]. Despite pristine MXenes can steadily anchor 
soluble LiPSs through metal-S bonds [53–56], the irreversible 
restacking of MXene layers induced by van der Waals interac-
tions and hydrogen bonding often decreases the exposure of 
active sites and the specific surface area, which causes serious 

(7)8Li
2
S → S

8
+ 16Li

+
+ 16e

−

performance degradation on capturing and catalyzing LiPSs 
[57]. To address this, MXenes can serve as substrates to sup-
port active components to, creating synergistic interfaces [30, 
57], which in turn promote the catalytic conversion of LiPSs 
and ensure uniform  Li2S deposition [58, 59].

As for anode, the uncontrolled growth of Li dendrites 
should be mainly responsible for the consequent potential 
risk of battery short circuit [60, 61]. Compared to LIBs, the 
operation of LSBs seems more complicated due to the direct 
contact of LiPSs with Li anode [62–64]. Pristine MXenes can 
be employed as Li host to inhibit Li dendrites, because their 
surface terminations provide abundant nucleation sites for 
guiding uniform deposition of  Li+ [63]. Besides, the metallic 
conductivity and low  Li+ diffusion energy barrier of MXenes 
do help accelerate electron/Li+ transport and further the elec-
trochemical kinetics [60, 62]. Under lean electrolyte condi-
tions, the wettability of both sulfur cathode and Li anode is 
very important for long cycles. However, some negatively 
charged surface terminations (e.g., -F or -Cl) are unfavorable 
for wetting, leading to incomplete contact between MXenes 
and electrolyte [65]. Also, there is a storage problem for pris-
tine MXenes by virtue of their instability towards oxygen-rich 
environments [66].

3  MXenes as Active Materials and Substrates 
for High Loading and Lean Electrolyte 
LSBs

3.1  MXenes as Active Materials

3.1.1  Pristine MXenes

Nazar’s group [67] was the first to use  Ti2CTx-MXenes as 
sulfur hosts, demonstrating that LiPSs, initially adsorbed 
via S-Ti-C bonds, undergo conversion to  Li2S. This pro-
cess occurs through electron transfer via  Ti2C or by dis-
proportionation, leading to the formation of multiple 
 Li2S nucleation sites on the surface (Fig. 3a). This pio-
neering work ignited widespread research into MXene-
based materials for LSBs. Following this, various MXene 
materials have been developed, including  Ti3C2Tx/S con-
ductive paper [68], flexible S@Ti3C2Tx electrodes [69], 
multilayered  Ti3C2Tx-polypropylene modified separators 
[70], and F-free  Ti3C2 (Ff-Ti3C2) hosts [66]. These materi-
als effectively capture soluble LiPSs via strong chemical 
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interactions, converting them into thiosulfate and form-
ing an in situ protective barrier to prevent the unwanted 
migration of LiPSs. Recently, Gogotsi and Oh et al. [71] 
systematically investigated the effects of different MXene 
types  (Ti2CTx,  Ti3C2Tx,  Ti3CNTx,  Mo2TiC2Tx,  V2CTx, 
 NbxCTx,  Nb4C3Tx) on LiPSs adsorption using optical and 
spectroscopic methods. They discovered that all MXenes 
formed insoluble thiosulfate and polythionate complexes, 
with the adsorption and conversion of sulfur species vary-
ing by MXene type through disproportionation reactions 
(Fig.  3b). Notably,  Ti2CTx preferentially adsorbs  Li+, 
while  Mo2TiC2Tx effectively traps sulfur and converts 
LiPSs into  Li2S2/Li2S.

MXenes, with their metallic conductivity and rapid  Li+ 
diffusion, are increasingly recognized as promising materials 
for stabilizing Li anodes [72]. For example, lamellar  Ti3C2Tx 
MXene layers were fabricated and adhered to the surface of 

a Li anode through a rolling technique, creating a smooth 
and dense protective layer (Fig. 3c) [73]. During cycling, 
Li tended to grow horizontally along the parallel-aligned 
MXene nanosheets, forming nucleation sites between the 
sheets, which facilitated uniform Li distribution. The inher-
ent F-terminations in MXenes promoted the formation of a 
uniform and stable solid electrolyte interface (SEI) with Li-
fluoride, effectively regulating the migration of  Li+.

Under lean electrolyte conditions, the wettability of both 
sulfur cathode and Li anode is crucial for long-cycle per-
formance. However, some negatively charged surface ter-
minations (e.g., -F or -Cl) are unfavorable for wetting, lead-
ing to incomplete contact between MXenes and electrolyte 
[65]. Additionally, pristine MXenes face storage problems 
due to their instability in oxygen-rich environments [66]. 
To address these challenges, heteroatom doping, group 
grafting, and structural optimization have been explored to 

Fig. 3  a Schematic illustration of LiPSs conversion process on  Ti2CTx-MXenes surface [67].  Copyright 2015, WILEY–VCH. b Schematic 
illustration of LiPSs conversion mechanism on MXenes [71]. Copyright 2024, WILEY–VCH. c Li plating on bare Li and parallelly aligned 
MXene layers [73]. Copyright 2019, WILEY–VCH. d Band Structures of MXenes with various terminal groups [77]. Copyright 2024, Ameri-
can Chemical Society. e, f Binding energies, g PDOS, h ΔG of the conversion from  Li2S6 to  Li2S2, and i, j  Li2S dissociation energy barrier on 
NSMX and MX surface[78]. Copyright 2024, Elsevier
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enhance the surface properties of MXenes [9, 74, 75]. These 
strategies aim to remove undesirable surface terminations or 
inhibit layer stacking, thereby improving structural stabil-
ity and enhancing the adsorption capacity towards soluble 
LiPSs and  Li+.

3.1.2  Heteroatom Doping

Heteroatom doping, including elements such as N, O, P, 
S, B, or I, has emerged as a highly effective strategy for 
enhancing the catalytic activity of MXenes [9], which can 
modify the original charge balance and electronic struc-
ture of the catalyst, resulting in charge rearrangement and 
a shift in the d-band center of metal sites. This altera-
tion not only strengthens the interaction between sulfur 
species and the catalyst surface but also improves the 
overall catalytic performance by optimizing the adsorp-
tion and activation of sulfur species [76]. For instance, 
DFT calculations reveal that the  Ti3C2I2 surface has a 
near-zero band gap (~ 0 eV), which is smaller than that 
of  Ti3C2(OH)2 (0.006 eV),  Ti3C2F2 (0.003 eV),  Ti3C2O2 
(0.127 eV), and  Ti3C2Cl2 (0.034 eV) surfaces (Fig. 3d) 
[77]. This reduced band gap suggests that I-doping sig-
nificantly alters the electronic structure. Furthermore, the 
binding energies between the I-doped  Ti3C2Tx MXenes 
(I-MXene) and  Li2S8,  Li2S6,  Li2S4,  Li2S2, and  Li2S spe-
cies are -0.97, -0.87, -0.53, -1.49, -1.53, and -0.95 eV, 
respectively, indicating stronger chemisorption interac-
tions with short-chain LiPSs. The I-MXenes effectively 
immobilized soluble LiPSs through strong Ti-S bonds 
and accelerated the reaction kinetics of LiPS conversion 
through enhanced charge transport. As a result, cells incor-
porating I-MXene-modified separators demonstrate good 
rate capability, delivering capacities of 1316, 886, 789, 
723, and 655 mAh  g−1 at 0.1C, 0.2C, 0.5C, 1C, and 2C, 
respectively. As reported, N/S co-doped MXenes (NSMX), 
synthesized via a thiourea-induced method, could further 
enhance adsorption effect for sulfur species by high bind-
ing energies (Fig. 3e, f) in LSBs [78]. Co-doping resulted 
in a shift of the Ti d-band center of NSMX from 1.54 eV 
in MX to 0.93 eV, bringing it closer to the Fermi level 
(Fig. 3g). This shift suggests that Ti sites in NSMX can 
transfer more electrons to LiPSs, thereby enhancing the 
electrocatalytic activity for the redox reactions of sulfur 
species. DFT calculations further showed that the NSMX 

surface exhibited smaller Gibbs free-energy changes (ΔG, 
0.14 eV) during the liquid-to-solid conversion of  Li2S4 to 
 Li2S2 (Fig. 3h), as well as a lower  Li2S dissociation bar-
rier (0.41 eV), compared to the MX surface (Fig. 3i, j). 
Even under demanding conditions of high sulfur loading 
of 7.2 mg  cm−2 and a low E/S ratio of 7.0 μL  mg−1, the 
NSMX-based battery exhibited a remarkable reversible 
capacity of 729.9 mAh  g−1 after 100 cycles, maintaining 
an exceptional average Coulombic efficiency of 99.7% at 
0.2C. This superior electrochemical performance under-
scores the effectiveness of NSMX in promoting the com-
plete conversion of massive sulfur species while mitigating 
the formation of low-activity “dead sulfur”.

A high-performance Li anode was developed by confining 
Li within S and N co-doped  Nb2C MXene [79]. The dop-
ing with S and N enhanced both electroconductivity and 
lithiophilicity through the introduction of extrinsic defects 
and active sites. Compared to undoped  Nb2C, the S and N 
co-doped  Nb2C exhibited superior lithiophilicity due to their 
synergistic effects. This co-doped  Nb2C could well serve as 
an effective 3D lithiophilic and conductive host, facilitating 
uniform nucleation and plating of Li metal. Additionally, the 
presence of heteroatoms expanded the interlayer spacing and 
stabilized the MXene structure, preventing pulverization and 
restacking during cycling. As a result, the Li metal anodes 
with co-doped  Nb2C MXene showed excellent dendrite sup-
pression, high coulombic efficiency (CE), extended lifespan, 
and outstanding performance in full cells.

3.1.3  Covalent Grafting

Covalent grafting effectively mitigates the restacking of 
MXene layers and introduces functional groups to immo-
bilize LiPSs, such as guanidinium-based ionic-covalent 
organic nanosheets on  Ti3C2 MXene nanosheets (GICOT) 
[80], microporous polymers grafted MXenes (MPGT) [81], 
and porous polydopamine layer coated MXenes (PPLT) [82]. 
If mesoporous carbons were uniformly grafted onto MXene 
nanosheets to form 2D heterostructure composites (OMC-g-
MXene) [83], the resulting material would possess abundant 
defects and a carbon-coated layer. The in situ time-resolved 
Raman images (Fig. 4a and b) show that after introducing 
OMC-g-MXene into the system, no short-chain sulfur spe-
cies are formed on the anodic side throughout the entire 
discharging process. Moreover, the OMC-g-MXene/PP 
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separator exhibited the highest  Li+ transport number of 0.89, 
significantly surpassing the control samples. This enhance-
ment highlights the crucial role of OMC-g-MXene in facili-
tating Li⁺ kinetics in LSBs. The sulfur cathode based on 
OMC-g-MXene effectively promoted sulfur conversion and 
 Li+ diffusion (Fig. 4c), which delivered a high areal capacity 
of 4.5 mAh  cm−2 with a sulfur loading of 7.08 mg  cm−2 and 
a 7.7 μL  mg−1 E/S ratio (Fig. 4d).

3.1.4  Structural Optimization

2D MXenes can be engineered through structural optimi-
zation into 0D nanodots, 1D nanoribbons, and 3D nanor-
ibbons networks. These structural designs enhance the 
exposure of active sites and optimize electron/ion transport 
pathways, offering more sulfur loading spaces, mitigating 
volume changes, and improving electrochemical reaction 
kinetics [84–87]. For instance, 0D  Ti3C2Tx nanodots were 

successfully anchored onto 2D  Ti3C2Tx nanosheets (TCD-
TCS) via hydrothermal treatment with sodium alginate 
at 100 °C for 2 h, preventing layer restacking and nano-
dot aggregation [88]. The uniform distribution of ultrafine 
TCD on the TCS surface significantly reduced the interfa-
cial resistance and allowed sulfur to tightly adhere to the 
TCD-TCS surface, enabling effective capture and conversion 
of high-concentration LiPSs (Fig. 4e). This structure also 
enhanced the structural integrity and tap density of the sulfur 
cathode during cycling. Additionally, Wu et al. [87] synthe-
sized the interconnected α-Ti3C2 MNRs with highly conduc-
tive open macrospores, which facilitated efficient electrolyte 
diffusion and electron transport into the interior of electrode, 
significantly mitigating the shuttle effect of LiPSs. It was 
also reported that when the negatively charged  Ti3C2Tx was 
wrapped around the positively charged polydopamine coated 
S spheres, a unique 3D free-standing  Ti3C2Tx MXenes paper 
was formed. The lower plateau of the open-circuit voltage 
curve was 0.04 V higher than that of the closed-circuit 

Fig. 4  a, b In situ Raman images and spectroscopy of PP and OMC-g-MXene/PP separators, c illustration of the accelerated reaction kinetics 
of the OMC-g-MXene interlayer, and d cycle performances of the sulfur cathode based on OMC-g-MXene [83].  Copyright 2023, American 
Chemical Society. e Schematic illustration of redox reaction for TC-100/S cathodes [88]. Copyright 2019, American Chemical Society. f Sche-
matic illustration of the preparation process and the employment of 3DP framework of N-pTi3C2Tx, g dominant characteristic of porous 3DP 
framework in LSBs [89]. Copyright 2021, Elsevier
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voltage curve, indicating the rapid formation of solid-phase 
 Li2S2 or  Li2S. This phenomenon suggests that the 3D MXene 
framework effectively mitigates the uncontrolled diffusion 
of high concentration LiPSs through a dual immobilization 
mechanism, integrating thiosulfate/polythionate redox con-
version with Lewis acid–base interactions.

Recently, extrusion-based 3D printing has emerged as a 
promising method for the scalable and customizable fab-
rication of energy storage devices. This technique enables 
the design of high-aspect-ratio structures within compact 
areas, which enhances the rapid diffusion of ions and 
electrons through thick electrodes [89]. For instance, an 
N-doped porous  Ti3C2 MXene framework was developed 
via 3D printing. The resulting scaffold as both S and Li hosts 
offered hierarchical porosity, high conductivity, and abun-
dant N-sites, showing excellent lithiophilic and sulfiphilic 
properties (Fig. 4f). The 3D-printed cathode, synthesized 
using a tailored sulfur ink, exhibited a highly porous and 
mechanically robust architecture, effectively accommodat-
ing high sulfur loading while facilitating efficient electron 
and ion transport. Concurrently, the incorporation of a 
3D-printed MXene-based interlayer in the anode ensured 
uniform local current distribution and regulated Li deposi-
tion (Fig. 4g), achieving a low overpotential of 64 mV over 
800 h at 5.0 mA  cm−2/5.0 mAh  cm−2. Moreover, the fully 
3DP-LSB demonstrated remarkable cycling stability, deliv-
ering an high areal capacity of 8.47 mAh  cm−2 under a high 
sulfur loading of 12.02 mg  cm−2 after 60 cycles.

Table 1 summarizes detailed battery performance data 
and compares the relative properties of carbon-based materi-
als, emphasizing that heteroatom doping, group grafting, and 
the structural optimization effectively enhance the electro-
chemical properties of pristine MXenes in high-sulfur load-
ing and lean electrolyte LSBs. However, precise control 
over the quantity and type of dopants or grafted materials 
remains a significant challenge. Moreover, excessive thick-
ness or mass of these interlayers can hinder  Li+ diffusion and 
increase the overall weight of the battery, thereby impairing 
its energy efficiency.

3.2  MXenes as Substrates

MXenes can serve as substrates to support other mate-
rials. The integration of MXenes with other materials 
offers intrinsic advantages that are difficult to achieve with 

single-component materials, especially in LSBs [11, 27, 
97–99]. The d-band theory, widely utilized to explain the 
catalytic behavior of materials, provides essential insights 
into the mechanisms governing catalysis [100]. An upshift 
in the metal d-band center elevates the antibonding orbitals 
involved in the d–p hybridization between metal atoms in 
the catalyst and sulfur atoms in LiPSs. This shift strengthens 
the adsorption of LiPSs, thereby enhancing the catalytic per-
formance [101, 102]. To optimize the catalytic properties of 
MXenes-based electrocatalysts, strategies such as manipu-
lating lattice strain, doping, defect engineering, and seeding 
single-atom catalysts are commonly employed to optimize 
the d-band center. Furthermore, methods like constructing 
built-in electric fields and inducing "cocktail effect" have 
further enhanced the electrocatalytic activity of MXenes-
based electrocatalysts.

3.2.1  Manipulating Lattice Strain

Strain refers to the deformation that occurs when a crys-
tal is subjected to compression, tension, or shear forces. 
By manipulating the surface strain of catalysts, whether 
tensile or compressive, changes in atomic bond lengths 
or lattice mismatches can be induced, resulting in altera-
tions to their electronic structure and catalytic properties 
[103, 104]. Tensile or compressive lattice strain can shift 
the d-band center, which plays a crucial role in determin-
ing the adsorption and desorption behaviors of intermedi-
ates on catalysts [105–107]. For instance, Chen and Wang 
et al. [108] developed a 3D microporous electrocatalyst as 
a multifunctional sulfur immobilizer and promoter, consist-
ing of tensile-strained MXene nanosheets interwoven with 
carbon nanotube (CNT) tentacles (MXene/CNT). During the 
spray-drying process, a surface oxidation layer was formed 
in situ on the MXenes, resulting in anion substitution and 
the formation of an O-Ti-C interface. This oxidation induced 
internal stress on the surface, leading to lattice distortion and 
the enlargement of Ti–Ti bonds. The mismatch between the 
 Ti3C2 layer and the oxidation layer (O-Ti3C2) created tensile 
strain at the interface. DFT calculations revealed that the 
O-Ti3C2 induced a 5% lattice tensile strain (O-TS-Ti3C2), 
which significantly expanded the bond lengths (Fig. 5a, b). 
These increased atomic spacing weakened atomic inter-
actions and resulted in a narrower band gap and a shifted 
d-band center (− 1.31 eV), closer to the Fermi level than 
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Table 1  Cycling performances of LSBs based on carbon-based materials and MXenes as active materials

Samples Sulfur 
loading (mg 
 cm−2)

E/S ratio 
(μL 
 mg−1)

Current density /
cycling

Specific 
capacity 
(mAh  g−1)

Area 
capacity 
(mAh  cm−2)

Attenuation 
rate (%)

Rate performance 
(mAh  g−1)

Refs

Ti2CTx-MXenes 1.0 50.0 0.5C/100 960.0 0.85 92 1200 (0.2C), 1090 
(0.5C), 1000 (1.0C)

[67]

Ti3C2Tx 2.5 – 1.0C/1500 970.0 2.42 82.98 1383 (0.1C), 1270 
(0.5C), 1196 
(1.0C), 1075 (2.0C)

[68]

Flexible  Ti3C2Tx  ~ 2.5 – 2.0C/175 1170.0 2.92 93.9 1350 (0.1C), 1335 
(0.2C), 1280 
(0.5C), 1238 
(1.0C), 1170 (2.0C)

[69]

Ti3C2Tx-
polypropylene

1.2 20.0 1.0C/200 630.0 0.76 260 (0.05C), 235 
(0.1C), 185 (0.2C), 
150 (0.5C), 127 
(1.0C), 119 (2.0C)

[57]

Ff-Ti3C2 5.8 3.5 0.5C/35 737.0 4.27 75.8 1312 (0.1C), 1133 
(0.2C), 972 (0.5C), 
849 (1.0C), 771 
(2.0C), 690 (3.0C)

[66]

I-MXene 5.0  ~ 15.0 0.2C/200 578.0 2.89 75.9 1128 (0.1C), 761 
(0.2C), 652 (0.5C), 
601 (1.0C), 555 
(2.0C)

[77]

NSMX 7.2 7.0 0.2C/100 947.2 5.25 76 1315 (0.2C), 1041 
(0.5C), 922 (1.0C), 
795 (2.0C), 712 
(3.0C), 649 (4.0C), 
595(5.0C)

[78]

GICOT 7.6 – 0.1C/200 1092.0 8.29 85.3 1417 (0.05C), 1280 
(0.1C), 1186 
(0.2C), 1048 
(0.5C), 956 (1.0C), 
846 (2.0C), 771 
(3.0C), 687 (5.0C)

[80]

MPGT 1.0 30.0 0.5C/1000 508.0 0.51 55.46 1134 (0.2C), 916 
(0.5C), 853 (1.0C), 
730 (2.0C), 700 
(3.0C), 610 (4.0C)

[81]

PPLT 5.0 - 0.2C/1000 651.0 3.26 71.4 1126 (0.1C), 912 
(0.2C), 886 (0.5C), 
795 (1.0C), 600 
(2.0C), 442 (4.0C)

[82]

OMC-g-MXene 7.1 7.7 0.1C/100 635.6 4.50 55.7 1142 (0.1C), 986 
(0.2C), 952 (0.5C), 
795 (1.0C), 744 
(2.0C), 537 (3.0C)

[83]

TCD-TCS 9.2 – 0.05C/100 826.0 7.60 62.7 1389 (0.05C), 1377 
(0.2C), 1183 
(0.5C), 1081 
(1.0C), 950 (2.0C), 
882 (3.0C)

[88]
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O-Ti3C2 (Fig. 5c, d). This tensile strain effect promoted the 
surface adsorption and catalytic conversion of high con-
centration LiPSs and  Li2S oxidation via reducing the  Li2S 
cluster decomposition energy barrier from 0.64 to 0.2 eV 
(Fig. 5e), accelerating their transformation process (Fig. 5f). 
Moreover, the MXene/CNT interconnected framework not 
only exposed vast electrode/electrolyte interface but also 
established an open but robust structure, offering potent sul-
fur immobilization, strong LiPS confinement and admirable 
structure stability.

Zhao’s group [109] also reported a strain-regulation strat-
egy for enhancing the catalytic performance of MXenes in 
LiPSs conversion. The thickness of MXene decreases as 
compressive strain increases (from 0 to 6%), which deforms 
the  TiC3O3 octahedral configuration. However, under 7% 
strain, the MXene structure collapses due to thermodynamic 
instability. At 6% compressive strain, the adsorption energy 

of soluble LiPSs was − 1.5 eV, about three times higher than 
that of MXenes without strain. Projected density of states 
(PDOS) analysis shows that the S-3p orbital of  Li2S8 and the 
Ti-3d orbital of MXenes overlap after adsorption, resulting 
in a decrease in the S-3p orbital energy and an increase in 
the Ti-3d orbital energy (Fig. 5g, h), indicating that  Li2S8 
was chemically bound to MXenes. The 6% strained MXenes 
optimally accelerated the conversion rate and suppressed the 
shuttle effect of LiPSs. Based on these theoretical insights, 
authors synthesized strain-induced wrinkle flower-shaped 
MXene (w-MXene), which not only exhibited strong adsorp-
tion for high-concentration LiPSs but also accelerated their 
transformation. This resulted in an impressive initial areal 
capacity of 16.53 mAh  cm−2 under high sulfur loading and 
demonstrated long-cycle stability.

Recently, Wang et al. [110] found that incorporating P 
atoms into the mixed-phase cubic and orthorhombic  CoSe2 

Table 1  (continued)

Samples Sulfur 
loading (mg 
 cm−2)

E/S ratio 
(μL 
 mg−1)

Current density /
cycling

Specific 
capacity 
(mAh  g−1)

Area 
capacity 
(mAh  cm−2)

Attenuation 
rate (%)

Rate performance 
(mAh  g−1)

Refs

α-Ti3C2 MNRs 4.0 – 0.3C/200 1229.0 4.91 94 1560 (0.12C), 1272 
(0.3C), 1127 
(0.6C), 1042 
(0.9C), 992 (1.2C), 
944 (1.8C), 895 
(2.4C), 854 (3.0C)

[87]

3D-printed 
cathode

12.02 5.0 0.2C/150 914 8.47 72.6 1283 (0.2C), 1147 
(0.5C), 1001 
(1.0C), 827 (2.0C)

[89]

CNT 3.5 - 1.17 mA  cm−2/100 670 3.6 64.9 - [90]
3DG 4.7 0.5C/170 979 6.4 89 1051 (0.05C), 921 

(0.1C), 893 (0.2C), 
763 (0.5C), 721 
(1.0C), 450 (2.0C)

[91]

Ti3C2Tx/rGO 2 10 1.5C/500 740 1.5 78.4 1480 (0.1C), 1280 
(0.2C), 1100 
(0.5C), 880 
(1.0C),660 (2.0C)

[92]

CNT/NG 6.3 – 0.05C/160 700 2.3 70.4 1114 (0.05C), 
824(0.1C), 792 
(0.2C)

[93]

CNT-Ti2C 5 7 0.5C/1200 450 5 47.4 - [94]
N-Ti3C2Tx 5.1 6 0.2C/500 588 1.69 77 1083(0.2C), 947 

(0.5C), 835 (1.0C), 
770 (2.0C),

[95]

CGS 1.1 – 0.5C/500 737.8 1.67 89 1346 (0.1C), 1155 
(0.2C), 1024 
(0.5C), 931 (1.0C), 
827 (2.0C), 606 
(5.0C), 535 (10.0C)

[96]
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(P-CoSe2) on grown 3D crumpled MXene (P-CoSe2/MXene) 
induced a phase transformation to a pure orthorhombic 
structure, which generated tensile strain and enhanced 
charge localization due to the elongated Co-Se bond 
length. The total DOS of P-CoSe2 revealed a stronger den-
sity of states near the Fermi level compared to pure  CoSe2 
(Fig. 5i, j), indicating increased electronic conductivity. The 
PDOS further showed that the d-band center of Co shifted 
from − 1.89 to − 1.81 eV (Fig. 5k), likely due to the tensile 
stress caused by the elongated Co-Se/P bond distance. The 
partial replacement of Se with P increases the Se-Se/P bond 
distance, reducing the bonding-antibonding splitting. This 
allowed the  t2g electron to easily transfer into the  eg orbital, 
modulating the spin states of the Co center (Fig. 5l, m). The 
P-CoSe2/MXene structure showed more exposed d-electron 
pairs and unpaired electrons than cubic  CoSe2. The upshift 
of the d-band center, coupled with the enhanced Bader 
charge at Se sites, synergistically facilitated dual coordina-
tion with both Li and S sites in LiPSs with low Gibbs free 
energy (0.83 eV) of RDS and  Li2S decomposition activation 

energy (1.9 eV) and small  Li+ diffusion barrier (0.18 eV) 
(Fig. 5n–r). Under conditions with a sulfur areal loading of 
4.0 mg  cm−2 and an E/S ratio of 10 μL  mg−1, the P-CoSe2/
MXene cells achieved a high initial areal capacity of 3.6 
mAh  cm−2.

3.2.2  Doping or Defect Engineering

Doping metal heteroatoms into metal-based catalysts 
enhances both the electronic structure and metallic con-
ductivity. Sometimes, doping modification may introduce 
abundant defects that expose additional reactive sites for 
catalytic reactions [111]. These defects effectively modulate 
the electrocatalytic properties at the atomic level [112, 113]. 
This doping or defect engineering accelerates redox kinetics 
and suppresses the shuttle effect of LiPSs, thereby improving 
the overall catalytic performance. For example, Ni-doped 
 CoSe2 nanoparticles were uniformly integrated onto the 
surface of hollow MXene to form the Ni-CoSe2/MX [114]. 

Fig. 5  a, b Crystal structure and bond length, c, d PDOS of Ti-3d orbitals, e  Li2S dissociation energy barrier, and f reaction mechanism on 
 Ti3C2 and TS-Ti3C2 surfaces in LSBs [108].  Copyright 2021, WILEY–VCH. g PDOS and h orbital interactions between Ti-3d orbitals of 
MXene and S-3p orbitals of  Li2S8 [109]. Copyright 2022, Elsevier. i Crystal structures, j TDOS plots, k PDOS, l energy band, m electronic cou-
pling, n ΔG profiles from  S8 to  Li2S, o  Li+ diffusion energy profile, p  Li2S decomposition energy profiles, q binding energies of various sulfur 
species, and r the Bader charge for  CoSe2 and P-CoSe2 [110]. Copyright 2024, WILEY–VCH
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In this structure, a small proportion of Co atoms within the 
 CoSe2 crystal lattice were substituted by  Ni2+ ions. This 
doping induced a significant upshift in the d-orbital center 
relative to the Fermi level in Ni-CoSe2/MX, which exhib-
ited an upshifted d-band center of -1.78 eV after Ni doping, 
compared to -1.80 eV in  CoSe2/MX (Fig. 6a). This upshifts 
resulted in a higher filling fraction of the lowest unoccupied 
molecular orbital (LUMO) of LiPSs (Fig. 6b), thereby pro-
moting the hybridization between the transition metal sites 
and LiPSs. As expected, Ni-CoSe2/MX delivered higher 
bind energies (Fig. 6c), a lower ΔG of 0.559 eV compared 
to  CoSe2/MX (0.594 eV) and  CoSe2 (0.61 eV) at the trans-
formation from  Li2S2 to  Li2S (Fig. 6d), and reduced  Li2S 
energy barrier (from 0.84 to 0.67 eV) (Fig. 6e). Moreover, 
the prevention of MXene self-restacking ensured maximum 
exposure of Ni-CoSe2 nanoparticles, which provided addi-
tional active sites. This enhancement facilitated stronger 
adsorption of sulfur species and improved catalytic effects 
for the conversion of high-concentration LiPSs and the 
decomposition of  Li2S.

Similarly, Li et al. [111] designed a bifunctional elec-
trocatalyst by doping Co into  MoSe2, creating Co-MoSe2, 
which was then in situ hybridized with conductive MXene 

nanosheets through a one-step hydrothermal reaction to form 
Co-MoSe2/MXenes. The introduction of Co into the basal 
plane and edge of  MoSe2 led to a noticeable shift of both 
the conduction and valence bands towards the Fermi level, 
narrowing the band gap from 1.1 to 0.5 eV (Fig. 6f). This 
modification also resulted in substantial movement of the 
Co-d, Mo-d, and Se-p orbitals towards the Fermi level, par-
ticularly the Se-p orbitals, whose intensity increased fivefold 
due to the strong interaction with the Co atom. As a result, 
Co doping induced structural disorder and defects, leading 
to an increase in the number of catalytic active sites for the 
adsorption and conversion of LiPSs as well as the oxidation 
of  Li2S, which in turn accelerated the redox kinetics. The 
dense S/Co-MoSe2/MXene monolith cathode demonstrated 
outstanding rate performance, delivering capacities of 1454, 
1390, 1290, 1170, 995, and 759 mAh  g−1 at 0.1C, 0.2C, 
0.5C, 1C, 2C, and 5C, respectively.

Additionally, Tang and Sun et  al. [115] reported the 
development of a new family of dual-defect catalysts, CoD-
FePv@MXene, which incorporates P vacancies and Co dop-
ing in FeP on MXene. The introduction of both Co doping 
and P vacancies lowered the binding energy of LiPSs on the 
catalyst surface, facilitating stronger adsorption and capture 

Fig. 6  a PDOS, b orbital interactions, c binding energies, d ΔG curves, and e  Li2S decomposition energy barriers on various surfaces [114] 
Copyright 2024, WILEY–VCH. f TDOS and PDOS of various surfaces [111].  Copyright 2021, American Chemical Society. g The optimized 
adsorption structures, h calculated binding energies, i ΔG profiles from  S8 to  Li2S, and j  Li2S decomposition barriers profiles [115]. Copyright 
2023, WILEY–VCH
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of LiPSs (Fig. 6g, h). Furthermore, the CoD-FePv@MXene 
exhibited the lowest free energy barrier (0.46 eV) for the 
reduction of  Li2S2 to  Li2S (Fig. 6i) and the lowest decom-
position energy barrier (0.69 eV) for  Li2S (Fig. 6j), com-
pared to other catalysts. This promoted the nucleation and 
decomposition of  Li2S. The P vacancies provided additional 
active sites for LiPS adsorption, while Co doping generated 
a local electric field that lowered the reaction energy barrier 
and accelerated  Li2S dissolution. The synergistic effects of 
these vacancies and heteroatom doping not only suppressed 
the shuttle effect but also improved the utilization of sulfur, 
leading to enhanced rate performance and cycling stability.

3.2.3  Seeding Single‑Atom Catalysts

Single-atom catalysts (SACs) have attracted considerable 
attention due to their superior catalytic activity and well-
defined active sites. These attributes offer significant advan-
tages, particularly in accelerating sulfur redox kinetics in Li–S 
catalysis. The synergistic integration of SACs with MXenes 
represents a promising avenue for the development of novel 
physicochemical properties. Cai et al. [116] demonstrated the 
decoration of atomically dispersed Co sites on  V2C MXene 
with a size-effect optimization (Co-VC), where isolated Co 
atoms form stable binary coordination with O and N atoms, 
such as Co-O2N and Co-ON2. The high atom utilization effi-
ciency (~ 100%) and the diverse coordination environment of 
Co atoms, combined with the size-effect-optimized VC sub-
strate, significantly enhance the catalytic activity for both S 
and Li conversion reactions. In the S cathode, this rational 
design effectively guides the nucleation and growth of  Li2S, 
resulting in a  Li2S product with higher mass, smaller size, 
and improved homogeneity (Fig. 7a). For the Li anode, the Li 
plating/stripping behaviors are optimized by controlling the 
 Li+ flux, ensuring an ideal working surface (Fig. 7b). This 
optimization is achieved by modulating the adsorption and 
diffusion of  Li+ on Co-VC, benefiting from ultrafast Co atom 
utilization. Consequently, the Co-VC heterostructure promoted 
more efficient  Li2S evolution with a lower energy barrier value 
of 0.32 eV (Fig. 7c, d).

Similarly, a series of metal single atoms (denoted as M 
SA/N-Ti3C2Tx, where M represents Cu, Co, Ni, Mn, Zn, In, 
Sn, Pb, and Bi) were immobilized on N-doped  Ti3C2Tx using 
a vacancy-assisted approach [117]. DFT calculation identified 
that the Cu–N1C2 coordination as the active sites exhibited 

higher binding energy and larger electron clouds than pristine 
 Ti3C2Tx, enhancing the interaction for LiPSs by single Cu sites 
(Fig. 7e). CV and  Li2S deposition curves proved that Cu SA/N-
Ti3C2Tx could promote LiPSs conversion and  Li2S deposi-
tion (Fig. 7f, g). The discharge process was more thermody-
namically favorable on Cu SA/N-Ti3C2Tx than on  Ti3C2Tx. 
The energy barrier for the conversion of  Li2S4 to  Li2S on Cu 
SA/N-Ti3C2Tx was 0.11 eV, lower than the 0.29 eV barrier on 
 Ti3C2Tx (Fig. 7h), indicating that Cu SA/N-Ti3C2Tx facilitates 
the kinetic conversion of LiPSs. Moreover, a triple-boundary 
heterostructure composed of MXene decorated with Ru-doped, 
defect-rich 1 T/2H  MoS2 was also synthesized [99]. The DOS 
of the Ru–MoS2/MXene composite was higher than that of 
 MoS2 or  MoS2/MXene alone (Fig. 7i), indicating increased 
electron density and enhanced electrical conductivity. The 
calculated binding energy of Ru-MoS2/MXene was − 1.42 eV, 
stronger than  MoS2 (− 0.76 eV) and  MoS2/MXene (− 1.31 eV) 
(Fig. 7j), suggesting that Ru-MoS2/MXene has superior LiPS 
adsorption capacity, effectively mitigating the shuttle effect. 
Moreover,  MoS2/MXene could prevent the desorption of solid 
 Li2S2/Li2S from the host, thereby passivating the catalyst and 
inhibiting further conversion.

3.2.4  Constructing Built‑in Electric Field

MXenes exhibit metallic conductivity, making them highly 
amenable to forming heterostructures when combined with 
other materials. When two materials with distinct Fermi 
levels come into contact, a discontinuity in the Fermi lev-
els occurs at the interface [48]. This discrepancy induces 
the formation of a polarization interphase, accompanied 
by a potential energy difference [59]. The resulting energy 
gradient drives the spontaneous migration of free elec-
trons until the Fermi levels of the two materials equilibrate 
[118]. As a result, electrons accumulate in one region, cre-
ating an electron-rich zone, while electron holes remain in 
the opposite region, ultimately generating a built-in elec-
tric field (BIEF) at the interphase [59]. In LSBs, the BIEF 
in catalysts can affect the electronic structure, surface 
adsorption, and catalytic activity toward LiPSs.

Highly conductive binary sulfiphilic  NbB2-MXene 
heterostructures were strategically designed to gen-
erate a BIEF through a simple one-step borothermal 
reduction process [59]. The Fermi level (EF) of  NbB2 
(− 5.38 eV), measured relative to the vacuum level (Evac), 
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is significantly lower than that of MXene (− 1.72 eV) 
(Fig. 8a). When these materials are brought into con-
tact, the potential energy difference drives the spontane-
ous migration of free electrons from MXene to the  NbB2 
side until the Fermi levels of both materials equilibrate 
(Fig. 8b). As a result, electrons accumulate at the  NbB2 
site, while electron holes accumulate at the MXene site, 
leading to the formation of a BIEF between  NbB2 and 
MXene (Fig. 8c). The charge density difference further 
confirms the charge redistribution at the interface, where 
electrons are concentrated at  NbB2 sites, and holes are 
concentrated at the MXene side, reinforcing the pres-
ence of the BIEF. This electron redistribution endows the 
 NbB2-MXene heterostructure with moderate adsorption 
properties for LiPSs (Fig. 8d), as Nb and B atoms, hav-
ing gained more electrons, weaken their strong adsorp-
tion to LiPSs. The  DLi

+ of the cell with S/NbB2-MXene is 
6.3 ×  10−8  cm2  s−1, which is significantly higher than that 
of S/NbB2 (3.3 ×  10−8  cm2  s−1) and S/MXene (2.3 ×  10−8 
 cm2  s−1), demonstrating that the BIEF effectively acceler-
ates the  Li+ diffusion rate. The charge redistribution and 

boundary defects within the heterostructure expose addi-
tional active sites, thereby reducing the free energy barrier 
for  Li2S2 to  Li2S (0.73 eV) (Fig. 8e) and for  Li2S decom-
position (0.51 eV) (Fig. 8f). This facilitates the enrichment 
of chemical anchor sites and catalytic centers, which, in 
turn, enhances the redox kinetics of LiPS conversion, even 
under high-sulfur loading in the cathode.

Zhang et  al. [119] also reported the creation of an 
ultrathin  SnO2@MXene heterostructure, where  SnO2 
quantum dots (QDs) are uniformly distributed across a 
MXene layer. When metallic  Ti3C2Tx MXene contacts 
semiconducting  SnO2, electron transfer from  SnO2 to 
MXene occurs to balance their Fermi levels (Fig. 8g). 
This electron transfer leads to the formation of a deple-
tion region on the  SnO2 side (Fig. 8h), which carries a 
positive charge, and an accumulation region on the MXene 
side, which carries a negative charge. As a result, a BIEF 
is generated, promoting electron flow across the interface. 
This charge redistribution alters the coordination environ-
ment of the electron-rich and electron-deficient regions, 
affecting the electronic structure, surface adsorption with 

Fig. 7  a Schematic illustration of the preparation process, b optimizing S cathode and Li anode for Co-VC, c  Li2S dissociation energy barriers, 
and d synchrotron radiation X-ray 3D nano-CT images of  Li2S deposition on various substrates [116].  Copyright 2024, WILEY–VCH. e Charge 
density, f CV curves, g  Li2S deposition curves, h ΔG profiles from  S8 to  Li2S [117]. Copyright 2023, WILEY–VCH. i Calculated band structure 
and PDOS, and j binding energies between  Li2S6 and various surfaces [99]. Copyright 2024, WILEY–VCH
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high binding energy of − 2.57 eV, and catalytic activity 
toward LiPSs (Fig. 8i, j). The introduction of highly cata-
lytic heterojunction sites significantly lowers the nuclea-
tion energy, promoting more efficient nucleation with-
out a noticeable barrier, even under conditions of high 
sulfur loading. Various similar heterostructures, such as 
 TiO2-MXenes [120],  MnOx/MXenes [121],  SnS2-MXene 
[11], MXene/1 T-2H  MoS2-C [122], and  MoS2@Mo2C 
MXene [41], have been developed to enhance the perfor-
mance of LSBs.

In another study, when  VS4 contacts  SnS2, the work func-
tion difference between  SnS2 and  VS4 causes a depletion of 
charge near the V atom in  VS4, while charge accumulates at 

the S atom in  SnS2 [123]. This electron transfer forms a con-
ductive path from  VS4 to  SnS2, which is further facilitated 
by the metallic-like behavior of MXenes. The outer electrons 
of Ti in MXenes are prone to being lost, and when MXenes 
contacts the n-type semiconductor  VS4, an ohmic contact is 
established. This allows for the spontaneous coupling of Ti’s 
outer electrons to the sulfur atoms in  VS4, creating a rapid 
electrical pathway nearly independent of resistance. These 
findings suggest that the double heterostructure formed by 
MXene-VS4-SnS2 accelerates electron movement and par-
ticipates in the catalytic transformation of LiPSs, reducing 
the activation energy for LiPSs conversion and lowering 
the decomposition barrier of  Li2S. Electrochemical tests 

Fig. 8  a, b Electron redistribution, c charge density difference, d  Li2S adsorbed and the bond length of Li–S bond, e the activation energy for 
LiPSs/Li2S conversion, f ΔG profiles from  S8 to  Li2S, and g  Li2S decomposition path on various surfaces [59].  Copyright 2023, WILEY–VCH. 
h Energy band diagram between  SnO2 and MXene, i electron localization functions, j PDOS analysis, and k binding energies [119]. Copyright 
2024, Springer Nature. l The formation of BIEF, m activation energy, p-band center, and ΔG profiles, and n LiPSs conversion process on differ-
ent surfaces [124]. Copyright 2024, WILEY–VCH
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show that the MXene-VS4-SnS2 structure exhibits enhanced 
cycling stability and high performance. Besides, Li et al. 
[124] also proposed a strategy that combines cation-doping 
engineering and the BIEF effect to modulate the p-band 
centers of active sites and enhance interfacial charge trans-
port in heterojunctions (Fig. 8k). Specifically, Mo-doped 
 VS2 nanosheets were grown in situ on a MXene surface 
to form a Mo-VS2/MXene heterojunction. The Mo-doping 
shifts the p-orbital energy of sulfur atoms in  VS2 toward the 
Fermi level, strengthening the S-Li bonding and improving 
the adsorption of LiPSs (Fig. 8l). This increases the effi-
ciency of SRR by reducing the activation energy and the 
energy barriers associated with the conversion of LiPSs. The 
BIEF effect at the hetero-interface facilitates spontaneous 
electron rearrangement, which accelerates electron transfer 
and enhances the thermodynamic and kinetic properties 
of SRR (Fig. 8m), thereby alleviating the shuttle effect of 
LiPSs. The Mo-VS2/MXene heterojunction exhibited sig-
nificantly improved SRR catalytic performance compared 
to pure  VS2 or  VS2/MXene (Fig. 8n). Furthermore, the 
 Li2S decomposition barrier on the Mo-VS₂/MXene surface 
(0.48 eV) is significantly lower than those on  VS2 (0.90 eV) 
and Mo-VS2 (0.82 eV), highlighting the superior capability 
of the Mo-VS₂/MXene catalyst in facilitating  Li2S transfor-
mation. This suggests its potential as an efficient bifunc-
tional electrocatalyst for LSBs.

3.2.5  Inducing Cocktail Effect

The concept of the “high entropy effect” has recently gained 
considerable attention in the design of electrode materials, 
and catalysts for electrolysis reactions [125]. Increasing the 
configurational entropy within materials is widely recog-
nized for its ability to stabilize the solid solution phase, mod-
ify the electronic structure, enhance electrical conductivity, 
and induce lattice distortion, all of which reduce the  Li+ 
diffusion barrier [126]. Furthermore, the homogeneous dis-
tribution of multiple metal elements in high entropy materi-
als generates a “cocktail effect”, which creates numerous 
adsorption sites essential for catalyzing complex reactions 
[127]. In LSBs, this "cocktail effect" enables the various 
metals in high entropy materials to strongly capture LiPSs 
and efficiently facilitate each step of the LiPS conver-
sion process during the overall S/Li2S reaction [128]. For 

example, a  TiVNbMoC3 high-entropy MXene (HE-MXene), 
composed of four size-compatible transition metal elements 
uniformly distributed within the M-layer, was designed as a 
platform for the synergistic engineering of multi-active cent-
ers in LSBs [125]. The electron density on the HE-MXene 
surface was significantly increased around the variable metal 
sites, enhancing electron mobility and thereby lowering the 
reaction barrier for LSBs (Fig. 9a). Compared to  Ti3C2 and 
TiNbC MXenes,  TiVNbMoC3 HE-MXene exhibited a DOS 
closer to the Fermi level (Fig. 9b) and an extended inter-
action range of 3.29–4.09 Å of  Li2S6 (Fig. 9c), matching 
well with the configurations of LiPSs. PDOS calculations 
revealed a substantial shift in the d-band center of each tran-
sition metal atom in  TiVNbMoC3 HE-MXene towards the 
Fermi level. This shift was attributed to the arrangement 
of the four transition metal atoms in a solid-solution state, 
which facilitated the hybridization of Ti-3d, V-3d, Nb-3d, 
Mo-3d, and C-2p states. The M-layer engineering effec-
tively tuned the electronic structure and d-band center of 
the MXene, resulting in a material with enhanced electron 
density and optimal orbital hybridization (Fig. 9d). This 
modification not only strengthened interactions with LiPSs 
but also accelerated redox reaction kinetics, thereby improv-
ing catalytic performance.

The innovative integration of high-entropy MXene and 
graphene has also demonstrated high electrical conductiv-
ity and provided abundant metal active sites for efficient 
chemisorption with LiPSs [129, 130]. Chen et al. [129] 
developed a high-entropy MXene-doped graphene compos-
ite (HE-MXene) as a bifunctional mediator for separator 
modification in LSBs. Their study demonstrated that the 
incorporating additional metal elements (Ti, V, and Nb) 
into HE-MXene enhanced continuous charge regulation 
and accelerated multielectron transfer. Compared to tra-
ditional transition metal carbides (TMCs) and  Ti4C3, HE-
MXene exhibited superior binding energies toward  Li2S6 
(− 20.82 eV) and  Li2S (− 5.73 eV), as well as a significantly 
lower  Li+ diffusion barrier (0.027 eV) and a reduced  Li2S 
decomposition barrier (0.017 eV). These improvements are 
attributed to the synergistic effects of local coordination 
changes and charge transfer within the multi-metal quasi-
atoms of HE-MXene, which promote the formation of a 
more stable and efficient crystal structure (Fig. 9e). Under 
high sulfur loading of 6.5 mg  cm−2 and low E/S ratio of 
7.1 μg  mL−1, the cells with HE-MXene/G@PP modified 
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separators showed outstanding capacity retention of 85.7% 
at 1C over 500 cycles.

In another case, a highly chaotic MXenes-based het-
erostructure material comprising  Ti3C2Tx MXene sheets, 
 TiO2, TiN, and  TiS2 was designed as an efficient SRR 
electrocatalyst [131]. The diverse heterojunctions within 
the structure facilitate enhanced electron and  Li+ trans-
fer, thereby improving the adsorption capacity for soluble 
LiPSs. The combination of “high entropy”, heterostructure 
engineering, and MXenes significantly optimized the per-
formance of the HCMH catalyst. This is demonstrated by 
a reduced Tafel slope of 62.9 mV  dec−1 and an enhanced 
electron transfer number of 7.10, compared to moderately 
disordered samples such as  TiO2/TiN/Ti3C2Tx (MCMH) 
and MXenes alone. DFT calculations further demonstrated 
that the incorporation of new phases in the HCMH struc-
ture lowered the Gibbs energy barriers for both  Li2S2/Li2S 
reduction and  Li2S decomposition. Due to its high electri-
cal conductivity and exceptional SRR catalytic activity, 

the HCMH/S cell exhibited enhanced electrochemical sta-
bility, maintaining a more stable reversible capacity over 
extended cycling.

MXene, TiN, and Co@C each play distinct roles in the 
adsorption and catalytic processes of sulfur redox reactions, 
yet theoretical calculations indicate that no single compo-
nent alone can effectively accelerate the overall sulfur redox 
kinetics (Fig. 9f–h) [132]. To address this, we developed the 
TiN-MXene-Co@CNTs composite, where Co nanoparticles 
were in situ grown on TiN-MXene nanosheets and encapsu-
lated with CNTs to maximize the exposure of active sites. 
This composite exhibited significantly enhanced adsorption 
and catalytic activity for both soluble LiPSs and solid  Li2S 
(Fig. 9i). The synergistic interactions between TiN, MXene, 
and Co@C led to a significant enhancement in cathode 
performance, achieving a high areal capacity of 6.3 mAh 
 cm−2 under high sulfur loading of 8.9 mg  cm−2 and a low 
E/S ratio. The conductive network formed by TiN-MXene-
Co@CNTs as a Li host provided abundant lithiophilic sites 

Fig. 9  a Electron density, b DOS, c configurational compatibility, and d COHP of S–S bond in  Li2S6 absorbed on various surfaces [125].  
Copyright 2024, Royal Society of Chemistry. e Schematic illustration of the “cocktail effect” on the LiPSs conversion process [129]. Copyright 
2024, American Chemical Society. f Binding energies, g ΔG profiles from  S8 to  Li2S, h  Li2S dissociation energy barrier, and i catalytic mecha-
nism of TiN-MXene-Co@CNTs for sulfur conversions [132]. Copyright 2024, WILEY–VCH



Nano-Micro Lett.          (2025) 17:209  Page 19 of 28   209 

Table 2  Comparison of cycling performances of LSBs based on metal-based materials and MXenes@metal-based materials

Samples Sulfur 
loading (mg 
 cm−2)

E/S ratio 
(μL 
 mg−1)

Current 
density /
cycling

Specific 
capacity 
(mAh  g−1)

Area 
capacity 
(mAh  cm−2)

Retention 
rate (%)

Rate performance Ref

MXene-CNT 7.0 5.0 0.05C/80 700.0 4.90 1446(0.2C), 1225(0.5C), 
1081(1.0C), 976(2.0C), 
879(3.0C), 797(4.0C), 
750(5.0C), 686(8.0C)

[108]

TiC3O3 7.6 – 0.1C/100 953.1 7.22 79.94 1496(0.1C), 1310(0.2C), 
1140(0.5C), 978(1.0C), 
748(2.0C)

[109]

P-CoSe2/MXene 4.0 10.0 1.0C/200 901.0 3.60 83 1469(0.1C), 1136(0.2C), 
989(0.5C), 861(1.0C), 
746(2.0C), 673(3.0C), 
603(4.0C)

[110]

Ni-CoSe2/MX 1.2 – 0.2C/100 791.5 0.95 68.1 1267(0.2C), 1029(0.5C), 
891(1.0C), 773(2.0C), 
679(3.0C), 561(5.0C)

[114]

Co-MoSe2/MXenes 9.9 3.5 0.1C/50 808.1 8.00 62.2 1454(0.1C), 1390(0.2C), 
1290(0.5C), 1170(1.0C), 
995(2.0C), 759(5.0C)

[111]

CoD-FePv@MXene 5.8 5.0 0.2C/120 821.0 4.76 98.4 1297(0.2C), 1020(0.5C), 
951(1.0C), 872(2.0C), 
797(3.0C), 726(4.0C)

[115]

Co-VC 7.6 4.0 0.1C/50 900.0 6.84 74.2 1212(0.2C), 1108(0.5C), 
966(1.0C), 813(2.0C)

[116]

Cu SA/N-Ti3C2Tx 7.2 – 0.1C/50 734.3 5.28 74.5 1468 (0.2C), 1193 (0.5C), 
1085(1.0C), 989(2.0C), 
925(3.0C)

[117]

Ru-MoS2/MXene 9.5 4.3 0.2C/200 726.0 6.87 88.5 1256(0.2C), 1104(0.5C), 
993(1.0C), 862(2.0C) 
770(3.0C), 684(6.0C)

[99]

NbB2-MXene 7.0 5.0 0.1C/60 928.6 6.50 80 1310(0.1C), 1097(0.2C), 
902(0.5C), 782(1.0C), 
678(2.0C)

[59]

SnO2@MXene 7.5 10.0 0.02C/50 1013.0 7.60 82.8 1231(0.1C), 1150(0.2C), 
1076(0.5C), 963(1.0C), 
845(2.0C)

[119]

TiO2-MXenes 7.3 – 0.2C/200 600.0 4.38 57.7 1374(0.1C), 1031(0.2C), 
898(0.5C), 786(1.0C), 
702(2.0C)

[120]

MnOx/MXenes 7.0 10.0 0.05C/100 887.3 5.80 55.6 1423(0.2C), 1265(0.3C), 
1184(0.5C), 1063(1.0C), 
936(2.0C), 817(3.0C), 
709(5.0C)

[121]

SnS2-MXene 8.0 5.0 0.05C/50 677.8 5.43 73.9 1461(0.1C), 979(0.2C), 
829(0.5C), 763(1.0C), 
691(2.0C), 603(5.0C)

[11]

MXene/1 T-2H 
 MoS2-C

1.0 – 0.2C/40 915.2 0.92 83.3 1194(0.1C), 1014(0.5C), 
905(1.0C), 797(1.5C), 
677(2.0C)

[122]

MoS2@Mo2C 
MXene

3.2 – 0.1C/100 755.6 2.42 92.6 1205(0.2C), 1034(0.5C), 
939(1.0C), 825(2.0C), 
679(3.0C), 567(5.0C)

[41]

MXene-VS4-SnS2 6.0 7.0 1.0C/100 600.0 3.60 74.4 1466(0.1C), 1323(0.2C), 
1036(0.5C), 904(1.0C), 
768(2.0C), 625(3.0C)

[123]
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and a high specific surface area, which in turn optimized 
the Li stripping/plating processes, resulting in a minimal 
voltage hysteresis of 13.2 mV over 1000 h. The presence 
of CNTs not only improved the electrical conductivity of 
the composite but also provided a protective layer around 
the Co nanoparticles, enhancing their stability. Moreover, 
the synergistic effect between TiN-MXene nanosheets and 
CNT-encapsulated Co nanoparticles facilitated the uniform 
distribution of  Li+, which mitigated dendrite formation and 
improved the cycling stability of the battery.

The comparison of cycling performances between LSBs 
based on metal-based materials and MXenes@metal-based 
materials has demonstrated the significant potential of 

MXenes@metal-based materials in enhancing the cycling 
stability and overall performance of LSBs, as summarized in 
Table 2. However, current research has been predominantly 
focusing on Ti-based MXenes, leaving other types underex-
plored. Determining the optimal mass ratio of MXenes to 
metal-based materials is crucial for efficient LiPSs conver-
sion and  Li2S deposition/decomposition. In addition, it is 
very essential to gain a more comprehensive understanding 
of the structure–activity relationship between MXenes-based 
electrocatalysts and high-loading and lean electrolyte LSBs, 
which can be achieved through detailed in situ and ex situ 
characterizations.

Table 2  (continued)

Samples Sulfur 
loading (mg 
 cm−2)

E/S ratio 
(μL 
 mg−1)

Current 
density /
cycling

Specific 
capacity 
(mAh  g−1)

Area 
capacity 
(mAh  cm−2)

Retention 
rate (%)

Rate performance Ref

HE-MXene 5.4 8.3 0.2C/100 912.0 4.92 99.9 1238(0.2C), 880(0.5C), 
736(1.0C), 638(2.0C), 
545(5.0C)

[125]

HE-MXene/G 6.5 7.1 1.0C/500 520.0 3.38 69 1358(0.2C), 1191(0.4C), 
1110(0.6C), 1041(0.8C), 
1001(1.0C)

[129]

HCMH 5.1 6.0 0.1C/100 803.9 4.10 81.1 1466(0.1C), 1213(0.2C), 
1096(0.5C), 1074(1.0C), 
868(2.0C)

[131]

TiN-MXene-Co@
CNTs

8.9 5.0 0.05C/50 707.8 6.30 81.4 1511(0.1C), 1251(0.2C), 
1084(0.5C), 993(1.0C), 
869(2.0C), 639(3.0C)

[132]

WS2 5 – 0.5C/300 754 6.49 86.1 1140(0.3C), 1053(0.5C), 
932(1.0C), 879(2.0C), 
855(3.0C)

[133]

Co3Mo3N 5.4 – 0.1C/120 776.4 3.64 84.6 1102(0.2C), 878(0.5C), 
784(1.0C), 724(2.0C), 
704(3.0C)

[134]

N-Co2VO4-Co 6 – 0.2C/100 701.3 6.1 6 1522(0.1C), 1406(0.2C), 
1235(0.5C), 1181(1.0C), 
1036(2.0C), 969(3.0C), 
750(5.0C), 480(8.0C)

[135]

S@Ni-MoS2/rGO 5.89 – 0.2C/150 558.9 4.79 78 1152(0.1C), 944(0.2C), 
844(0.5C), 786(1.0C), 
757(2.0C)

[136]

TiS2@NSC 5.3 8 0.2C/120 745 5.6 65 – [137]
3D P-MoS 3.7 – 0.1C/100 800 4.3 75 1099(0.1C), 1010(0.2C), 

907(0.5C), 868(1.0C), 
747(2.0C), 667(4.0C)

[138]

NiCo2S4 8.9 – 0.1C/70 720 6.52 78.5 1442 (0.2C), 961(0.5C), 
816(1.0C), 733(2.0C), 
624(3.0C)

[139]

HGCF 4.5 0.2C/100 739.8 4.9 86.3 1346 (0.1C), 983(0.2C), 
887(0.5C), 814(1.0C), 
742(2.0C)

[140]
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4  Conclusions and Perspectives

LSBs have gained significant attention as a promising 
technology capable of achieving high energy densities 
exceeding 500 Wh  kg−1. However, reaching this target 
requires high-sulfur loadings and lean electrolyte condi-
tions in the cathode. This review highlights the critical 
importance of the conditions in enhancing energy den-
sity, while addressing the associated challenges, including 
severe LiPSs diffusion, substantial volume changes during 
cycling, sluggish electrochemical kinetics, and increasing 
side reactions. Optimizing the sulfur cathode and regulat-
ing Li deposition are essential strategies to overcome these 
obstacles.

MXenes, a class of 2D materials with excellent conduc-
tivity, large polar surfaces, and abundant electrocatalytic 
active sites, have emerged as promising candidates for 
fabricating novel cathode structures and/or efficient elec-
trocatalysts for LSBs. Despite their potential, the applica-
tion of MXenes in high-sulfur loading and lean electrolyte 
LSBs is hindered by challenges such as the layer restack-
ing, poor stability in oxygen atmospheres, and difficulties 
in large-scale synthesis. To address these challenges, vari-
ous modification strategies have been explored, including 
surface optimization with more stable functional groups 
and structural adjustments through the manipulation of 
different dimensions. Additionally, the incorporation of 
carbonaceous materials as interlayer spacers on MXene 
surfaces can effectively prevent nanosheet restacking and 
facilitate fast charge transfer across the MXene planes. 
Moreover, integrating MXenes with metal-based materials 
such as metal oxides, sulfides, selenides, tellurides, and 
hydroxides allows the formation of heterostructure electro-
catalysts, which create diverse catalytic sites. These sites 
can be further optimized for the efficient conversion of 
LiPSs, prevention of Li dendrite formation, and enhance-
ment of cycling stability in LSBs. Furthermore, improve-
ments in scalable synthesis methods, such as wet-chemical 
etching or electrochemical exfoliation, hold potential for 
overcoming production challenges of MXenes.

Despite progress in understanding the effects of MXene 
surface terminations and active sites on LiPSs adsorption 
and catalysis, the intricate interactions between MXenes 
and LiPSs during charge/discharge cycles are still poorly 
understood and difficult to observe. Future research should 

focus on elucidating the underlying mechanisms govern-
ing the "adsorption-diffusion-conversion" process of LiPSs 
and the "nucleation-decomposition" process of  Li2S. It is 
also crucial to gain a deeper understanding of MXene sur-
face chemistry, electronic structure, and reactivity toward 
LiPSs as well as the thermodynamics and kinetics of these 
processes. Key future directions include:

(1) Precise control of MXene surface terminations: Cur-
rent preparation methods for MXenes are insufficient 
in controlling the types, distribution, and content of 
surface terminations. Given that sulfur redox reactions 
are highly dependent on these terminations, precise 
control over MXene surface chemistry is essential for 
understanding catalytic mechanisms.

(2) Development of novel MXene species: To date, around 
30 types of MXenes have been synthesized, mostly 
focusing on Ti-based MXenes. Exploring new MXene 
compositions and terminations beyond common groups 
(− O, − OH, − F, − S) could significantly enhance 
energy density in high-loading LSBs.

(3) Real-world applications of MXenes-based electrodes: 
Most experimental evaluations rely on coin-type cells 
with excess electrolyte and high amounts of porous car-
bon, conditions that do not accurately reflect real-world 
applications. To properly assess the performance of 
MXene-based electrodes, it is essential to conduct tests 
using pouch cells or full batteries that feature high-
sulfur loading, lean electrolyte conditions, and minimal 
porous carbon. This more realistic setup would provide 
a more accurate representation of how these materi-
als perform under practical conditions, such as those 
encountered in commercial LSBs.

(4) Advanced characterization technologies: Understand-
ing the catalytic mechanisms of MXenes-based mate-
rials is challenging due to the complexity of interme-
diates in LSBs during charge/discharge cycles. In situ 
characterization techniques like XRD, Raman, TEM, 
operando XAS, and UV–vis spectroscopy can track 
LiPS conversion processes at different stages and pro-
vide direct data for a deeper understanding of electro-
chemical reaction pathways.

(5) Machine learning with high-quality small datasets: 
Machine learning can accelerate electrocatalyst dis-
covery by recommending experimental conditions 
that converge quickly to desired properties. Active 
learning strategies, which optimize development using 
high-quality small datasets, are especially beneficial 
for MXenes, given the limited data available. This 
approach integrates known physical and chemical prop-
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erties of MXenes into models to enable rapid reverse 
design of high-performance materials based on mini-
mal data.
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