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HIGHLIGHTS

• An in-depth look into the latest developments of in-situ transmission electron microscopy (TEM) imaging techniques for probing the 
interfacial nanostructures of electrochemical energy storage systems.

• Selected examples to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms by employing some of the 
state-of-the-art imaging techniques to visualize the interfacial nanostructural evolution.

• The challenges and future directions of the development and application of in-situ TEM techniques in the cutting-edge areas of elec-
trochemical energy storage research are discussed.

ABSTRACT The ability to control the electrode interfaces in an elec-
trochemical energy storage system is essential for achieving the desired 
electrochemical performance. However, achieving this ability requires 
an in-depth understanding of the detailed interfacial nanostructures 
of the electrode under electrochemical operating conditions. In-situ 
transmission electron microscopy (TEM) is one of the most powerful 
techniques for revealing electrochemical energy storage mechanisms 
with high spatiotemporal resolution and high sensitivity in complex 
electrochemical environments. These attributes play a unique role in 
understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working bat-
teries. This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the inter-
facial nanostructures of electrochemical energy storage systems, including atomic-scale structural imaging, strain field imaging, electron 
holography, and integrated differential phase contrast imaging. Significant examples will be described to highlight the fundamental under-
standing of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution, 
ionic valence state changes, and strain mapping, ion transport dynamics. The review concludes by providing a perspective discussion of 
future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems.
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1 Introduction

The development of lithium-ion batteries (LIBs), especially 
the rechargeable ones, has changed the world since the 
pioneering work by Nobel Laureates Whittingham, Good-
enough, and Yoshino about half a century ago [1]. LIBs are 
today an essential part of our daily life, driving the devel-
opment of various electrochemical energy storage systems 
for electrifying the world by shifting the global energy con-
sumption away from fossil fuels and toward electricity pro-
duced from renewable sources [2–7]. Indeed, electrochemical 
energy storage is becoming part of the global drive seeking 
alternatives to fossil fuels, including various renewable and 
clean sources (solar energy, wind energy, biomass energy, 
etc.). The need of efficient conversion and storage for these 
energy sources constitutes a major driving force for inno-
vations in energy conversion and storage systems, such as 
lithium-ion or metal-air batteries for solar energy storage 
and hydrogen production through electrolysis of water, fuel 
cells for converting hydrogen into electricity [8]. The water-
splitting hydrogen production from renewable solar or wind 
sources and the fuel cell conversion of hydrogen to electricity 
has become a sustainable power package that address many 
of the challenges of energy and environmental sustainability 
[8–12]. Electrochemical energy storage devices or systems 
play a crucial role in the development of clean and sustain-
able energy in modern society. Applications of such devices 
span across aerospace, artificial intelligence, electric vehicles, 
and many other fields [13–18]. Among various electrochemi-
cal energy storage solutions, rechargeable secondary batteries 
such as Li/Na/K/Zn/Mg-ion batteries [19–27], metal-air bat-
teries [28–31], and all-solid-state batteries [32], are widely 
adopted due to their efficient energy storage capabilities. 
Typically, the energy storage density depends on the structure 
of the electrode materials and their electrochemical proper-
ties. This dependence reflects the correlation of the dynamic 
evolution of the electrode/electrolyte interphase layer and the 
ionic/electronic transport behavior with the cycling stability 
and power density of the batteries. Under practical operating 
conditions, it is difficult to examine the reactions occurring 
within a sealed battery using conventional characterization 
methods. Therefore, the precise determination of the fun-
damental mechanism for the electrochemical reactions and 
structural evolution under dynamic operating conditions has 
been a long-standing subject of debate, especially in area 

concerning the atomic-scale structural evolution of electrode 
materials, the formation of solid electrolyte interphase, and 
ion transport kinetics [33–35]. Understanding the correlation 
between materials structure, electrochemical processes, and 
electronic properties during repeated electrochemical cycling 
holds the key to developing high-performance rechargeable 
secondary batteries.

To probe reaction kinetics and interfacial structure evolu-
tion in electrochemical energy storage devices during cycling, 
various in-situ spectroscopic or microscopic techniques have 
been developed, including optical microscopy, scanning elec-
tron microscopy (SEM) [36], X-ray diffraction (XRD) [37–40], 
nuclear magnetic resonance (NMR) spectroscopy [41], transmis-
sion X-ray microscopy (TXM) [42], and Raman spectroscopy 
[43]. These techniques allowed characterizations of electrodes, 
electrolytes, and their interfaces. For example, in-situ SEM is 
used to track the morphological evolution of electrode surfaces, 
uncovering the formation mechanism of lithium dendrites [44]. 
In-situ XRD is applied to examine phase transformations [40, 
45], revealing the relationship between phase structure and elec-
trochemical reaction. When comparing these in-situ techniques, 
in-situ TEM has distinct advantages, including i) the capability 
to track changes in materials, providing real-time observation, 
and ii) the highest spatial resolution to determine atomic-scale 
details of phase structure [46–53], ion transport, and chemi-
cal valence states. These are important for understanding the 
detailed electrochemical reaction mechanisms. Other techniques 
such as XPS, XRD, Raman, and FTIR, on the other hand, can 
only provide microscopic average information due to the low 
spatial coherence of X-ray, neutron, and infrared ray, etc. More-
over, with the aid of diverse sample rods and accessories, in-
situ TEM can meet various experimental needs by providing 
the most comprehensive capabilities, including characterizing 
atomic-scale structure, elemental types, valence states, ratios 
of different elements, and coordination environments, while 
other techniques only have a subset of these capabilities. In 
2010, the development of in-situ electron transmission electron 
microscopy (TEM) demonstrated the viability of visualizing the 
electrochemical reaction process [54]. To date, in-situ TEM has 
become a powerful technique to reveal the correlation between 
electrode microstructure and electrochemical performance, 
which benefits from high spatial/temporal resolution, direct visu-
alization capability and superior sensitivity to electrical structure 
[55, 56]. Particularly, the introduction of aberration correctors 
enables the investigation of nanocrystals and nanostructures 
at atomic resolution. Thus, in-TEM techniques have allowed 
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realization of micro- to macro-length characterizations of atomic 
structures during battery operation. Indeed, in-situ TEM tech-
niques have been employed for studying intercalation in 2D 
materials [57], visualizing the formation of LiF nanosheets at 
the cathode-electrolyte interface in liquid-electrolyte LIBs [58], 
and visualizing rechargeable battery reactions [59]. Significant 
progress has been made in design of in-situ cells [38, 39] and 
the fabrication of liquid cells for in-situ TEM observation of 
electrochemical processes [60].

While significant progress has been made in advancing vari-
ous electrochemical energy storage systems and in applying 
TEM and in-situ TEM techniques for studying the structures 
of the electrode materials in some of the storage systems, the 
understanding of the how the nanoscale structures of the elec-
trochemical interfaces correlate with the electrochemical per-
formance remains elusive. In this review, we highlight some of 
the latest advancements in developing and applying in-situ TEM 
techniques for the interfacial nanostructures, including atomic-
scale structural imaging, electron energy-loss spectral imaging, 
strain field mapping, electron holography, and state-of-the-art 
electron microscopy instrumentation. These cutting-edge tech-
niques allow for the visualization of atomic-structural changes, 
ionic valence state transitions, strain mapping, ion transport 
dynamics, and the evolution of locally polarized electric fields, 
offering deep insights into the atomic-scale and nanoscale mech-
anisms. Built upon our understanding of some of the challenging 
issues and new approaches in lithium batteries through charac-
terizations using TEM and other techniques [37–40, 61–72], 
and the influence of the electron beam in in-situ TEM observa-
tions [46, 73, 74], this review will also discuss key challenges, 
current solutions, and future directions in the development and 
applications of in-situ TEM techniques for probing interfacial 
structures and mechanisms in various electrochemical energy 
storage systems.

2  Use of In‑Situ TEM in Electrochemical 
Energy Storage Systems

In-situ TEM observation techniques offer unique insights 
into the electrochemical processes and reaction mechanisms 
of rechargeable battery materials. The TEM holders are 
indispensable components for in-situ experiments. To date, 
various types of in-situ TEM holders have been designed 
and manufactured to meet different requirements. Special-
ized in-situ TEM holders are used to create a miniature 

electrochemical cell that fits inside the TEM chamber. As 
shown in Fig. 1, the in-situ TEM holders can be catego-
rized into the following three types: probe-type in-situ TEM 
holder [75], liquid in-situ TEM holder [76], and chip-based 
in-situ TEM holder [85].

Probe-type in-situ battery technology was specifically 
developed to observe the morphology and structural evolu-
tion of nanoscale electrode materials in various atmospheric 
environments. Three types of open in-situ batteries can be 
assembled on the probe-type in-situ TEM holder, namely 
ionic liquid probe-type in-situ batteries, all solid probe-type 
in-situ batteries, and thin-film in-situ batteries. As illustrated 
in Fig. 2a, the construction of in-situ battery with an ionic 
liquid probe is primarily composed of two key parts: the 
anode and the cathode materials. These two parts are fixed at 
the sharp end of a metal rod coated with conductive organic 
substances. By introducing a certain amount of electrolyte 
onto the electrode surfaces, the assembly of the in-situ bat-
tery simulates the configuration environment of an actual 
battery [54]. In this type of in-situ batteries, Li metal acts 
as the anode where a  Li2O layer can be formed by the sur-
face oxidation. The surface oxidation of the Li metal results 
in the formation of a solid electrolyte layer of  Li2O [77]. 
Subsequently, by moving the probe, a contact is established 
between the electrode material and the  Li2O solid electro-
lyte, thereby constructing a simple type of solid-state bat-
tery (Fig. 2b) [78]. To investigate the growth mechanism 
and mechanical properties of lithium dendrites, Zhang and 
coworkers made innovative improvements to the traditional 
probe-type in-situ configuration (Fig. 2c) [80]. By replacing 
the conventional metal rod current collector with an atomic 
force microscope (AFM) probe, real-time stress transmis-
sion was realized. Unlike probe-type in-situ batteries, probe-
type thin-film in-situ batteries require the use of focused ion 
beam (FIB) for mid-assembly. By employing FIB technol-
ogy for precise processing, the thickness of thin-film bat-
teries can be controlled to less than 100 nm. This operation 
significantly facilitates the efficient acquisition of electronic 
structure information of electrode materials through elec-
tron energy loss spectroscopy (EELS) and electron holog-
raphy techniques (Fig. 2d) [81]. With the advancement of 
environmental transmission electron microscopy (ETEM) 
technology, it has become feasible to observe chemical reac-
tion processes at solid–gas interfaces of metal-air batteries 
(Fig. 2e, f) [82, 83].
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With the liquid in-situ TEM holder, high-resolution TEM 
maps can be obtained for the battery materials in a liquid 
environment, facilitating the study of chemical reactions, 
nanoparticle growth, and electrochemical reactions. For 
example, Zeng et al. [84] employed such a liquid electro-
chemical in-situ TEM setup for real-time observation of the 
formation and growth of solid electrolyte interphase (SEI) 
and lithium dendrites (Fig. 2g). This configuration allows for 
simulating the electrochemical reaction environment close 
to actual operating conditions.

Unlike the other two types of sample holders, experiments 
based on chip-in-situ TEM holders rely on FIB technology to 
assemble all-solid-state batteries (Fig. 2h) [85]. Therefore, 
various combinations of electrode materials and solid-state 
electrolytes can be implemented on this type of in-situ TEM 
holders. Additionally, chip-based in-situ TEM holders can be 
employed to investigate the electrochemical reaction mecha-
nisms of solid-state batteries at different temperatures, which 

is not available for the other two types of sample holders. In 
general, the chip-based in-situ TEM holders are primarily 
used to study electrochemical reaction processes inside all-
solid-state batteries. The reaction processes involve struc-
tural changes at the electrode/electrolyte interface during 
charge/discharge cycles, the migration dynamics of ions, and 
charge transfer at the electrode–electrolyte interface. With 
FIB technology, the thickness of the viewing area of all-
solid-state batteries can be reduced to less than 100 nm, ena-
bling high-resolution atomic-level imaging in STEM mode. 
In 2022, Liang et al. attempted to use in-situ TEM to observe 
the real-time diffusion of sodium ions within the anode lat-
tice of thin-film in-situ batteries (Fig. 2i) [67]. However, due 
to limited ability to adjust the crystal orientation, only the 
electrochemical reaction front was observed. The reactions 
and degradation mechanisms of various anode or cathode 
materials, as well as electrolytes within rechargeable bat-
teries have been monitored and observed in real time using 

Fig. 1  a Schematic of the probe-type in-situ TEM holder.  Reproduced with permission from Ref. [75]. Copyright 2023, Elsevier. b Schematic 
example of a liquid in-situ TEM holder. (i) The internal structure of the holder. (ii) An in-situ electrochemical liquid cell placed in the TEM opti-
cal path, and (iii) an electrochemical microchip with electrodes: counter (CE), working (WE), and reference electrode (RE). Reproduced with 
permission from Ref. [76]. Copyright 2022, OAE Publishing Inc. c Top: Schematic of the chip-based in-situ TEM holder; bottom: SEM image 
of the chip. d The process of assembling solid-state batteries using FIB technology. Reproduced with permission from Ref. [85]. Copyright 
2017, American Chemical Society
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the in-situ open-cell TEM technology, which has significant 
advantages in studying the structural/chemical evolution of 
battery materials during cycling. This method provides valu-
able insights into the microscopic behavior of the battery 
materials under operating conditions, which calls for fur-
ther visualization of the detailed interfacial nanostructural 
evolution.

3  In‑Situ Visualization of Nanostructural 
Evolution

3.1  Morphological and Nanostructural Evolution 
of Electrode Materials

During the electrochemical reaction, the electrode materials 
of Li/Na/K-ion batteries (i.e., LIBs/NIBs/KIBs) inevitably 

Fig. 2  Examples demonstrating the utilization of in-situ TEM in electrochemical open cells. a Probe-type electrochemical open cell with ionic 
liquid electrolyte. Reproduced with permission [54], Copyright 2010, American Association for the Advancement of Science. b Probe-type 
solid-state battery. Reproduced with permission [78, 79], Copyright 2011, American Chemical Society; Copyright 2012, American Chemi-
cal Society. c AFM-based open cell. Reproduced with permission [80], Copyright 2020, Springer Nature. d Probe-type thin-film cell. Repro-
duced with permission [81], Copyright 2016, American Chemical Society. e Probe-type Li-air batteries cell for in-situ environmental TEM 
observation. Reproduced with permission [82], Copyright 2017, Springer Nature. f Probe-type Na-air batteries cell for in-situ environmental 
TEM observation. Reproduced with permission [83], Copyright 2020, American Chemical Society. g Example of an electrochemical liquid cell. 
Reproduced with permission [84], Copyright 2014, American Chemical Society. h All solid-state open cell. Reproduced with permission [85], 
Copyright 2017, American Chemical Society. i In-situ TEM for real-time diffusion process of sodium ions. Reproduced with permission [67], 
Copyright 2022, Wiley
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undergo phase transitions or unit-cell volume changes. This 
electrochemically driven structural evolution leads to large 
morphological changes in the electrodes, limiting the revers-
ible capacity and cycle lifetime of batteries [86–88]. To 
comprehensively understand this invalidation mechanism, 
in-situ TEM has been widely employed to record the electro-
chemically driven structural and morphological evolutions 
of electrode materials. For conversion-type and alloy-type 
electrode materials, the volumetric expansion caused by 
electrochemical insertion is considered as the primary factor 
leading to the decline in electrochemical capacity. Reducing 
the particle size of electrode materials effectively mitigates 
the capacity decay caused by dimensional changes. To study 
this enhanced mechanism, Huang et al. directly observed the 
lithiation process of  SnO2 nanowire anode in a nanoscale 
battery of  LiCoO2||liquid–based electrolyte||SnO2 nanowire 
using TEM (Fig. 3a) [54]. During charging, the lithiation 
reaction initiates at a single point along the  SnO2 nanow-
ires and gradually extends along its direction, leading to the 
expansion, elongation, and bending of the nanowires. Due 
to the faster lithiation rate on the surface of nanowires, the 
external expansion of the nanowires exceeds the internal 
expansion, causing the nanowires to bend.  SnO2 nanowires 
maintain structural integrity by bending to accommodate 
volume expansion, thereby enhancing cycling stability of 
the battery.

During lithiation, silicon nanoparticles undergo significant 
volumetric expansion (~ 300%), which results in the genera-
tion of substantial internal stress within the particles [89]. 
In-situ TEM observations reveal that when the particle size 
is relatively large, the distribution of this stress within the 
particle is uneven, particularly between the surface and core 
of the particle. This uneven stress distribution causes the sur-
face layer to experience hoop tension, thereby promoting the 
formation and propagation of cracks. However, silicon nano-
particles smaller than the critical size (~ 150 nm) do not frac-
ture during first lithiation, whereas the larger particles initially 
form surface cracks and then fracture due to lithiation-induced 
swelling  (Fig. 3b) [90].

Unlike alloy-type electrode materials, conversion-type 
materials undergo irreversible phase transformation in the 
first cycle, leading to changes in the composition and/or 
structure of the electrodes. As shown in Fig. 3c, the potas-
siation process of  Sb2S3@Carbon nanowires was recorded 
via in-situ TEM [91]. During potassiation, the volume of 
the nanowires gradually expanded, which was accompanied 

by the production of a significant amount of Sb nanoparti-
cles. Based on the in-situ TEM observation, DFT calcula-
tion was performed, revealing multiple reaction pathways 
of the nanowires. Besides, three distinct reaction types 
were observed: intercalation  (Sb2S3 →  KxSb2S3), conver-
sion  (KxSb2S3 →  KxS + Sb), and alloying  (KxS + Sb → 
 K2S +  K3Sb2). In conversion stage, accompanied by the 
generation of Sb nanoparticles and  KxS, the nanowires 
underwent significant volumetric expansion. The  KxS acted 
as an electrolyte to transport K-ions, facilitating further 
alloy evolution of Sb nanoparticles, which led to the further 
expansion of nanowires. Benefit from this reaction mecha-
nism, conversion-typed electrode materials are widely used 
as cathode of Li/Na/K–O2 batteries. For instance, Han and 
coworkers employed CuS nanowires as the cathode material 
for Na–O2 batteries and tracked the reversible oxygen reduc-
tion reaction (ORR) and oxygen evolution reaction (OER) 
behaviors of CuS nanowires using ETEM (Fig. 3d) [83]. 
The CuS nanowires were converted into Cu nanoparticles 
and  NaxS in the sodiation process. Under the oxygen atmos-
phere, the  NaxS was transformed into  Na2O2 porous spheres 
in ORR process, which was evenly distributed on the nanow-
ires surface. In subsequent OER, the formed  Na2O2 porous 
spheres were transformed into  NaO2, which decomposed 
into  Na+ with  O2 release. This study revealed the structural 
changes associated with the electrochemical processes at the 
electrode/electrolyte interfaces, which constitutes the basis 
for further visualization of the interfacial chemical species.

3.2  Visualization of the Formation of Lithium 
Dendrites and SEI Films

The morphological and structural evolution induced by den-
drite growth and the formation of SEI at the electrode–elec-
trolyte interface are closely related to the cyclic stability of 
LIBs [92, 93]. The growth of lithium dendrites can lead to 
short circuits in batteries, resulting in serious safety issues 
and poor stability. The continuous growth of the SEI films 
after cycling results in significant overpotentials on the 
anode materials (Si, graphite, Li metal, etc.), thereby short-
ening battery lifespan [94]. Addressing these issues requires 
a comprehensive understanding of the growth mechanisms 
of both lithium dendrites and SEI films. But both are highly 
sensitive to water and oxygen in the air, ex-situ charac-
terization is far from sufficient. Therefore, in-situ TEM 
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technologies have been developed to capture these unstable 
intermediates in real time.

As the ultimate anode material for future LIBs, lithium 
metal faces uncontrollable Li dendrites growth, which limits 
the progress of Li metal-based LIBs [94, 95]. Zhang et al. 

investigated the growth process and stress characteristics 
of lithium whiskers through combined experiments using 
in-situ AFM and ETEM (Fig. 4a) [80]. It was found that 
under the applied electric potential, lithium dendrites grew 
between the tip and the Li metal, generating stress as high 

Fig. 3  Morphological and nanostructural evolution. a Nanostructural evolution of a  SnO2 nanowire anode during lithiation. Reproduced with 
permission [54], Copyright 2010, American Association for the Advancement of Science. b Diagram of stress-induced silicon nanoparticle 
fracture. Reproduced with permission [90], Copyright 2012, American Chemical Society. c Investigation of electrochemical reaction by combin-
ing the in-situ TEM and DFT calculation. (i) In-situ visualization of the morphological evolution of a  Sb2S3@Carbon nanowire during cycling. 
(ii-iii) Scheme (ii) and TEM image (iii) show the growth and phase evolution of rocket-launching-like NP during potassiation process. (iv) Phase 
diagram of K-Sb-S calculated by DFT. (v) Comparison of the voltage curve calculated (Simu.) using the intermediate phase with the experimen-
tal curve (Expr.). Reproduced with permission [91], Copyright 2020, Wiley. d In-situ TEM observation of sodiated CuS nanowire during ORR 
(left) and OER process (right). Reproduced with permission [83], Copyright 2020, American Chemical Society
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as 130 MPa (Fig. 4b). Additionally, the study measured the 
yield strength of lithium dendrites under mechanical load-
ing, which reached 244 MPa (Fig. 4c). These results provide 
quantitative indicators for designing strategies to constrain 
the growth of lithium dendrites. Gao et al. revealed the 
growth and evolution of lithium dendrites at the interface 
of solid electrolyte  Li7La3Zr2O12 (LLZO) through in-situ 
TEM [96]. Under the condition where the current collector 
(Cu probe) was fixed by external force, the rapid growth of 
lithium dendrites created a huge stress at the contact region, 
leading to the formation of cracks in the solid electrolyte 
(Fig. 4d-i). The dendrites then grew along these cracks, 
resulting in the transgranular fracture of the entire LLZO 
particle, ultimately causing the failure of solid electrolyte 
and short-circuit of battery. The use of a host with rapid 
lithium storage capability (as a buffer layer between the cur-
rent collector and the solid electrolyte) facilitates uniform 
lithium deposition, prevents damage to the solid electrolyte 
caused by lithium deposition, enabling rapid charging of 
solid-state batteries. In-situ TEM observations reveal that 
the Li metal rapidly fills the cavities of amorphous carbon 
nanotube by  Li+ diffusion along the carbon shells with a 
large current density (Fig. 4j, k) [96]. This implies that at 
room temperature, the Li transport via  Li+ diffusion along 
the carbon-based host is more effective than the Li creep, 
thereby preventing damage to the solid electrolyte surface.

The formation of SEI films is essential for enhancing the 
performance of energy storage devices. To observe the solid 
electrolyte layer growing in real electrochemical reactions, 
Zeng et al. developed an electrochemical liquid cell for in-
situ TEM observation (Fig. 5a) [84]. Benefiting from this 
advanced technology, the dynamic lithiation of Au electrodes 
in commercial  LiPF6/EC/DEC electrolyte was captured, 
including Li metal dendritic growth, electrolyte decomposi-
tion, as well as SEI formation. During the initial lithiation 
stage, electrolyte decomposition generated bubbles on the 
electrode surface, indicating that the solid electrolyte inter-
phase is beginning to form (Fig. 5b). When the SEI thick-
ness reached about 200 nm, the SEI growth rate significantly 
slowed down and lithium dendrites began to appear on the SEI 
surface. In the subsequent lithiation process, lithium dendrites 
were transformed into dead lithium and adhered to the sur-
face of the membrane due to dissolution. Benefiting from the 
development of graphene liquid cell, the detailed formation 
process of the SEI on  SnO2 nanotubes was observed through 
in-situ TEM. This process involved the simultaneous decom-
position, deposition, and stabilization of the electrolyte during 
lithiation (Fig. 5c) [97]. During the initial formation stage, 
the reduction products of the electrolyte deposited to form a 
thin interfacial layer under electron beam irradiation. At the 
deposition stage, the decomposed electrolyte aggregated and 
deposited into the SEI layer, resulting in uneven thickness of 

Fig. 4  In-situ visualization of the formation of interfacial chemical species. a Scheme of an in-situ AFM–ETEM device for observing and meas-
uring Li whisker growth. b, c Plots of the maximum stress (σm, b) and yield stress (c) of Li whiskers in different growth directions as a function 
of the equivalent diameter. Reproduced with permission [80], Copyright 2020, Springer Nature. d‑g In-situ TEM images of a LLZO particle rup-
tured by Li eruption at the interface. h, i Li bursts puncture and short-circuits one LLZO particle that is in close contact with adjacent particles. 
j In-situ TEM image of rapid Li plating in amorphous carbon nanotubes (a-CNT). The leading edge of lithium growth is marked with a yellow 
arrow. k Scheme of a-CNT wall serves as the host of Li. Reproduced with permission [96], Copyright 2022, Springer Nature
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the SEI layer. Meanwhile, the decomposed electrolyte depos-
ited on the  SnO2 nanotubes at different times, concurrently 
with the stabilization process of the SEI layer.

One of the significant observations is the gradual stabiliza-
tion of the SEI layer, forming an increasingly uniform struc-
ture at the interface. This stage primarily involves reducing 
excess interfacial energy to decrease the thickness of the SEI 
layer. This finding is clearly benefited from advanced in-situ 
TEM techniques, allowing visualization of the microscale 
growth processes of lithium dendrites and SEI films. While 
it provides a scientific basis for the development of strate-
gies to address interfacial degradation behavior, an in-depth 
understanding of the interfacial mechanistic details in terms 
of electronic structures and chemical composition is needed, 
especially by utilization of some other related techniques 
with both structural and composition sensitivities. In fact, 
lithium dendrites and SEI layer are extremely unstable under 
the electron beam. Their formation can be observed using in-
situ TEM in the low-resolution mode by reducing the beam 
radiation dose. To overcome the challenge, cryo-TEM tech-
nique was developed to investigate the formation and lattice 
structure of lithium dendrites and SEI [98–100]. For example, 
lithium dendrites in carbonate-based electrolytes were found 

to grow as single-crystal nanowires along the < 111 > (pre-
ferred), < 110 > , or < 211 > directions (Fig. 6a-d) [100]. In 
addition, the information on composition and structure of SEI 
layer in different electrolyte were obtained. In the widely used 
carbonate-based electrolyte, SEI layer exhibits a non-uniform 
distribution of organic and inorganic components, showing 
particles of lithium oxide and lithium carbonate dispersed 
within an amorphous matrix (Fig. 6e-g). In contrast, the SEI 
formed in a carbonate-based electrolyte containing a certain 
amount of fluoroethylene carbonate (FEC) is more ordered 
and resembles a multilayer (Fig. 6h-i). The inner layer is pri-
marily amorphous, while the outer one consists of large grains 
of lithium oxide with distinct lattice fringes.

4  Use of EELS for Characterization 
of Interfacial Mechanisms

4.1  Capabilities of EELS Characterization

A thorough comprehension of the changes in the chemical 
composition of electrode materials as they undergo elec-
trochemical reactions is essential to grasp the fundamental 

Fig. 5  a Scheme of an electrochemical liquid cell. b In-situ TEM images of electrochemical reaction show the growth of a SEI film. Repro-
duced with permission [84], Copyright 2014, American Chemical Society. c Morphological observation of  SnO2 surface analyzed by TEM using 
graphene liquid cell. Reproduced with permission [97], Copyright 2016, Elsevier
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mechanisms of battery charging and discharging. To achieve 
this, various advanced characterization techniques have been 
extensively employed in the field of chemical compositional 
analysis. These techniques include, but are not limited to, 
EELS, soft and hard X-ray absorption spectroscopy (XAS), 
energy dispersive X-ray spectroscopy (EDX), and Raman 
spectroscopy [101, 102]. Each technique offers unique 
advantages for elucidating the composition changes during 
electrochemical reactions. Among them, EELS stands out 
for its unparalleled high spatial resolution at the atomic level 
[103, 104]. This superior resolution is significantly enhanced 

by the monochromators and spherical aberration correctors, 
allowing for much greater accuracy in analyzing the changes 
in chemical composition.

EELS is particularly valuable as it provides comprehen-
sive information not only on the element types, valence 
states, and concentration distributions, but also details on 
the coordination environments within specific lattice regions 
[105]. To facilitate this level of analysis, EELS instruments 
are typically coupled with TEM or its scanning counter-
part, scanning transmission electron microscopy (STEM). 
Such configurations enable the EELS to be merged with a 

Fig. 6  a–c TEM image (a) and magnified views (b, c, see color labeled) of lithium dendrite in different growth direction. Inset in (a): SAED 
pattern. d Schematic of the lithium dendrite. e HRTEM image shows the green region labeled in (a, III). The lattice spacings of small crystal-
line grains in the amorphous film match those of lithium carbonate (orange circles) and lithium oxide (red circles). f Schematic diagram of the 
embedded structure on lithium dendrites in electrolyte. g The integrated pixel intensity of lithium oxide (red) and lithium carbonate (orange) lat-
tices. Peaks and valleys correspond to atomic planes and gaps, respectively. h HRTEM image of a different SEI in FEC electrolyte. i Scheme of 
the multilayer structure on lithium dendrites. Reproduced with permission [100], Copyright 2017, American Association for the Advancement of 
Science
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wide array of multifunctional specimen holders, thereby 
empowering the technique with the capability to perform 
in-situ characterization under diverse external fields. This 
is a significant advantage as it allows for the analysis of 
chemical composition changes in real-time, without disrupt-
ing the electrochemical reaction. The advancement of in-situ 
EELS technology has proven to be a great boon to research 
on battery charging and discharging mechanisms, as it has 
significantly promoted our understanding of the complex 
variations in the chemical composition of electrodes in intri-
cate electrochemical reactions.

4.2  Characterization of the Electronic Structure

EELS provides valuable information about the electronic 
structure of a sample by measuring the electron energy loss 
during the interaction of the electron beam with sample 
[105, 106]. By analyzing the energy loss spectrum, elec-
tronic structure such as the electronic energy level struc-
ture, bandgap width, and valence state distributions of the 
sample can be inferred. In an EELS spectrum, the valence 
region represents the energy loss caused by the valence elec-
trons jumping to the conduction band, and its lowest value 
corresponds to the band gap [107–109]. For example, Liu 
et al. studied the transport properties of  Li+ in grain bounda-
ries within LLZO by conducting in-situ STEM and EELS 
(Fig. 7a-c) [109]. The grain boundaries show a reduced band 
gap in comparison with that for bulk LLZO, which induces 
the formation of lithium dendrites within the grain bounda-
ries as the flow of electrons through the grain boundaries.

Detecting changes in the valence states of elements in 
electrode materials is commonly used for electrochemical 
kinetic studies. Huang et al. demonstrated via atomic-level 
EELS that the Co doping increases the valence states of 
Mn within  Li1.2Ni0.18Mn0.58Co0.04O2, thereby inhibiting 
the  Mn3+/Mn4+ induced Jahn–Teller effect [68]. As shown 
Fig. 7d, as the amount of Co doping increases, the edge 
of Mn–L shifts toward higher energy loss positions for 
higher oxidation, which agrees with the general chemi-
cal shift rule [68, 110]. For 3d transition metal elements, 
their valence states can be quantified by analyzing their L 
edges [111, 112]. The  L3 and  L2 edges follow transitions 
of 2p3/2 → 3d3/23d5/2 and 2p1/2 → 3d3/2, respectively, while 

each intensity is associated with an unoccupied state in the 
3d bands. By calculating the  L3/L2 integrated area ratio, 
the valence states can be revealed [111–113]. In an earlier 
report, Wang et al. applied EELS to quantitatively determine 
the valence states of Mn and Co oxides by calculating the 
 L3/L2 integrated area ratio, which provided a way to meas-
ure the valence states of Co or Mn (Fig. 7e-g) [111]. How-
ever, the redox couple of  Co3+/Co4+ is difficult to detect by 
ex-situ measurements due to the unstable  Co4+ in  LiCoO2 
(LCO) cathode. Coupling EELS with in-situ TEM technol-
ogy (Fig. 7h, i), the valence changes of Co in the  LiCoO2 
cathode were tracked in real-time. The operando EELS 
results indicated that the oxide of Co changed from initial 
 Co3+ to  Co4+ (Fig. 7j, k) [81].

Benefit from high spatial resolution, EELS has been used 
to uncover the formation of oxygen vacancies and oxygen 
redox reactions in cathode materials [114]. As an exam-
ple, Yan and coworkers investigated the chemical com-
position of the degradation layer on the surface of cycled 
 Li1.2Mn0.6Ni0.2O2 using EELS. The EELS results revealed 
that the formation of oxygen vacancies led to an irrevers-
ible phase-transition from hexagonal R-3C to cubic Fd-3m 
in  Li1.2Mn0.6Ni0.2O2 cathode [115]. Zhang et al. used ex-
situ TEM and EELS to investigate the structural evolution 
of  LixCoO2 (Fig. 8a-d) [116]. As shown in Fig. 8e-g, the 
O pre-edge at 530 eV depresses is accompanied by a tran-
sition of hexagonal R-3c → cubic Fd-3m → cubic Fm-3m, 
suggesting that the oxygen loss induces structural degrada-
tion of  LixCoO2. In combination with ETEM, the oxygen 
reduction mechanism in Na–O2 batteries was investigated 
by in-situ EELS [117]. According to the in-situ results, the 
 NaO2 intermediates on the Au-coated MnO nanowires were 
decomposed into  Na2O2 and  O2 during the oxygen reduction 
process, which resulted a decrease of O pre-edge (Fig. 6h-k).

It is evident that the combination of in-situ TEM and 
EELS techniques enables real-time monitoring of the evo-
lution of both nanostructural and chemical composition of 
electrode materials during electrochemical reactions. This 
provides crucial scientific evidence for in-depth understand-
ing of the electrochemical reaction mechanisms, which calls 
for further determination of the dynamic processes at the 
interfaces.
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4.3  Characterization of Interfacial Dynamic Ion 
Transportation

For LIBs, the  Li+ ions inside electrodes are difficult to 
directly observe by X-ray-based technologies, such as XPS, 
XAS, and EDS because of the low energy region of Li 
(~ 60 eV). EELS is highly sensitive to light elements (H, 
He, Li, and B, etc.) as the outer electrons of light elements 
with low binding energy are more easily to be excited by 
low-energy incident electrons, resulting in more pronounced 
energy loss signals [118]. Therefore, operando STEM/TEM 

combined with EELS has been widely used to investigate the 
dynamical behaviors of  Li+ ion transport within operating 
LIBs batteries [119].

By integrating the intensity of the first peak in the Li–K 
edge spectra, Nomura et al. mapped the  Li+ ion transport 
in electrochemical solid-state  LiCoO2||LiPON||Li battery 
(Fig. 9a-b) [120]. The dynamic images of Li concentration 
and Co  L3/L2 in  LiCoO2 single-crystal particles at differ-
ent charge states showed that the grain boundaries between 
nanocrystals have a significant impact on the lithium-ion 
transport, that is, lithium ions were preferentially transported 

Fig. 7  a HRTEM imaging and analysis of GB (grain boundary) of pristine LLZO. b Line-scan EELS of GB. c Bandgap measurements. Repro-
duced with permission [109], Copyright 2021, Springer Nature. d EELS patterns of specimens  Li1.2Ni0.2Mn0.6O2 (i),  Li1.2Ni0.19Mn0.59Co0.02O2 
(ii),  Li1.2Ni0.18Mn0.58Co0.04O2 (iii), and  Li1.2Ni0.15Mn0.55Co0.1O2 (iv). Reproduced with permission [68], Copyright 2014, Royal Society of Chem-
istry. e An EELS spectra acquired from a Co oxide, showing the technique used to extract the intensities of white lines. f Plots of Mn  L3/L2 and 
the chemical composition of  nO/nMn based on EELS spectra. g A comparison of EELS spectra of Co–L2,3 ionization edges. Reproduced with 
permission [111], Copyright 2000, Elsevier. h‑j STEM image and EELS characterization: (h) High-angle annular dark field (HAADF) image of 
the nanobattery stack along with Li K-edge concentration mapping. i‑j Li K-edge (i) and O K-edge (j) spectra from the disordered/ordered LCO. 
k Ratio analysis. Reproduced with permission [81], Copyright 2016, American Chemical Society
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between particles with consistent lattice orientation. By opti-
mizing the orientation relationship of nanocrystals, reducing 
lattice mismatch, and improving the tightness of nanocrys-
tal interfaces, the high-rate capability of solid-state LIBs 
can be effectively improved. It is important to note that the 
SEI is a key component in LIBs, while revealing the evo-
lution of its chemical composition under high electronic 
radiation remains a challenge. High collection efficiency, 
EELS is considered capable of operating at low doses to 
minimize beam damage [105]. In the study by Lodico et al. 
using STEM and EELS technology to track the charging 
and discharging process of electrochemical fluid LIBs, the 
growth and changes of SEI were observed (Fig. 9c, d) [121]. 
The EELS mapping showed that the SEI layer was mainly 
composed of various lithium compounds (Fig. 9d), includ-
ing lithium, lithium hydride, lithium oxide, lithium carbon-
ate, lithium hydroxide, etc. By using cryogenic transmission 
electron microscopy (cryo STEM) and EELS techniques, 
Zachman el al. analyzed the structure and chemical com-
position of the solid–liquid interface and dendritic struc-
ture in lithium metal batteries (Fig. 9e, f) [122]. The results 

indicated that there were extended solid–liquid interface 
layers and LiH dendritic structures on the anode of lithium 
metal batteries, while carbonate structures existed in some 
lithium fluoride electrolytes. In addition, researchers have 
found that the introduction of fluorinated electrolytes can 
effectively suppress the formation of LiH dendritic struc-
tures and improve the performance of batteries.

The coordination environment of Li in the lattice can be 
reflected by Li–K edge. The pre-edge of the latter is highly 
sensitive to the local coordination of lithium, reflecting the 
Li occupancy and coordination of lithium [123]. Based 
on it, Zhang et al. built an ionic liquid electrolyte LIB cell 
for operation inside a TEM, enabling operando EELS to 
probe the Li occupancy and transport in  Li4Ti5O12 during 
electrochemical cycling (Fig. 9g-j) [124]. The Li K-edge of 
 Li4Ti5O12 composed a broad peak in the post-edge region 
(~ 58.9 eV), which mainly came from the inelastic scatter-
ing of Li at 8a sites. In the discharge process, a new pre-
peak appeared in the post-edge region (~ 58.0 eV), imply-
ing distortion of the Li–O bond. Besides, DFT calculations 
showed that the Li–O bonds in the  LiO6 octahedron at 16c 

Fig. 8  STEM and EELS in in-situ imaging of interfacial structure evolution. a‑d HAADF images show the evolution of nanovoids and the for-
mation of spinel structures during extended cycling. e STEM-HAADF intensity distribution of particles with different cycling times. f, g EELS 
results of O-K edge obtained from the sub-surface and surface. Reproduced with permission [116], Copyright 2023, Elsevier. h In-situ imaging 
the structure evolution of the  NaO2 discharge product during ORR. i Charge process of the Au/MnO2 NW during OER. j Low-loss spectra. The 
major plasmon peak shifts from the pristine Au/MnO2 NW (red) to the  NaO2 layered on Au/MnO2 nanowires (blue), to  NaO2 (green). k Core-
loss spectra. Au/MnO2 (red) shows the presence of Mn and O, while the discharge products (blue) reveal the presence of Na in addition to Mn 
and O, as well as weak O–K and Na–K edges. Reproduced with permission [117], Copyright 2019, Elsevier
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site is elongated when  Li4Ti5O12 is lithiated to  Li5TiO12. 
This process weakens the Li–O bond and lowers the  energy 
state of the anti-bond Li–O, resulting in pre-peak splitting. 
The findings demonstrate that the  Li+ ions in the  Li4Ti5O12 
migrate from their initial tetrahedral 8a sites to the octahe-
dral 16c sites, which contributes to the fast-charging behav-
ior (Fig. 9k-m).

The understanding of the dynamic ion transportation 
clearly benefited from coupling EELS’ capability, espe-
cially in detecting light elements and Li-ions inside operat-
ing LIBs. This provides an important insight into the general 

mechanistic processes in ion transport, but the detection of 
the mechanistic details would benefit from improved image 
resolution in the in-situ studies.

5  Electron Holography for Detection 
of Dynamic Ion Transport

Recently, many studies have shown that electron holography, 
a powerful imaging technique used in electron microscopy, 
enables the visualization of phase information in electron 

Fig. 9  ADF-STEM and EELS in-situ imaging of SEI. a Annular dark-field STEM (ADF-STEM) image of electrochemically active region of 
thin-film solid-state cell. b Li-concentration maps of  LixNi0.8Co0.15Al0.05O2 polycrystalline particles at different charge and discharge states. 
Reproduced with permission [120], Copyright 2020 American Chemical Society. c EELS map decomposed by multiple linear least-square 
(MLLS). d Corresponding grayscale EELS-MLLS images showing the individual components of (c). Reproduced with permission [121], Copy-
right 2023, American Association for the Advancement of Science. e, f Structure and elemental composition analyzed by cryo-electron TEM. 
Reproduced with permission [122], Copyright 2018, Springer Nature. g An electrochemical cell based on ionic liquid electrolytes. h‑j TEM 
image (h), corresponding EELS spectra (i), and intensity map of Li-EELS spectra (j) for  Li4Ti5O12 nanoparticles. The vertical dashed black lines 
indicate the energy positions of the main peaks at ~61.5 eV and pre-peaks M (related to metastable configurations of the intermediate composi-
tions) and S (related to stable configurations in  Li4Ti5O12 and  Li7Ti5O12). k, l Calculated Li-EELS spectra of  Li4+xTi5O12 at Li 8a (k) and 16c (l) 
sites. m Isosurface plot of partial charge density associated with face-sharing Li(16c) in  Li5Ti5O12 in two energy ranges. Reproduced with per-
mission [124], Copyright 2020, American Association for the Advancement of Science
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waves, providing insights into electromagnetic fields, poten-
tial distributions, and material properties at the nanoscale 
[125–129]. The evolution of electric fields and potentials 
in complex electrochemical reactions is usually induced by 
ionic migration and charge exchange [130]. Visualization of 
electric potential distributions would help analyze electro-
chemical reactions during cycling and inform the develop-
ment of safer, cheaper, and more efficient batteries.

For electrode materials based on insertion chemis-
try, crystal defects significantly impact their intrinsic ion 
transport and storage properties. Although crystal defects 
can be observed or detected by HAADF imaging or other 
measurement methods such as XRD and AFM, it remains 
challenging to explain the mechanism by which defects 
affect ion transport and storage [131]. In recent decades, 
electronic holography has been conducted for revealing 
the microstructure of electrode materials, including crystal 
defects, phase separation, and particle interface [132]. For 
instance, by using electronic holography, Li et al. success-
fully visualized the charge distribution and space charge 
layer on the surface of carbon-coated CoO hollow micro-
spheres (Fig. 10a-c) [69]. Oxygen vacancies on the surface 
of nanoparticles caused the redistribution of surface charge 
(Fig. 10c), resulting in the formation of a space charge layer 
that accelerated the Li-ion mobility. Similarly, Liang et al. 
unveiled the surface-dependent sodium storage behavior in 
the cation-defected perovskite oxide  Ce0.333NbO3 using elec-
tronic holography (Fig. 10d-f) [67]. The presence of cationic 
defect on the surface of CNO particles caused an accumula-
tion of negative charges, which enhanced the adsorption of 
Na-ions on surface, thereby providing additional Na storage 
capacity.

It is widely recognized that the cathode/electrolyte inter-
face contributes to high  Li+-ion transmission impedance, 
which results in poor rate performance and capacity degra-
dation of all-solid-state LIBs [133]. To visualize such inter-
facial resistance, in-situ electronic holography has been used 
for recording the evolution of electric fields and potentials 
at the cathode/electrolyte interface during electrochemical 
reactions. For instance, the potential distribution induced 
by lithium-ion diffusion at the interface of electrode–elec-
trolyte in all-solid-state LCO/Li1+x+yAlyTi2−ySixP3−xO12/Pt 
battery was directly observed through electronic holography 
(Fig. 10g) [134]. The electronic holography results demon-
strated that during the charging process, the potential at the 
positive electrode gradually increased, while the potential in 

regions distant from the electrolyte/positive electrode inter-
face remained nearly unchanged. This finding indicates that 
the resistance is predominantly localized near the electro-
lyte/electrode interface, especially within a region approxi-
mately one to two nanometers away from the electrolyte/
electrode interface.

Additionally, Yang et al. tracked the degradation behav-
ior at the   LiCoO2/LiPON interface in an all-solid-state 
 LiCoO2/LiPON/Pt battery via in-situ electron holography 
coupled with in-situ TEM observation (Fig. 11a) [71]. Dur-
ing charging, the  LiCoO2 near the  LiCoO2/LiPON inter-
face was corroded by LiPON, forming a degradation layer 
of 100 ~ 300 nm composed of a nanocrystalline layer and 
a transition layer. Electron holography results showed Li-
ion accumulation at the interface boundary between the 
nanocrystalline layer and the transition layer (Fig. 11b). 
Moreover, in-situ TEM revealed that the nanocrystalline 
layer contained many voids, which gradually increased 
with prolonged charging time, leading to an insufficient Li-
ion diffusion coefficient. The formation of voids within the 
nanocrystalline layer compromised structural stability and 
further elevated the Li-ion transfer impedance (Fig. 11c). 
Likewise, using in-situ electron holography, Yang et al. 
examined the migration of Li-ions along grain boundaries 
of  Cu2Nb34O87 anode in real time (Fig. 11d-f) [72]. Dur-
ing lithiation, positively charged lithium ions preferentially 
propagated along grain boundaries, leading to an accumu-
lation of positive charges at grain boundaries (Fig. 11d). 
Notably, once the lithium ions reached a critical concen-
tration, they diffused into the surrounding lattice, visually 
elucidating the role of grain boundaries in enhancing lithium 
ions transport kinetics.

In one example employing in-situ TEM and electron 
holography, Gan et al. directly mapped the charge distribu-
tion during the lithiation of Ge nanowires [135]. They noted 
that during lithiation, the average internal potential within 
the Ge core remained lower than its theoretical value, attrib-
uted to the accumulation of trapped charges at the Ge core 
surface (Fig. 12a-i). These findings provide a direct pathway 
for observing the dynamic variations in charge distribution 
and establish novel pathways for studying electrode kinet-
ics during battery charging and discharging processes. In 
another report using in-situ electron holography coupled 
with EELS, Wen et al. determined the phase transition of 
lithium ions in  Li4Ti5O12 particles, revealing unique phase 
transition characteristics and charge storage mechanisms 
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in  Li4Ti5O12 materials (Fig. 12j-m) [136]. During lithi-
ation, the  Li4Ti5O12 phase gradually transformed into the 
 Li7Ti5O12 phase, and a  Li4Ti5O12/Li7Ti5O12 interface was 
formed inside the particle, which captured nearby electrons 
to generate a space charge layer. The resultant conductive 
 Li7Ti5O12 phase on the surface of particles facilitated ultra-
fast discharge capabilities. In addition, the built-in space 
charge layer at  Li4Ti5O12/Li7Ti5O12 interfacial reduced the 
overpotential, thereby enhancing the lithium-ion conduction 
across the interface. Both the distinctive features of phase 
transformation in the two-phase  Li4Ti5O12 system contribute 
to the natural ultrafast discharge capability.

One of the most unique aspects of electronic holographic 
imaging technology lies in its ability to visualize field distri-
bution within electrode materials. The further integration of 
electron holography with in-situ TEM technology enables real-
time characterization of ion transport and phase transformation 
during electrochemical reactions. This characterization can be 

further enhanced by analyzing the geometric phase features to 
gain profound insights into the nanostructure strain properties.

6  Imaging Strain Fields Inside Electrode 
Materials by GPA Technique

6.1  Strain Mapping of the Electrode Interfaces

Understanding the stress evolution in electrode materials 
during charging-discharging is of great significance to 
improve their performance. Rechargeable secondary bat-
teries (Li/Na/K/Zn ions, etc.) based on insertion chemis-
try frequently suffer from anisotropic lattice strains and 
stresses generated during the insertion and extraction of 
Li/Na/K ions, which results in crystal structure fatigue 
including crack formation, oxygen loss, and irrevers-
ible phase transitions [137]. For LIBs, during the elec-
trochemical insertion and extraction process, the strain 

Fig. 10  Electron holography imaging of electrode/electrolyte interfaces. a‑c The electron holography image (a), charge density map (b), and 
dielectric polarization field (c) of Mn/Ni co-doped CoO/C hollow microspheres (CMNC-10h, the hydrothermal time was set at 10 h). Repro-
duced with permission [69], Copyright 2019, American Chemical Society. d‑f The electron holography (d), the corresponding charge density 
map (e), and the averaged charge density profiles (f, from the black rectangular) of  Ce1/3NbO3 surface. Reproduced with permission [67], Copy-
right 2022, Wiley. g 2D images (left) show the distribution of electric potential around the  LiCoO2/electrolyte interface during the cycling pro-
cess; right: line profiles. Reproduced with permission [134], Copyright 2010, Wiley
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mainly originates from the large lattice-parameter varia-
tions induced by the electrostatic interaction of Li–O–Li 
and O–O, as well as multiple phase transitions caused by 
the changes of  Li+ concentration [138]. On the downside, 
mismatched lattice parameters between the dominated and 
coexisting phases, or substabtial unit-cell volume varia-
tions, would creat fractured phase interfaces that severely 
cause capacity degradation [139, 140].

As an advanced method to obtain the strain field, geo-
metric phase analysis (GPA) has been widely used to detect 

microscopic strains in crystal lattices of materials and ana-
lyze the changes in lattice as well as stress distributions 
[141–147]. The fundamental principle of GPA involves 
performing a Fourier transform on high-resolution images, 
selecting two nonlinear vectors, and subsequently conduct-
ing inverse Fourier transform to obtain high-precision dis-
placement and strain fields at the microscopic measurement 
scale [148]. Recently, GPA is widely applied to inverstigate 
the strain distribution of electrode materials under various 
operational states.

Fig. 11  In-situ TEM imaging of ion transport at the interface. a TEM image shows the LiPON,  LiCoO2, and interfacial layer. b Charge density 
distribution maps of (a) during cycling. c In-situ TEM images of the solid-state battery collected during charging process. Reproduced with per-
mission [71], Copyright 2021, Wiley. d Charge distribution around grain boundary of  Cu2Nb34O87 anode. e Averaged charge density curves from 
the black rectangular area in (d). f A diagram illustration of  Li+ and electron distributions near the lattice strain region. Reproduced with permis-
sion [72], Copyright 2019, Wiley
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Currently, layered transition metal oxides are extensively 
employed as cathode materials for LIBs, NIBs, and KIBs, 
and they undergo multiple phase transitions during the del-
ithiation process. Lattice displacements synergistically yield 
the build-up of phase transitions-driven lattice strains, which 
has been demonstrated as the primary cause of structural 
fracture [149, 150]. Huang et al. utilized GPA to reveal the 
severe lattice distortions formed in the lattice of Ni-rich lay-
ered oxide  (LiNi0.83Mn0.06Co0.11O2). These lattice distortions 
intensified with the increasing delithiation depth, leading to 
the loss of oxygen and subsequent irreversible phase transi-
tion, where the initial layered structure transformed into a 
spinel structure (Fig. 13a, b) [150].

Compared with lithium ions, sodium/potassium ions with 
larger ionic radii cause more severe structural distortion and 
strain during their insertion and extraction from the host 
of the layered cathode material [151–153]. As shown in 
Fig. 13c, the insertion and extraction of sodium and potas-
sium ions significantly alter the c-spacing of layered cathode 

materials, leading to rapid degradation of the lattice struc-
ture. Such lattice strain evolution can be effectively modu-
lated through metal ion doping. For example, Cu doping 
reduced lattice distortion and strain by forming covalent 
Cu–(O–O) within the P2–Na0.8Cu0.22Li0.08Mn0.67O2 lattice 
(Fig. 13d, e) [154]. In addition, co-doping with Ti, Mg, Nb, 
and Mo in high-nickel layered materials significantly sup-
pressed the cation mixing, phase transition, and oxygen loss, 
thereby reducing lattice strain and substantially enhancing 
cyclability (Fig. 13f) [155].

As stated above, GPA has become an important means 
to study the structural strain of electrode materials. Ex-situ 
GPA enables the analysis of structural distortion and strain 
distribution in electrode materials under specific conditions. 
However, some results fail to adequately explain the impacts 
of insertion and extraction behaviors of Li/Na/K ions on 
structural distortion and strain evolution, necessitating in-
situ probing of dynamic lattice strain.

Fig. 12  Electron holography in in-situ study of interfacial phase transition. a‑i Electron Holograms (a, d, g), reconstructed phase images (b, 
e, h), and phase profiles (c, f, i, as illustrated by middle white arrows) of Ge/LixGe core/shell nanowire observed during lithiation. Reproduced 
with permission [135], Copyright 2016, American Chemical Society. j‑m Electron holography reveals the phase transition of lithium ions in 
 Li4Ti5O12 particles: phase maps of (j) pristine, (k) 80 s, (l) 130 s, and (m) 140 s captured for lithiated  Li4Ti5O12 particle after reconstruction. 
Reproduced with permission [136], Copyright 2018, Elsevier
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6.2  Analysis of Dynamic Lattice Strain

As discussed in prominent examples, electrode materials 
exhibit intermediate states during electrochemical cycling 

that are  susceptible to structural transformations induced 
by exposure to oxygen and moisture in the air. Conventional 
ex-situ characterizations prove insufficient for inverstigating 
these  metastable intermediates in electrode materials. The 

Fig. 13  In-situ TEM imaging of strain evolutions. a TEM image of  LiNi0.83Mn0.06Co0.11O2 charged to 4.1 V. b Strain state observed by 
GPA. Reproduced with permission [150] Copyright 2024, American Association for the Advancement of Science. c Lattice strain evolu-
tions. Atomic-resolution HAADF-STEM images along the [010] zone axis and the corresponding εxx strain map obtained by GPA patterns 
for the  Na[Ni2/3Ru1/3]O2. Reproduced with permission [153], Copyright 2024, Wiley. d, e The lattice distortion and strain images by GPA of 
P2–Na0.8Cu0.22Li0.08Mn0.67O2 (d) and P2–Na0.8Zn0.22Li0.08Mn0.67O2 (e). Reproduced with permission [154], Copyright 2023, American Chemi-
cal Society. f Strain state of the in-situ delithiated  LiNi0.8Mn0.13Ti0.02Mg0.02Nb0.01Mo0.02O2 (HE-LNMO) and  LiNiO2 (LNO) obtained by GPA. 
Reproduced with permission [155], Copyright 2022, Springer Nature
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development of in-situ TEM/STEM technologies has ena-
bled  observation of structural evolution in the electrode 
materials in real-time at the atomic level. Importantly, in-situ 
TEM/STEM combined with GPA has been widely used to 
analyze the influence of lattice strains in intermediate states 
of electrode materials on structural stability [156].

In practical applications, the thermal stability of electrode 
materials is critical for cycling and safety performance of bat-
teries. Nickel-rich layered electrode materials at high charge 
states have been reported to exhibit poor thermal stability, 
often leading to structural and mechanical failures, such as 
phase transition, cation mixing, oxygen loss, and cracking 
[157, 158]. An example using GPA indicates that crack prop-
agation is closely linked to the stress state at crack tips. The 
phase transformation induced by high temperatures and cation 
disordering leads to the formation of dislocations (Fig. 14a-
c) [158]. Notably, such dislocations introduce a compressive 
strain field at crack tips (Fig. 14d). This stress field suppresses 
crack propagation by counteracting the tensile stress at tips 
(Fig. 14e), which can mitigate the chemo–mechanical degra-
dation in cathode. These finding suggest that the line defects, 
commonly viewed as harmful, may be strategically used to 
enhance the operational stability of cathode materials. In an 
earlier study, GPA technique was performed to investigate the 
structural evolution of  LiCoO2 cathode after high voltage del-
ithiation, revealing the formation of coherent twin boundaries 
and anti-phase domain boundaries. This finding offers impor-
tant mechanistic insights for developing high-performance 
cathode materials in all-solid-state battery systems (Fig. 14f-
h) [85].

In certain cases, structural strain is prone to the formation 
of various defects, which significantly affect ion transport 
dynamics. By conducting in-situ investigations on the struc-
tural and stress evolution of graphite during the lithiation pro-
cess, local stresses were observed originate from the uneven 
distribution of lithium ions upon they intercalation into the 
graphite (Fig. 14i-p) [159]. These stress led to deformation 
of the graphite structure, resulting in the formation of vari-
ous defect structures, such as dislocations and microdomains. 
The presence of such defects can reduce the energy barrier 
and facilitates lithium-ion diffusion across the graphite layers, 
thereby allowing defect engineering to contribute to the reac-
tion kinetics of graphite.

These examples demonstrate that the integration of atomic-
level resolution TEM images with GPA methods allows 
for assessing the stress and strain distributions during the 

structural evolution of electrode materials. Some of the find-
ings have implications for understanding the mechanisms 
underlying structural degradation caused by stresses and 
strains. The in-situ atomic-scale assessment of mechanistic 
stress and strain may represent a significant advancement in 
understanding the dynamic structural degradation in electrode 
nanomaterials across various electrochemical storage systems.

7  Conclusion and Outlook

Taken together, significant progress has been made in the 
development and applications of in-situ TEM techniques in 
the field of electrochemical energy storage systems. These 
techniques encompass the investigations of chemical and 
structural evolution, phase transformations, stress evolu-
tion, charge distribution, and dynamic interfacial behavior. 
The in-situ approaches have demonstrated their importance 
in gaining a thorough understanding of the effects of elec-
trochemical processes on individual battery components, 
as well as in elucidating the fundamental mechanisms of 
electrochemical reactions, degradations, and failures. The 
advanced real-time information provided by these techniques 
offers invaluable insights into the underlying mechanisms of 
materials degradation, thereby guiding the optimization and 
innovation of battery materials and ultimately contributing 
to the enhancement of overall performance of the energy 
storage devices. While notable progress has been achieved in 
the development of in-situ TEM equipment and characteriza-
tion techniques, there are still many challenges, highlight-
ing the need of more in-depth fundamental understanding 
of the interfacial structures in view of the rapid develop-
ment of various new electrochemical energy storage systems 
and their potential applications in the global drive seeking 
renewable energy sources. Some of the main challenges and 
future research directions associated with in-situ TEM tech-
niques for studying the electrochemical interfacial structures 
are summarized in the following research fronts.

 (i) There are still technical challenges in applying the 
existing in-situ TEM sample holders for achieving 
high resolution in real-time observation of the lat-
tice structure evolution of electrode materials during 
electrochemical reactions. The technical difficulties 
stem from two main aspects. First, the current sample 
holders used for in-situ TEM experiments are single-
tilt holders, which are not conducive to finding the 
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Fig. 14  In-situ characterization of the dynamic lattice strains. a‑c HRTEM images of the lattice evolution of delithiated  Li1−xNiO2 during in-
situ heating. d HRTEM image shows the dislocation with Burges vectors of 1/2 [110] configurated around crack tips. e The stress state of crack 
tip determined by GPA. Reproduced with permission [158], Copyright 2021, Elsevier. f–h HAADF image of the delithiated  LiCoO2 cathode 
colored through the GPA method. The enlarged images show the yellow (f) and red (h) boxes in (g). Reproduced with permission [85], Copy-
right 2017, American Chemical Society. i‑p Inverse FFT (fast Fourier transform) patterns (i‑l) and strain maps (m‑p) of graphite with different 
lithiation states at various potentials (dis: discharge). Colors: red → yellow → white: gradual increase in tension strain; green → blue → black: 
gradual increase in compressive strain. Reproduced with permission [159], Copyright 2023, Wiley
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zone axis of the sample through rotation, thereby 
preventing the acquisition of clear lattice images. 
Therefore, advanced in-situ TEM techniques based 
on designed double-tilt holder should be developed. 
Second, atomic-resolution HAADF and annular 
bright field (ABF) images require acquisition in 
STEM mode, where the lattice structure of the mate-
rials is easily damaged by prolonged electron beam 
irradiation. Reducing the operating voltage of the 
TEM can effectively mitigate the damage of electron 
irradiation, but it may also lead to a certain degree of 
reduction in the resolution of electron images.

 (ii) There are limitations in using some of the cur-
rent open electrochemical cells in the in-situ TEM 
experiments due to ineffective battery-performance 
cycles. In many cases, the electrode material dynam-
ics cannot be uncovered during battery’s operation 
over long-term cycling. To address this, an acceler-
ated durability test could be adopted, which should 
aid elucidating the inherent fundamental science of 
structural transformation process over long-term 
cycling.

 (iii) For assessing intercalation reactions of the electrode 
nanomaterials, the determination of the transport 
pathways and mechanisms of intercalated ions within 
the host structure is rather difficult, which poses a 
major challenge for understanding the fundamen-
tal principles of the reaction. Current in-situ TEM 
techniques, when combined with EDX or EELS, 
allow the observation of electrochemical reaction 
interfaces, but have limited capabilities to capture 
the movement or transport of intercalated ions within 
the lattice. This difficulty arises partly from the 
limited resolution of current transmission electron 
microscopes for light elements, making it challeng-
ing to capture intercalated lithium and sodium ions. 
To overcome this, in-situ observation under STEM 
mode should be developed.

 (iv) While charge transfer plays an important role in elec-
trochemical energy storage, there is a lack of tech-
niques to directly characterize charge density at the 
nano or atomic scale. 4D-STEM offers high temporal 
resolution, enabling the mapping of charge density 
distribution within a sample by analyzing the phase 
changes that occur as the electron beam propagates 
through the sample. 4D-STEM combined with in-situ 
techniques can be utilized to simulate the dynamic 
evolution of interfacial charge density under cycling 
conditions.

 (v) During in-situ TEM measurements, exposure of 
samples to the electron beam may have a significant 

impact on the experimental results. High-energy 
electron beams may damage sample structures, par-
ticularly in organic materials and lithium metal, lead-
ing to bond breakage, oxidation, and structural deg-
radation. As the magnification increases, the damage 
caused by the electron beam becomes more severe. 
Therefore, a lower resolution TEM mode is typically 
employed to mitigate the electron beam effect on the 
experimental results during in-situ observation. It is 
particularly important to take appropriate preventive 
measures regarding the effects of the electron beam, 
especially in view of some nanomaterials being 
sensitive to electron beam-induced reactions [73, 
74]. Within this field, increasing imaging speed to 
reduce radiation doses and applying voltages below 
the threshold for radiation damage have proven effec-
tive in mitigating electron beam damage. However, 
the adoption of this strategy could result in a cer-
tain degree of reduction in image resolution. The 
integration of cryo-TEM technology with in-situ 
techniques offers a promising solution to electron 
irradiation issues. At extremely low temperatures, 
the damage from electron-beam can be greatly 
reduced. By combining cryo-TEM with in-situ TEM 
techniques, it is expected to obtain more meaning-
ful information on the formation of SEI layer and 
lithium dendrites at the nanoscale.

 (vi) In-situ TEM can facilitate the high-resolution imag-
ing and spectroscopic data collection, but the analy-
sis of such data is complex and time-consuming. For 
instance, hundreds of SAED and HRTEM images can 
be collected in investigating the structural evolution 
of electrode materials. However, analyzing and pro-
cessing each image may take several months. The use 
of AI-aided data analysis can effectively address this 
challenge. AI is powerful in analyzing visual data, 
such as morphological images, satellite imagery, and 
video footage. The application of machine learning 
algorithms facilitates the automatic indexing of elec-
tron diffraction patterns, alongside the classification 
of image or spectral features and the spatial mapping 
of elemental distributions. This approach greatly 
enhances the efficiency and accuracy of data inter-
pretation in electron microscopy, enabling advanced 
structural and compositional analyses.

 (vii) In-situ TEM experiments are typically conducted 
under applied potentials to study electrochemical 
reactions, but the actual overpotential that drives the 
electrochemical reactions is highly sensitive to the 
contact conditions between the electrode materials 
and the electrolyte. Consequently, it is challenging to 
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quantitatively evaluate the overpotential and its rela-
tionship to the reaction kinetics derived from in-situ 
TEM experiments. Address this issue necessitates the 
development of in-situ cells with optimized three-
electrode configuration, which allow direct measure-
ment of overpotentials in in-situ electrochemical cell.

While some advancements have been achieved in the 
development and application of in-situ TEM technology 
in the research field of electrochemical energy storage 
systems, the fundamental understanding of the interfacial 
nanostructures at atomic-scale remains challenging. Wu 
et al. has recently demonstrated the ability to gain ensem-
bled-averaged atomic insight into dynamic and oscillatory 
lattice strains of nanomaterials under fuel cell operation 
condition by in-situ high-energy XRD coupled pair distri-
bution function analysis [10], which points to the potential 
viability of atomic-scale visualization of dynamic lattice 
strains of electrode materials under battery operating 
conditions. The development of advanced combinations 
of imaging, diffraction, and spectrometry techniques in 
in-situ TEM probing of interfacial structures is promis-
ing for enabling the visualization of morphological evo-
lution, chemical composition changes, and phase trans-
formation mechanisms of electrode nanomaterials during 
electrochemical reactions. These advances will drive the 
development of advanced electrochemical energy storage 
technologies. With continuous advancement of electron 
microscopy techniques, the in-situ detection capabilities 
are anticipated to further improve nanoscale and atomic-
scale resolution and reveal new insights into fundamental 
correlation of the dynamic interfacial structures with the 
electrochemical energy storage performances in practical 
applications.
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