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HIGHLIGHTS

• This paper reviews the fundamentals and research progress of carbon-based multivariable chemical sensors, with a particular focus 
on the classification and identification of multiple analytes.

• Carbon-based multivariable chemical sensors consisting of carbon nanotubes/graphene as the sensing material and field effect transis-
tors as the transducers are discussed in detail.

• A comprehensive analysis of multivariable sensing mechanisms is presented and design criteria for carbon-based multivariable sen-
sors are summarized.

ABSTRACT Over recent decades, carbon-based chemical sensor technologies have 
advanced significantly. Nevertheless, significant opportunities persist for enhancing 
analyte recognition capabilities, particularly in complex environments. Conventional 
monovariable sensors exhibit inherent limitations, such as susceptibility to interfer-
ence from coexisting analytes, which results in response overlap. Although sensor 
arrays, through modification of multiple sensing materials, offer a potential solu-
tion for analyte recognition, their practical applications are constrained by intricate 
material modification processes. In this context, multivariable chemical sensors have 
emerged as a promising alternative, enabling the generation of multiple outputs to 
construct a comprehensive sensing space for analyte recognition, while utilizing a 
single sensing material. Among various carbon-based materials, carbon nanotubes 
(CNTs) and graphene have emerged as ideal candidates for constructing high-performance chemical sensors, owing to their well-established 
batch fabrication processes, superior electrical properties, and outstanding sensing capabilities. This review examines the progress of 
carbon-based multivariable chemical sensors, focusing on CNTs/graphene as sensing materials and field-effect transistors as transducers for 
analyte recognition. The discussion encompasses fundamental aspects of these sensors, including sensing materials, sensor architectures, 
performance metrics, pattern recognition algorithms, and multivariable sensing mechanism. Furthermore, the review highlights innovative 
multivariable extraction schemes and their practical applications when integrated with advanced pattern recognition algorithms.
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1 Introduction

In recent years, chemical sensors have been widely employed 
for environmental monitoring, industrial production, and 
medical diagnostics [1–6]. There are two major test prereq-
uisites for the practical application of sensors within com-
plex chemical environments. Firstly, the accurate measure-
ment of one component, and secondly, the classification 
and identification of multiple or all chemical components. 
In order to meet the former requirement, it is necessary for 
the sensor to demonstrate a high degree of selectivity, that is, 
to be resistant to interference from other analytes present in 
the environment. In order to satisfy the second requirement, 
the sensor must demonstrate a differentiated response to a 
range of analytes and possess the capacity to incorporate pat-
tern recognition algorithms for the identification of analyte 
species and concentrations. While gas chromatograph, mass 
spectrometer, and high-performance liquid chromatography 
are capable of fulfilling both of these testing needs, their 
considerable size and intricate operational requirements 
restrict their deployment in portable, real-time monitoring 
applications [7].

With the development of the Internet of Things (IoT) 
and the industrial internet, there is a growing demand for 
low-cost, compact chemical sensors for the construction of 
sensor networks [8, 9]. Alongside the increasing pursuit of 
healthy lifestyles, these sensors are expected to facilitate 
applications such as the detection of harmful substances 
and the early pre-diagnosis of diseases in home settings 
[10–12]. Researchers have developed a range of chemical 
sensors, including optical [13, 14], electrochemical [15, 16], 
catalytic combustion [17, 18], chemoresistive [19–22], and 
field-effect transistor (FET) [23, 24]. Catalytic combustion 
and chemiresistive sensors have achieved commercialization 
due to their simple manufacturing processes and reliable 
performance, effectively addressing the challenges of low-
cost and large-scale deployment that traditional analytical 
instruments struggle to overcome in IoT and industrial inter-
net applications [25–27]. Benefiting from advances in micro-
electronics technology, FET-based chemical sensors can be 
fabricated at the wafer level using commercially available 
silicon-based CMOS processes [28–30]. Their microscale 
dimensions not only enable integration into mobile devices 
but also provide low-power operation, granting these sen-
sors extended battery life or even self-powered capabilities 

[31–35]. These advantages effectively compensate for the 
limitations of traditional analytical instruments in scenarios 
with space constraints or the absence of external power 
sources. Furthermore, the integration of microelectronics 
and biotechnology has facilitated the development of bio-
sensors, enabling users to perform non-invasive, rapid, and 
real-time monitoring of biomarkers such as microRNA, 
breast cancer indicators, and SARS-CoV-2 at home [36–38]. 
These biosensors address the drawbacks of traditional dis-
ease detection methods, such as long processing times and 
invasive procedures, providing an effective solution for early 
disease detection [39, 40].

As illustrated in Fig. 1a, chemical sensors are typically 
composed of two principal components, the sensing mate-
rial and the transducer [41]. Adsorbing analytes onto sens-
ing materials results in physical property changes such as 
temperature (ΔT), conductivity (Δσ), work function (Δφ), 
and permittivity (Δε). These signals are then transformed 
by transducers into various electrical parameters such as 
capacitance (ΔC), inductance (ΔL) and resistance (ΔR). 
Finally these electrical parameters are processed by the sen-
sor circuit to generate an output as analyte concentration 
information.

Chemoresistive sensors have garnered great interest in 
recent years due to their simple structure, small size, and 
good compatibility with sensing materials. In the detec-
tion procedure (Fig. 1a), an analyte-induced change in the 
conductivity (Δσ) of the sensing material is converted by a 
transducer into a material resistance change (ΔR), which is 
then processed by the sensor circuit to output analyte con-
centration information. In this process the sensor’s mono-
variable transducer only converts a single physical property 
(Δσ) to a single electrical parameter (ΔR). Despite the ana-
lyte’s capability to influence multiple physical properties of 
the sensing material, the one-to-one conversion results in 
the loss of a substantial amount of sensing information at 
the source. In complex chemical environments, the effects 
of various analytes on sensing materials are mechanically 
reflected as changes in resistance values, which essentially 
limit the selectivity and gas identification capabilities of 
chemoresistive monovariable gas sensors in practical appli-
cations. Gardner and Bartlett presented an electronic nose 
system (sensor array) that was capable of identifying ana-
lytes in environments containing a high degree of chemi-
cal complexity [42]. Figure 1b illustrates the configuration 
of the sensor arrays, comprising three sensing units. Each 



Nano-Micro Lett.          (2025) 17:246  Page 3 of 36   246 

sensing unit has been modified with specific sensing materi-
als (SM), enabling the detection of different analytes (i.e., 
SM I, SM II, and SM III). The presence of these analytes 
induces distinctive changes in the physical properties of the 
sensing materials, as indicated by the corresponding changes 
in the physical properties (Δσ I, Δσ II, and Δσ III). The 
aforementioned variations are transformed into electrical 
parameters (ΔR I, ΔR II, and ΔR III) by the monovariable 
converters (MonoT I, MonoT II, and MonoT III, MonoT: 
Monovariable Transducer) of the individual sensing unit. 
These parameters are subsequently fed into the sensor circuit 
with pattern recognition algorithms for the determination of 
the analyte species and concentrations. Although the field 
of sensor arrays has reached a high level of maturity, its 
practical limitations are also widely acknowledged. These 
include the difficulty of data processing due to the uncor-
related drift of each sensing unit, the increase in cost asso-
ciated with preparing different sensing materials for each 
sensing unit, and the increase in equipment size due to the 
continuous expansion in the number of sensing units [8]. In 
order to achieve analyte identification, sensor arrays employ 
a methodology that involves the mechanical combination 
of multiple monovariable sensors, with the objective of 
increasing the output variable. However, this approach does 
not fully leverage the potential impact of the analyte on the 

sensing material. Researchers have developed a number of 
different types of multivariable chemical sensors, including 
nonresonant and resonant impedance [43, 44], electrome-
chanical resonant [45, 46], photonic resonant [47, 48], and 
FET types [49, 50], with the aim of further improving the 
selectivity and recognition of chemical sensors. Figure 1c 
illustrates the structure of a FET-type multivariable chemical 
sensor that has been enhanced with two key improvements. 
Firstly, the use of sensing materials with multiple response 
mechanisms to different analytes allows for the acquisition 
of comprehensive sensing information, including but not 
limited to Δµ, Δσ, Δφ, and Δε, allowing increased sensing 
information. Secondly, the output of multiple partially or 
fully independent electrical parameters (Vth, gm, and SS, etc.) 
is achieved using multivariable transducers thereby over-
coming the issue of a limited number of output variables for 
monovariable transducers.

In recent years, carbon-based chemical sensors composed 
of FETs combined with carbon nanotubes (CNTs)/graphene 
have been the subject of extensive research [51–55]. FETs, 
as traditional electronic components, possess the character-
istics of multivariable output and weak signal amplification. 
Furthermore, their preparation processes are compatible with 
modern CMOS processes, which affords them significant 
potential for application and development [56]. A wide range 

Fig. 1  Schematic structures of a monovariable sensors, b sensor arrays and c multivariable sensors. ΔT: Temperature, Δσ: Conductivity, Δφ: 
Work function, Δε: Permittivity, ΔC: Capacitance, ΔL: Inductance, ΔR: Resistance, SM: Sensing Material, MonoT: Monovariable Transducer, 
Vth: Threshold voltage, gm: Transconductance, SS: Subthreshold swing
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of high-performance carbon-based materials has emerged 
in the field of sensing [57–59], including nanoporous car-
bon with high specific surface area and tunable pore sizes 
[60, 61], carbon quantum dots with excellent fluorescence 
properties and biocompatibility [62–64], fullerenes with 
their unique cage-like structure and electron acceptor capa-
bilities [65, 66], graphene with its two-dimensional planar 
structure and high carrier mobility [67–69], and CNTs with 
high aspect ratios and tunable electrical properties [70–72]. 
Considering the comprehensive sensing performance of these 
carbon-based materials, graphene and CNTs have found the 
most widespread applications. In the future roadmap for 
chemical sensor development [8], advancements in three 
key directions—high reliability, low cost, and low power 
consumption—will rely on the integration of sensing mate-
rials with advanced micro/nano fabrication technologies to 
achieve large-scale production [73–75]. The low-dimensional 
structures and high fabrication efficiency of graphene and 
CNTs allow for easy large-area deposition on wafers and 
flexible substrates [76–79]. Additionally, the excellent car-
rier mobility and semiconductor properties of graphene and 
CNTs, which are easily adjustable via electrical modulation 
[80–82], not only facilitate the construction of various elec-
trical transducers but also provide highly sensitive and fast-
response detection platforms for chemical sensing. Of par-
ticular significance is their ability to provide diverse reaction 
pathways with multiple analytes, which increases the sensing 
information obtained in analyte identification.

In the past decade, carbon-based chemical sensors have 
made remarkable advancements, however, traditional car-
bon-based chemical sensors utilizing monovariable sens-
ing technology still struggle to compete with commercial 
sensors, primarily due to poor selectivity and stability. This 
review provides a detailed analysis of the strengths and 
weaknesses of the monovariable chemical sensors and sen-
sor arrays. It suggests that integrating multivariable sensing 
technology with carbon-based chemical sensors will further 
enhance their sensing performance in practical applications 
and enable the classification and identification of various 
analytes. The carbon-based multivariable chemical sensors 
focus on the efficient integration of sensing materials with 
transducers, optimizing the utilization of data collected by 
the sensing materials and the signals output by the trans-
ducers. This strategy fundamentally addresses the limita-
tions inherent in monovariable sensors and sensor arrays. 

Since the inception of multivariable sensing [83], numerous 
classical and systematic reviews have emerged [8, 83–87]. 
This article focuses on multivariable chemical sensors 
composed of carbon-based materials and FETs, elucidating 
their fundamental principles and practical applications in 
multi-analyte recognition when integrated with pattern rec-
ognition algorithms. Among various multivariable extrac-
tion schemes, this paper provides an in-depth examination 
of techniques for extracting multiple output variables from 
the diverse output curves of FETs, a novel approach that 
continues to evolve alongside advancements in FET tech-
nology. It is hoped that the discussion of the latest tech-
nologies and application examples will further refine the 
theoretical framework of multivariable sensing and provide 
valuable theoretical foundations and technical references 
for the development of chemical sensor technologies. The 
organization of this article is as follows: Sect. 2 delves into 
the fundamental principles of carbon-based multivariable 
chemical sensors, encompassing carbon-based sensing mate-
rials, common sensor structures and fabrication processes, 
key performance metrics, pattern recognition algorithms, 
and multivariable sensing mechanism and feature extraction 
schemes. Section 3 explores various sensing technologies 
and application examples for extracting multivariable data 
from FET output curves for analyte identification.

2  Carbon‑Based Multivariable Chemical 
Sensors

Carbon-based multivariable chemical sensors, consisting of 
graphene/CNTs combined with multivariable transducers, 
have been applied to classify and recognize a wide range of 
analytes in complex chemical environments. This section 
will provide a concise overview of the following topics: 
1) The development of carbon-based materials and their 
advantages in multivariable sensing. 2) Chemoresistive 
and five common FET-type transducers that are favorable 
for multivariable output. 3) Six performance metrics for 
quantitatively analyzing sensing performances. 4) Com-
monly used pattern recognition algorithms. 5) Two types 
of mechanisms for multivariable sensing. The objective is 
to present a comprehensive overview of the fundamental 
principles underlying carbon-based multivariable chemi-
cal sensors.
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2.1  Sensing Materials

2.1.1  Basic Properties of CNTs and Graphene

Carbon-based materials, in particular graphene and CNTs, 
are widely used for chemical sensing. For example, in 2004, 
Novoselov et al. pioneered a method for mechanically exfo-
liating graphene sheets from graphite using transparent 
adhesive tape, which initiated a surge of research activity in 
the field of graphene worldwide [88]. Figure 2a depicts the 
three-dimensional model diagrams of monolayer graphene, 
graphene oxide (GO), and reduced graphene oxide (rGO) 
isolated from graphite. The corresponding high-resolution 
transmission electron microscopy (HR-TEM) diagrams are 
presented in Fig. 2b–d, respectively [89–91]. Graphene and 
its derivatives are distributed as a honeycomb network in a 
two-dimensional plane, which gives them a specific surface 
area of up to 2630  m2  g−1 [92], a carrier mobility of about 
1400  cm2  V−1  s−1 [88], and an excellent thermal conduc-
tivity of up to about 50,000 W  mK−1 [93]. The oxidation 
of graphite results in the introduction of several oxygen-
containing functional groups (CO, OH, and COOH) on its 
surface, leading to the formation of GO with a larger sur-
face area and good hydrophilicity [94, 95]. The reduction 
of GO yields rGO with less than 10% oxygen content [96], 
which exhibits properties intermediate between those of GO 
and graphene [97]. This derivative is therefore a more suit-
able choice for large-scale fabrication [98]. Graphene and 
its derivatives can be readily functionalized to enhance the 
selectivity and sensitivity, rendering it an optimal material 
for the development of chemical sensors [99, 100]. In 2007, 
Schedin et al. pioneered the use of graphene in gas sensing 
by employing graphene-based FET for the initial detection 
of  NO2 [101].

In 1991, Iijima observed the appearance of needles near 
fullerenes using HR-TEM and designated them as carbon 
nanotubes, a discovery that is regarded as pivotal in the field 
of CNTs research [102]. As illustrated in Fig. 2e, CNTs can 
be conceptualized as one-dimensional hollow cylinders 
constituted by graphene sheets rolled along a chiral vec-
tor [103, 104], wherein the carbon atoms are predominantly 
characterized by sp2 hybridization, and the curved hexagonal 
lattice also gives rise to sp3 hybridization bonds [105]. This 
distinctive structure endows them with robust electrical and 
chemical properties, high mechanical strength, and favorable 
thermal stability [106, 107]. The distinctive one-dimensional 

structure and hanging-bond-free surface of CNTs dimin-
ish the scattering probability, thereby enhancing the car-
rier mobility (~ 100,000  cm2  V−1  s−1) and mean free range 
(~ 1 µm) [108], which can markedly accelerate the speed 
of carbon-based electronic devices. The categorization of 
CNTs is based on two main criteria: the number of graphene 
sheet layers and the chirality. Single-walled and multi-walled 
CNTs are distinguished by the number of graphene sheet 
layers [109], while semiconducting and metallic CNTs are 
categorized based on their chirality [110]. The morphology 
of CNTs on the substrate allows for their categorization into 
single CNT and CNTs networks (Fig. 2f–i) [111]. The latter 
can be further categorized into vertically aligned (Fig. 2g) 
[112], horizontally aligned (Fig. 2h) [113], and random net-
works (Fig. 2i) [114]. In 2000, Kong et al. conducted the 
inaugural study of  NO2 and  NH3 sensing using a FET-type 
gas sensor comprising a single-walled CNT. This pioneer-
ing work paved the way for a new avenue of research into 
carbon-based gas sensors [111].

2.1.2  Fabrication and Applications of Wafer‑Scale 
Carbon‑Based Devices

It is evident from the success of silicon-based electronic 
devices that transitioning from primitive carbon-based 
materials to carbon-based sensors for practical applica-
tions necessitates the scalable, wafer-level fabrication of 
carbon-based devices. Liyanage et al. employed a semicon-
ducting CNTs solution, prepared via regioregular poly(3- 
dodecylthiophene)-assisted sorting, to fabricate wafer-scale 
devices featuring CNTs random networks [115]. Using a 
cost-effective solution processing method, the resulting 
carbon-based devices exhibited an average mobility of 1 
 cm2  V−1  s−1, a Ion/Ioff of  106, and a 100% yield, present-
ing a viable pathway for wafer-scale carbon-based device 
fabrication. Similarly, to achieve large-area single-walled 
CNTs films on transparent plastic substrates, Kiriya et al. 
employed solution processing combined with a roll-to-roll 
(R2R) approach, achieving CNTs film coverage of 99% 
[116]. This study has paved the way for the fabrication of 
large-area, flexible carbon-based sensor devices. Distinct 
from the commonly used solution processing methods for 
CNTs wafers, Yuan et al. demonstrated a stacking transfer 
technique to transfer chemical vapor deposition (CVD)-
grown graphene from flat to flat, enabling the fabrication 
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Fig. 2  Structural schematic and microscopy diagrams of carbon-based materials. a Schematic of the three-dimensional structures of graphene, 
graphene oxide, and reduced graphene oxide isolated from graphite. Reproduced with permission [94].  Copyright 2024, Elsevier. b High-reso-
lution transmission electron microscopy diagrams of graphene, c graphene oxide, and d reduced graphene oxide. b Reproduced with permission 
[89]. Copyright 2009, IOP Publishing. c Reproduced with permission [90]. Copyright 2016, American Chemical Society. d Reproduced with 
permission [91]. Copyright 2010, American Chemical Society. e Schematic diagram of single and multi-walled carbon nanotubes made of single 
and multi-layered graphene sheets rolled up. Reproduced under terms of the CC-BY license [104]. Copyright 2023, Royal Society of Chemis-
try. f Atomic force microscopy image of a single carbon nanotube. Reproduced with permission [111]. Copyright 2000, American Association 
for the Advancement of Science. g Scanning electron microscopy images of vertically aligned, h horizontally aligned, and i random networks 
carbon nanotubes. g Reproduced with permission [112]. Copyright 1998, American Association for the Advancement of Science. h Reproduced 
with permission [113]. Copyright 2006, American Chemical Society. i Reproduced with permission [114]. Copyright 2024, Elsevier
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of wafer-scale graphene-based van der Waals superlattices 
with controlled twist angles [117]. This work laid a solid 
foundation for the development of wafer-scale graphene-
based sensors and provided ample opportunities for further 
advancements. Jiang et al. reviewed the controlled synthe-
sis of wafer-scale graphene films using CVD [118]. In their 
review, the authors emphasized the critical roles of chemical 
kinetics and fluid dynamics in enabling the scalable pro-
duction of graphene films, while discussing the industrial 
prospects and potential directions for wafer-scale graphene 
film synthesis. Excitingly, Bishop et al. reported the fabrica-
tion of carbon nanotube field-effect transistors (CNFETs) on 
industry-standard 200 mm wafers using equipment compat-
ible with existing silicon-based electronic device fabrica-
tion processes [119]. In their work, the authors evaluated 
the electrical performance of 4,800 individual CNFETs 
on a single wafer, finding that all key performance metrics 
exhibited narrow distributions with minimal spatial depend-
ence across the wafer, thus demonstrating the consistency 
of wafer-scale device performance. To validate the repeat-
ability and reliability of the fabrication process, the authors 
conducted repeated tests on three wafers from the same 
batch, achieving a 100% device yield (14,400/14,400). The 
demonstrated process, which is highly compatible with sili-
con CMOS technology, exhibited excellent uniformity and 
reproducibility, paving the way for the commercialization of 
carbon-based devices.

Benefiting from mature carbon-based wafer fabrication 
techniques, numerous studies on sensor devices fabri-
cated on carbon-based wafers have demonstrated excellent 
consistency and reliability [56, 120–125]. For instance, 
Liang et al. developed wafer-scale uniform CNT biosen-
sors capable of specifically detecting DNA and microbub-
bles, which are biomarkers of diseases [122]. Testing of 
90 randomly selected liquid-gated CNTFETs on the wafer 
revealed highly consistent transfer characteristic curves, 
providing a highly reliable platform for the development 
of high-sensitivity carbon-based biosensors. Soikkeli 
et al. utilized standard commercial techniques to fabri-
cate wafer-scale graphene field-effect transistor (GFET) 
biosensor arrays with CMOS readout circuits on 200 mm 
wafers [125]. Their work demonstrated an impressive 
device yield of 99.9% (2,558/2,560), with an average sen-
sitivity of 42 mV  decade−1 (SD = 4 mV  decade−1) for 512 
GFETs in response to NaCl concentrations ranging from 
1 to 100 mM. The biosensor arrays exhibited excellent 

uniformity and reproducibility, while the integration of 
CMOS multiplexing circuits for multi-analyte sensing and 
statistical analysis significantly simplified the complexity 
of practical biosensing applications. The advancements 
in carbon-based wafers and wafer-scale chemical sensors 
highlight the robust device foundation for constructing 
carbon-based multivariable sensors. This can be attrib-
uted to the stable chemical properties and reliable physical 
parameters of carbon-based materials, enabling seamless 
compatibility with popular silicon CMOS processes.

Compared to graphene-based materials, CNTs intended 
for use in carbon-based chemical sensors must exhibit high 
semiconducting purity. However, CNTs prepared via main-
stream methods such as solution filtration or CVD typi-
cally consist of approximately 67% semiconducting CNTs 
and 33% metallic CNTs [126]. The presence of even a 
small amount of metallic CNTs significantly increases the 
electrical conductivity of CNTs film, thereby compromis-
ing their semiconducting properties, which is detrimental 
for sensing applications. In laboratory settings, conjugated 
polymer-based purification techniques have enabled the 
preparation of CNTs with semiconducting purity as high 
as 99.9999% [127]. Currently, commercial semiconduct-
ing CNTs, such as IsoNanotubes-S from NanoIntegris, 
achieve purities up to 99.9%, but their cost remains high. 
To advance the commercialization and industrialization 
of carbon-based materials, it is imperative to reduce the 
production costs of high-performance materials at the 
source. Only then can these materials be effectively inte-
grated with mature silicon-based CMOS processes, paving 
the way for widespread adoption in everyday applications.

2.1.3  Carbon‑Based Materials: An Ideal Choice 
for Multivariable Sensing

In multivariable chemical sensors, the transducers are capa-
ble of outputting multiple electrical parameters that reflect 
the physicochemical property changes of sensing materi-
als, thereby enabling the classification and identification of 
multiple analytes with only one sensing material [8, 83–87]. 
This represents a fundamental difference from conventional 
sensor arrays, which require sensing units modified with 
different sensing materials. Weimar and Göpel were the 
first to systematically discuss the concept and development 
trends of multivariable chemical sensors (then referred to 
as multiparameter sensor systems) [83]. In their work, the 
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authors described a chemical sensor composed of a single 
sensing material combined with multi-transducers. In earlier 
research, Weimar et al. simultaneously measured changes 
in work function, conductance (G), and catalytic activity of 
a single Figaro gas sensor in the presence of different ana-
lytes using various characterization techniques [128]. The 
experimental results demonstrated that a single Figaro sen-
sor could determine the partial pressures of CO and  H2O in 
air, successfully proving that a single sensing material could 
produce differentiated responses to different analytes, laying 
the foundation for the development of subsequent multivari-
able sensors. Huang and Hayward designed an orthogonal 
ambipolar semiconductor composed of a p-type polymer and 
vertically in-plane aligned n-type small-molecule nanowires. 
Using a single FET fabricated with this sensing material, 
they successfully discriminated 22 different volatile organic 
compounds [129]. The orthogonal charge-carrying pathways 
and p-n junctions provided by this sensing material not 
only enabled responses to a wide range of analytes but also 
allowed discrimination of closely related derivatives with 
single-atom resolution. This work leveraged the differential 
response capability of a single sensing material, combin-
ing it with eight output variables extracted from the transfer 
characteristic curves to achieve multi-analyte recognition.

In recent studies of carbon-based sensors, Shi et  al. 
achieved the identification of six gases  (NO2,  NH3,  H2,  H2S, 
CO, and  SO2) using only Pd nanoparticle-modified CNTs 
[130]. Hayasaka et al. utilized a single graphene-based FET 
for the recognition of water, methanol, and ethanol [131]. 
Similarly, Agbonlahor et al. employed a single graphene-
based FET to identify four analytes in the environment 
[132]. These studies have successfully validated that carbon-
based materials can also generate differentiated responses to 
various analytes, making them ideal candidates for sensing 
materials in multivariable chemical sensors.

In this section, a concise overview of the sensing materi-
als constituting carbon-based multivariable chemical sen-
sors is provided, encompassing their fundamental proper-
ties, wafer-level fabrication and applications, as well as the 
distinctive characteristics of their differentiated responses. 
The selection of CNTs/graphene as the ideal candidates for 
multivariable sensors can be attributed to the following three 
key aspects: 1) The highly compatible preparation flow with 
CMOS process enables batch preparation at the wafer level 
[122, 127]. 2) Low power consumption and room tempera-
ture operating characteristics make these sensors eminantly 

suitable for use in portable devices [133, 134]. 3) The large 
specific surface area resulting from the low-dimensional 
structure rendering it highly sensitive to the immediate 
chemical environment, thereby enabling single-molecule 
sensitivity [124, 135]. The differing amounts of charge 
transfer and intensities of scattering to carriers, which are 
caused by the adsorption of analytes with different chemical 
properties, are the fundamental source of the differentiated 
response [101, 136].

2.2  Sensor Structures and Fabrication Processes

2.2.1  Sensor Structures

Multivariable chemical sensors have a variety of possible 
device structures, however due to space limitations we 
will focus on chemoresistive and FET semiconductor-type 
chemical sensors. Figure 3a shows the aerial and the cross-
sectional view of a typical chemoresistive device. Chem-
oresistive sensors are two-terminal devices consisting of an 
interdigital electrode and sensing material on the insulating 
substrate. The interaction of the analyte with the sensing 
material alters the resistance between the interdigital elec-
trodes. The multivariable outputs are typically extracted 
using response-time curves.

The  FET-type chemical sensors are three-terminal 
devices comprising a source, drain, and gate. The source 
and drain are in direct contact with the sensing material, 
while the gate is isolated from the sensing material by 
a dielectric layer. During operation, the channel carrier 
concentration is controlled by applying the gate-source 
voltage (Vgs) to achieve an optimal sensor sensitivity. 
Concurrently, the drain-source voltage (Vds) is applied 
to inject carriers from the source into the sensing mate-
rial, which subsequently transfers to the drain. The cat-
egorization of FET-type chemical sensors is dependent 
upon the gate position. The classification of these sen-
sors includes top-gate [137], back-gate [138], side-gate 
[139], suspended-gate [140], and horizontal floating-gate 
[141]. The top-gate (Fig. 3b, c), back-gate (Fig. 3d, e), and 
side-gate (Fig. 3f) devices are the most commonly used 
designs in multivariable sensing applications. Depend-
ing on the position of the source-drain electrodes relative 
to the sensing material, the top gate can be categorized 
into the top-gate top-contact type (TGTC, Fig. 3b) and 
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the top-gate bottom-contact type (TGBC, Fig. 3c), and 
the back gate can be categorized into the back-gate top-
contact type (BGTC, Fig. 3d) and the back-gate back-con-
tact type (BGBC, Fig. 3e). The TGTC and TGBC devices 
demonstrate excellent long-term stability due to the gate 
and the dielectric layer covering the surface of the sensing 
material, which provides robust protection. The analyte’s 
inability to directly contact the sensing material results in 
a low response. To address this challenge, metals with a 
catalytic effect can be employed as the gate material, and 
the dipole layer generated by the reaction with the analyte 
can be leveraged for channel carrier concentration regula-
tion [142]. The sensing materials of BGTC devices are 
prepared directly on the dielectric surface with a simpler 
interfacial environment, which allows for enhanced gate 
control and superior sensor performance [143]. However, 
it is important to consider the impact of the subsequent 
source-drain electrodes deposition process on the sens-
ing material, as well as the compatibility with the CMOS 
processes [144]. In contrast, BGBC devices have better 
process compatibility and are ideal for batch preparation. 
Nevertheless, their high contact resistance and irregular 
sensing material surfaces can affect carrier transport [143]. 

The transition from laboratory product to commercialized 
product necessitates the use of sensors with optimal pack-
ability. As shown in Fig. 3f, the electrode position distri-
bution of side-gate devices is not only compatible with 
the prevailing lead bonding processes but also ensures the 
complete exposure of the sensing material to the analytes 
[139]. Notwithstanding, the use of small, non-vertically 
opposed gates necessitates the application of larger Vgs for 
channel modulation.

2.2.2  Fabrication Processes

Figure 3i illustrates an example of the fabrication pro-
cesses for the BGTC carbon-based chemical sensor [130], 
including device schematic diagrams, scanning elec-
tron microscope (SEM) image, and optical photographs 
for each step. The entire fabrication process consists of 
three steps and is compatible with silicon-based CMOS 
technology. In the first step, the semiconducting single-
walled CNTs film with a random network morphology 
is deposited on a silicon substrate using an immersion 
deposition method. Step I involves defining the source/
drain electrode regions on the carbon-based substrate 

Fig. 3  Schematic structures of a chemoresistive and five field-effect transistor-type chemical sensors for: b top-gate top-contact, c top-gate bot-
tom-contact, d back-gate top-contact, e back-gate back-contact, and f side-gate devices. Performance metrics reflecting the sensing performance 
in g response curve and h calibration curve. Reproduced with permission [72].  Copyright 2019, American Chemical Society. i Processes for 
preparing carbon-based field-effect transistor-type chemical sensors. Reproduced with permission [130]. Copyright 2024, American Chemical 
Society
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using photolithography, followed by electron-beam evap-
oration to deposit the source/drain electrodes (Ti/Pd/Au, 
0.6/20/40 nm). It is noteworthy that the choice of source 
and drain electrode materials determines whether the fab-
ricated FET device is p-type or n-type. High work function 
metals such as Pt and Pd are used to form p-type ohmic 
contacts with CNTs [145, 146], while low work function 
metals such as Sc are used to form n-type ohmic con-
tacts with CNTs [147]. Ti, which exhibits good wettabil-
ity with CNTs, is employed as an adhesion layer between 
the source/drain electrodes and the CNTs [148]. Pd, as a 
high work function metal, forms Schottky contacts with 
CNTs that are barrier-free for hole transport [149]. Au 
is added to increase the electrode thickness, facilitating 
performance testing. Step II begins with defining the 
channel region between the source and drain electrodes 
via photolithography. The CNTs film outside the channel 
region is then removed using reactive ion etching, result-
ing in a carbon-based FET (CNT-FET) with a back gate 
structure. To enhance sensing performance, the CNTs in 
the channel region can be functionalized. In Step III, the 
1 nm Pd nanoparticles are deposited on the channel region 
via electron-beam evaporation to enhance the catalytic 
capability of the sensor. The fabrication process of the 
BGTC carbon-based sensor is straightforward and, when 
combined with the mature carbon-based wafer preparation 
techniques and industrial silicon-based CMOS processes, 
has the potential to accelerate its commercialization.

2.3  Key Performance Metrics

In order to quantitatively analyze the sensing performances 
of chemical sensors, performances are typically evaluated 
using key performance metrics such as response/recovery 
time, drift, sensitivity, limit of detection (LoD), selectiv-
ity, and long-term stability. Typical response curve and 
calibration curve, shown in Fig. 3g, h, help to graphically 
understand the specifics of what is quantified by these per-
formance metrics [72]. The raw sensing data obtained typ-
ically consists of response curves that track changes over 
time under varying analyte concentrations. The response 
is commonly defined using three mainstream approaches: 
ΔX/X₀, X/X₀, or simply ΔX, where X can represent 

resistance (R), current (I), capacitance (C), inductance (L), 
or conductance (G). In the context of multivariable sensing 
applications based on FETs, X can be further extended to 
parameters such as threshold voltage (Vth), transconduct-
ance (gm), or subthreshold swing (SS), etc. which reflect 
changes in the electrical characteristics of the FETs.

As shown in Fig. 3g, the term response time is defined 
as the time elapsed between the initial exposure of the 
sensor to the analyte and the point at which the response 
reaches 90% of its peak value [150]. The calculation for-
mula can be defined as shown in Eq. (1):

where, Timepeak refers to the time at which the response 
reaches its peak, and Timeinitial represents the time when the 
sensor first comes into contact with the analyte. In contrast, 
the term recovery time is defined as the time required for the 
sensor to return to its original state following the removal 
of the analyte, until the response value drops to 10% of its 
peak value [72]. The calculation formula can be defined as 
shown in Eq. (2):

where, Timebottom refers to the time at which the response 
recovers to its lowest value. The recovery time is typically 
regarded as the inverse of the response time, with a rapid 
response time often accompanied by a slower recovery time 
due to chemisorption [151].

The term drift is defined as the gradual, non-random 
alteration in the sensor’s response over time when the sen-
sor is exposed to a constant analyte concentration or a 
blank sample [152]. Effective passivation or drift elimina-
tion algorithms can be utilized to mitigate the effects of 
drift [153]. The drift rate over a testing period t  can be 
defined using the formula shown in Eq. (3):

where, Rt and R0 represent the response value at time t and 
the initial response value, respectively. Albarghouthi et al. 
measured the open-circuit potential drift rate of CNT-TFTs 
over a one-hour period, quantified as the first derivative 
of the open-circuit potential, which was approximately 
14 mV  h−1 [154]. This approach was employed to investi-
gate the charge screening and drift limitations of BioFETs, 
providing valuable insights that could enhance the sensitiv-
ity and robustness of the sensors.

(1)Response time = 0.9
(

Timepeak − Timeinitial
)

(2)Recovery time = 0.9
(

Timebottom − Timepeak
)

(3)Drift ratio =
Rt−R0

R0

⋅

1

t−t0
⋅ 100%(%∕h)
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According to the International Union of Pure and Applied 
Chemistry (IUPAC) [155], sensitivity is defined as the abil-
ity to provide a reliable and measurable response to changes 
in analyte concentration. As shown in Fig. 3h, the calcula-
tion formula can be defined as Eq. (4) [156]:

Sensitivity is the most intuitive parameter for character-
izing the sensor performance. A high-performance sensor 
can produce a linear response over a wide analyte concentra-
tion range (dynamic range), which corresponds to a constant 
sensitivity [157]. This greatly simplifies the design complex-
ity of backend pattern recognition algorithms and readout 
circuits.

The LoD is defined as the lowest concentration that can 
be reliably detected as not present in the sample at a 99% 
confidence interval [158]. Figure 3h shows the calculated 
LoD, which can be defined using the formulas in Eqs. (5) 
and (6) [155]:

where, Rb and sb represent the mean response value and the 
standard deviation obtained from n measurements of the 
blank sample, respectively. k is a numerical factor corre-
sponding to the selected confidence level, also referred to 
as the confidence factor. IUPAC recommends that n should 
exceed 20, and for a confidence level of 99.6%, k is set to 3. 
It is notable that the LoD could also be influenced by the dis-
sociation constant of the analyte in biosensors [159]. As can 
be seen from the calculation formulas, LoD is closely related 
to the sensitivity of the sensor and the noise level. Enhancing 
the interaction strength between the sensing material and 
the analyte improves sensitivity [160], while reducing the 
intrinsic noise of the sensing material and the transducer 
increases the signal-to-noise ratio (SNR) [161], effectively 
lowering the LoD.

Selectivity is defined as the ratio of a sensor’s response 
to a target analyte to its response to an interfering analyte 
[153]. The calculation formula can be defined as shown in 
Eq. (7) [156]:

(4)
Sensitivity = slope of calibration curve

=

change in response

change in analyte concentration

(5)Rmin = Rb + ksb

(6)LoD =
Rmin−Rb

sensitivity

where, X represents the interfering analyte, while A denotes 
the target analyte. A smaller Selectivity coefficient indicates 
that the sensor is more resistant to the influence of X , thus 
exhibiting better selectivity. For multivariable sensors, the 
sensing materials used are required to exhibit differential 
responses to various analytes. Quantitatively, this means 
having different selectivity coefficients. The use of mul-
tivariable sensors can be an effective means of improving 
selectivity in complex chemical environments.

Long-term stability is defined as the ratio of the aged 
sensor response to that of a newly prepared sensor, and is 
employed to assess the capacity of a sensor to generate con-
sistent output for a given input over time [162]. Previous 
studies did not provide a formalized definition of long-term 
stability. We have proposed a formula for evaluating device 
stability based on the drift rate. Similar to Eq. (3), the cal-
culation formula for long-term stability over a testing period 
t can be defined as shown in Eq. (8):

where, t  is typically set to 15 days, 30 days, 60 days, six 
months, or one year. Zhao et al. investigated the long-term 
stability of the MX-s@NiMo-P sensor by monitoring its 
response to 100 ppm  NH3 over a 30-day period. The sen-
sor’s response decreased from 188.91% on the first day to 
176.48% on the 30th day. This analysis provides valuable 
insights into the sensor’s degradation behavior and failure 
mechanisms [163].

2.4  Pattern Recognition Algorithms

In practical applications, the selection of suitable and effi-
cient pattern recognition algorithms plays a critical role in 
fully leveraging the advantages of multivariable sensing, 
thereby enhancing classification and recognition perfor-
mance. Numerous studies have systematically reviewed 
various pattern recognition algorithms [164–171]. This 
section provides a concise summary of commonly used 
algorithms, with the key characteristics and comparisons 
presented in Table 1. Pattern recognition algorithms widely 
used for analyte classification and identification include 
classical algorithms such as Principal Component Analysis 

(7)Selectivity coefficient = K
A,X =

response to X

response to A

(8)Stability =
Rt−R0

R0

⋅

1

t−t0
⋅ 100%(%∕day)
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(PCA), Linear Discriminant Analysis (LDA), Support Vec-
tor Machine (SVM), and k-Nearest Neighbor (KNN), as well 
as neural network-based algorithms like Feedforward Neural 
Networks (FNN), Recurrent Neural Networks (RNN), and 
Convolutional Neural Networks (CNN). While each algo-
rithm has specific application scenarios, the general work-
flow of pattern recognition typically involves the following 
steps [165]: 1) Data Acquisition and Preprocessing: Collect 
raw data from chemical sensors or similar devices, which are 
often multi-dimensional signal responses. Preprocessing is 
performed to enhance classification accuracy and algorithm 
robustness [167]. 2) Feature Extraction: Extract key features 
from the raw data, such as maximum response, response 
time, or curve gradients, to reduce redundant information. 
3) Dimensionality Reduction: Apply algorithms such as 
PCA to reduce data dimensionality while retaining critical 
information, facilitating subsequent classification modeling. 
4) Classification Modeling and Training: Use classification 
algorithms to construct models that learn the relationship 
between input features and class labels based on training 

data. 5) Testing and Validation: Input test data into the 
model to evaluate its classification accuracy and robustness.

PCA is an unsupervised algorithm commonly used for 
dimensionality reduction and feature extraction. PCA reduces 
the dimensionality of data by computing the eigenvalues and 
eigenvectors of the covariance matrix of the dataset [172]. 
The eigenvectors corresponding to the largest eigenvalues 
are selected as the principal components. The data is then 
projected onto these principal components, achieving dimen-
sionality reduction. It reduces data dimensionality while 
retaining the maximum variance, providing critical support 
for subsequent classification tasks [173]. LDA, a supervised 
algorithm, maximizes the ratio of between-class variance to 
within-class variance based on data categories, generating 
optimal classification boundaries and proving effective for 
multi-class classification tasks [174]. The core computa-
tional principle of LDA is to solve the generalized eigenvalue 
problem that maximizes the ratio of the between-class scatter 
matrix to the within-class scatter matrix [175]. This yields 
the optimal projection directions. By projecting the data 

Table 1  Summary and comparison of common pattern recognition algorithms

Algorithm Category Advantages Disadvantages

Classical algorithm PCA Unsupervised Fast and efficient, suitable for 
high-dimensional data

Applicable only to linear data

(Classification/Dimensionality 
reduction)

Easy to visualize May lose nonlinear features

LDA Supervised Simple computation Susceptible to outliers
(Classification/Dimensionality 

reduction)
Performs well on linearly separa-

ble data
Restrictions on the feature dimen-

sion
SVM Supervised Perform well on high-dimensional, 

small-sample data
Inefficient for large datasets

(Classification/Regression) Support nonlinear classification Require parameter tuning and is 
sensitive to kernel function selec-
tion

KNN Supervised Simple and intuitive Inefficient for high-dimensional data
(Classification/Regression) No training required Susceptible to the value of K

Susceptible to outliers
Neural network algorithm FNN Supervised&Deep learning Simple and intuitive Susceptible to overfitting

(Classification/Regression) Have strong universality Unsuitable for dealing with time 
series data

RNN Supervised&Deep learning The capacity to handle sequential 
data

Poor at parallel computing

(Classification/Regression) Grasp the contextual information High computational cost
CNN Supervised&Deep learning Automatically extracts features High computational resource 

requirements and training costs
(Classification/Regression/Feature 

extraction)
Parameter sharing leads to effi-

cient computation
Heavily reliant on large amounts 

of data
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onto these directions, LDA achieves dimensionality reduc-
tion and classification. SVM is particularly suited for high-
dimensional and non-linear problems, constructing optimal 
hyperplanes to separate different classes, and demonstrating 
excellent generalization performance [176]. The core com-
putational principle of SVM is to find an optimal hyperplane 
in the feature space that maximizes the margin between two 
classes of samples. For linearly inseparable problems, SVM 
uses a kernel function to map the data into a higher-dimen-
sional space where it becomes linearly separable, and then 
determines the optimal hyperplane in that space [177]. KNN, 
a simple distance-based classification algorithm, determines 
class membership by comparing the similarity between the 
test samples and training samples. It is effective for small-
scale datasets but has high computational complexity [178]. 
The core computational principle of KNN is to classify a 
given test sample by calculating its distances to all samples in 
the training set, selecting the K nearest neighbors, and infer-
ring the class of the test sample based on the classes of these 
neighbors [179]. Typically, the final class is determined using 
majority voting or similar strategies among the K neighbors.

In practical applications, a large amount of nonlinear sen-
sor data exists. Neural network algorithms, which mimic the 
way the biological brain processes complex problems, are 
designed to perform tasks such as data classification, regres-
sion, and prediction. These algorithms are considered power-
ful tools for handling nonlinear sensor data [171]. FNN, as 
the most basic type of neural network, consists of an input 
layer, hidden layers, and an output layer. Information flows 
only in one direction, from the input layer to the output layer, 
without feedback loops. The core operating principle involves 
passing input data through the input layer, processing it in the 
hidden layers by performing weighted summation of input 
signals at neurons, followed by nonlinear transformations via 
activation functions, and finally outputting results at the out-
put layer [180]. This algorithm’s simple structure and compu-
tational efficiency make it suitable for most classification and 
regression tasks [181]. A multilayer FNN with backpropa-
gation learning capability is referred to as a Backpropaga-
tion Neural Network (BPNN), which adjusts weights based 
on errors to enable learning. This allows it to handle more 
complex nonlinear problems [182]. To enhance the ability 
of FNN to process time-series data, RNN with cyclic con-
nection structures were developed. In RNN, the hidden units 
include a state vector that retains historical information from 
past elements in the sequence [183]. Information is cyclically 

passed through the neurons, allowing historical informa-
tion to influence the current output, thereby enabling the 
network to learn temporal dependencies in sequential data. 
This characteristic makes RNNs particularly well-suited for 
handling time-series data, such as the analyte concentration 
time series measured by chemical sensors, effectively captur-
ing the dynamic features in response-time curves [184, 185]. 
Unlike the previously mentioned neural network algorithms, 
CNN consists of convolutional layer, activation function, 
pooling layer, fully connected layer, and output layer. The 
core operating principle of CNN is to extract local features 
by performing convolution operations using kernels that slide 
over the data in the convolutional layers. The pooling layers 
are then used to compress and reduce the dimensionality of 
the features, and the fully connected layers integrate these 
extracted features to produce the final output [186, 187]. The 
presence of convolutional and pooling layers enables CNNs 
to automatically extract critical features from raw data, mak-
ing them more efficient than fully connected networks when 
handling high-dimensional data [188].

2.5  Multivariable Sensing Mechanism and Feature 
Extraction Schemes

Since the pioneering concept of multivariable sensing was 
first introduced by Weimar and Göpel [83], this field has 
undergone substantial development both theoretically and 
practically. The initial framework was significantly advanced 
by Hierlemann and Gutierrez-Osuna, who expanded the 
concept to encompass higher-order sensing paradigms [85]. 
Subsequently, Potyrailo provided a comprehensive systematic 
review of various multivariable sensors in the context of the 
IoT and industrial internet applications [8]. This progressive 
evolution has established multivariable sensing as a mature 
and versatile technology with extensive practical implementa-
tions. In this section, we will focus on analyzing the working 
mechanism of carbon-based multivariable sensors and present 
two main ways of extracting multiple output variables.

2.5.1  Multivariable Sensing Mechanism

Figure 4a illustrates the output characteristic curves of a 
monovariable sensor for a target gas of 1–3 ppm and an inter-
fering gas of 10–30 ppm. The output parameter, designated 
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Output #1, can be resistance, voltage, current, or work func-
tion, contingent on the specific sensor type. When only the 
target analyte is present in the environment, or when the con-
centration of interfering analytes is low, Output #1 can easily 
be relied upon for quantitative analysis of analyte concen-
trations. In the event that the concentrations of interfering 
analytes are too high, it becomes challenging to accurately 
detect the target analyte by relying on Output #1 alone. For 
instance, a 10 ppm interfering gas produces an unintended 
output, and outputs produced by 20–30 ppm interfering gas 
cause misjudgment, leading to a false sense of successful 
detection of the 1–2 ppm target gas. Several specific designs 
have been proposed to enhance the selectivity of monovari-
able sensors in complex environments [189–191]. For exam-
ple, van den Broek et al. employed a Tenax TA separation 
column to isolate methanol from interfering substances such 
as ethanol, acetone, or hydrogen, thereby achieving selective 
detection of formaldehyde [191]. This sensor demonstrated 
the ability to detect methanol in the range of 1 to 1,000 ppm 
even in the presence of ethanol concentrations as high as 
62,000 ppm. Similar to a gas chromatography column, the 
nonpolar adsorbent Tenax TA separates analytes in a mix-
ture based on molecular weight and functional groups. This 
ensures that target analytes and interfering substances reach 
the sensor at different times, thereby avoiding overlapping 
responses. Using the same technique, Abegg et al. and Cao 
et al. achieved highly selective detection of methanol and 
benzene, respectively [189, 190]. In addition, the construc-
tion of various composite materials, such as polymer/CNTs 
[192], Fe/CNTs [193], and MOF/CNTs [194], has also 
proven effective in improving sensor selectivity.

Through these studies, the selectivity of monovariable 
sensors can be significantly enhanced, enabling them to 
overcome the interference from coexisting analytes and 
thereby achieve the detection of a single analyte in complex 
chemical environments. However, when addressing the task 
of simultaneous detection of multiple analytes, monovari-
able sensors modified with either specific or cross-sensitive 
materials demonstrate limitations. Specifically, the former 
fails to generate differentiated response signals for distinct 
analytes, while the latter relies solely on a single output vari-
able. Although the construction of sensor arrays composed 
of multiple specifically modified monovariable sensors 
can facilitate multi-analyte detection through a "one-key-
one-lock" approach, this method necessitates sophisticated 
modification of multiple sensing units according to the target 

analytes [195, 196]. Moreover, with the increasing variety 
of analytes, it is difficult to design specific sensing materials 
for each analyte.

To address the detection drawbacks of both monovariable 
sensors and sensor arrays in multi-analyte recognition, multi-
variable sensors employ multivariable transducers to interpret 
the differential responses of cross-sensitive materials, thereby 
increasing output variables [8, 83, 85]. This approach funda-
mentally differs from the sensor array configuration that relies 
on multiple sensing units [188, 197]. The implementation of 
multivariable sensing technology allows for multi-analyte rec-
ognition tasks using minimal or even a single sensing mate-
rial, which substantially expands the application scenarios of 
chemical sensors.

Figure 4b depicts the two-dimensional output characteris-
tic curves of a multivariable sensor with two output variables 
when performing three analytes identification. As illustrated 
by the blue dashed line, the three analytes generate superim-
posed responses on Output #1, yet they can be differentiated 
in the vertical direction by the introduction of Output #2. Fig-
ure 4c shows the output characteristic curves of four analytes 
in a three-dimensional sensing space. By expanding the num-
ber of output variables and increasing the dimensionality of 
the sensing space, the classification and identification of more 
kinds of analytes can be realized. It is crucial to acknowledge 
that the numerous output variables generated by a multivari-
able sensor must be independent of one another (e.g., orthogo-
nal Output #1 and Output #2) [198].

Two principal methods exist for obtaining multiple output 
variables. The first entails altering the operational conditions 
of the sensor, including modifying the operating temperature, 
light conditions, and operating voltage, among other factors 
[3, 199–202]. The second involves extracting the desired vari-
ables from the sensor output characteristic curves. The output 
characteristic curves serve as a direct source for acquiring mul-
tivariable outputs, reflecting the property variations of sensors 
in the presence of analytes. For instance, noise spectra, utilized 
to evaluate the noise levels of sensors at different frequen-
cies, contain rich sensing information due to their generation 
mechanisms being closely associated with physical processes 
on material surfaces and carrier scattering [203]. The time-
dependent response curves under varying analyte concentra-
tions represent the most intuitive and readily obtainable out-
put, from which a series of feature variables characterizing the 
sensor’s dynamic properties can be extracted [204]. Finally, 
the FET transfer characteristic curves, obtained by scanning 
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Fig. 4  a Overlap in the responses observed between the interfering and target gas when only a single output variable (Output #1) is utilized. 
Sensor response to interfering gases: 10 ppm caused anomalous output (?); 20–30 ppm responses overlapped with 1–2 ppm target gas ( ×); only 
3 ppm target gas overcame interference (√). b Output characteristic curves for three analytes in a two-dimensional sensing plane with two output 
variables (Output #1 and Output #2). While all three analytes show identical responses in Output #1, they display distinct patterns in Output #2, 
enabling successful differentiation. c Output characteristic curves of four analytes in a three-dimensional sensing space with three output variables 
(Output #1, Output #2, and Output #3). Higher-dimensional sensing space demonstrates enhanced capability for analyte discrimination, enabling 
identification of a broader range of chemical species. d Output variables extraction using light modulation and e gate voltage modulation. d Repro-
duced with permission [54].  Copyright 2021, American Chemical Society. e Reproduced with permission [211]. Copyright 2023, Wiley–VCH. 
Extraction of output variables from f noise spectra and g response-time curves. f Reproduced with permission [215]. Copyright 2012, American 
Chemical Society. g Reproduced under terms of the CC-BY license [217]. Copyright 2022, Wiley–VCH. h Four variation patterns of transfer char-
acteristic curves of carbon nanotube-based FET-type chemical sensors capable of reflecting the sensing mechanisms. Reproduced with permission 
[218]. Copyright 2008, American Chemical Society. i Schematic illustration of COVID-19 positive and negative samples differentiation using the 
Dirac point offset of graphene-based FET-type chemical sensors. Reproduced with permission [225]. Copyright 2021, American Chemical Soci-
ety. j Four variation patterns of transfer characteristic curves of graphene-based FET-type chemical sensors that reflect the sensing mechanisms. 
Reproduced under terms of the CC-BY license [131]. Copyright 2020, Nature Publishing Group
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the gate voltage, influence the interaction between analytes 
and sensing materials through varying electric fields, thereby 
generating curves with distinct change patterns for multivari-
able extraction [205]. In the following section, these two pre-
dominant feature extraction schemes will be discussed through 
representative examples.

2.5.2  Feature Extraction Schemes: Changing 
Operational Conditions

The optimal operating temperature for a given analyte can be 
determined by considering the analyte molecular bond dis-
sociation energies, adsorption modes, and molecular volumes 
[206]. Establishing a relationship between the optimal oper-
ating temperature and the analyte species can enhance the 
sensor’s selectivity and facilitate analyte identification [207]. 
This strategy is commonly employed in metal oxide semicon-
ductor chemical sensors but is less prevalent in carbon-based 
chemical sensors, which can operate at room temperature.

Light modulation is a non-contact, low-power approach 
to material modification, capable of modulating low-dimen-
sional carbon-based materials with large specific surface 
areas [208, 209]. It offers a straightforward and effective 
method for output variable acquisition. As illustrated in 
Fig. 4d, Park et al. employed a UV light-emitting diode to 
locally illuminate an unspecifically modified graphene field 
effect transistor (GFET) with the objective of modifying the 
electron transport properties of graphene, thereby enhanc-
ing the sensitivity and selectivity of the sensor to volatile 
compounds [54]. By comparing the resistance changes of the 
GFETs following exposure to ethanol, water, and dimethyl 
methylphosphonate (DMMP) in the absence and presence of 
UV illumination revealed that the sensitivities of the three 
gases were 54, 4.2, and 2, respectively. Furthermore, the 
changes in the response-time curves induced by illumination 
provided an additional dimension of gas information, ena-
bling the detection of the three gases in a two-dimensional 
response plane with only one GFET. Temperature and light 
modulation are commonly employed in a variety of chemi-
cal sensors, but all necessitate additional heating and light 
apparatus for optimal functionality.

The distinctive three-electrode configuration of FET 
chemical sensors facilitates the regulation of channel car-
rier concentration through the application of a gate volt-
age, thereby offering a more convenient approach to the 

acquisition of output variables [208, 210]. As illustrated in 
Fig. 4e, Maity et al. employed helical polyaniline (PANI)@
CNT as the channel material of the FET-type gas sensor. 
The channel was subjected to chiral modulation by apply-
ing a gate voltage, thereby enabling the recognition of the 
chiral molecule limonene (S( +)/R(-)) [211]. The distinc-
tive cylindrical and curved configuration of CNTs enables 
them to exhibit heightened spin–orbit Rashba interactions 
in comparison to conventional two-dimensional planar 
materials. This property endows them with exceptional 
field-controlled chiral discrimination and chiral spintron-
ics capabilities. The experimental results demonstrate that 
chiral molecules exhibit a preference for interacting with the 
sensor at specific gate voltages. Distinct from sensing mech-
anisms relying on the intrinsic material properties, gate 
voltage modulation primarily manipulates the energy band 
structure of sensing materials through electric field control. 
This modulation alters the Schottky barrier formed at the 
interface between the electrode and the sensing material, 
thereby regulating the sensor’s sensitivity [212]. Moreover, 
since the binding energy of analytes on the sensing material 
is strongly dependent on their adsorption orientation [213], 
the application of gate voltages with different polarities can 
modify the orientation of analytes, consequently enhancing 
the sensor’s desorption efficiency [120, 212, 214].

The control of heating, illumination and gate voltage 
represents straightforward and efficacious methods for the 
generation of multivariable outputs. In essence, these three 
approaches serve to enhance the strength of the interaction 
with a specific analyte, primarily by modifying the intrin-
sic properties of the sensing material (e.g., carrier trans-
port properties, surface reactivity, and carrier spin–orbit 
states). Modifying sensor operating parameters represents 
an expedient and accessible approach to augmenting one-
dimensional sensing information into higher dimensions. 
This methodology provides a solution for enhancing the 
sensor’s multi-analyte recognition capabilities and facilitat-
ing an understanding of underlying sensing mechanisms.

2.5.3  Feature Extraction Schemes: Extracting 
Characteristic from Output Curves

Obtaining multivariable outputs by changing multiple oper-
ating conditions of the sensor (e.g., simultaneously changing 
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the operating temperature and light conditions) is a complex 
operation that increases the use cost in practical applica-
tions. However, extracting multivariable outputs from sensor 
output characteristic curves (noise spectra, response-time 
curves, transfer characteristic curves, etc.) can yield a large 
amount of high-dimensional sensing information without 
changing the sensor operating conditions.

As demonstrated in Fig. 4f, Rumyantsev et al. leveraged 
the low-frequency noise spectrum of a single graphene 
FET-type gas sensor to achieve selective detection of tet-
rahydrofuran, methanol, acetonitrile, and chloroform [215]. 
The experimental results demonstrate that the various gas 
molecules exert disparate effects on the low-frequency noise 
spectrum of graphene. Some gases induce alterations in the 
resistance of graphene, whereas others exert influence on the 
noise spectrum of graphene, introducing distinctive bumps 
on its 1/f background. It is interesting to note that the vari-
ations in graphene resistance and noise spectra are uncor-
related. The construction of high-dimensional sensing infor-
mation from independent output variables is a crucial aspect 
in the recognition of multiple analytes by a single device. 
The extraction of multivariable outputs from noise spectra 
has been extensively employed for both chemoresistive and 
FET-type chemical sensors [215, 216]. However, its high 
requirements for test equipment restrict its implementation 
in portable detection devices.

As illustrated in Fig. 4g, Huang et al. utilized eleven output 
variables derived from the response-time curves of a single 
CuPc-modified graphene FET-type gas sensor for the detec-
tion of  NH3 and  PH3 [217]. The eleven extracted output vari-
ables obtained from the exposure and flushing phases of the 
response-time curves were subjected to PCA and LDA pat-
tern recognition algorithms for the identification of gas con-
centration and species. The experimental results demonstrate 
that the accuracy, sensitivity, and specificity of the sensor for 
both gases are nearly 100% at the 500 ppb level. The appli-
cation of time-dependent response curves for the extraction 
of multivariable outputs is most prevalent in chemoresistive 
sensors, where the test is straightforward and the number 
of output variables that can be extracted is considerable. 
However, the output variables obtained through this extrac-
tion method are challenging to correlate with the underlying 
sensing mechanisms, and it is not feasible to achieve sensing 
mechanism-oriented output variable extraction.

FETs have a variety of output signals, including time-
dependent Ids, output characteristic curves, and transfer 

characteristic curves. Among these, the transfer character-
istic curve represents the relationship between the measured 
Ids and Vgs at a fixed Vds. The rich variation patterns of the 
transfer characteristic curve in the analytes not only con-
tain valuable sensing information for identification but also 
reveal the underlying sensing mechanisms. Figure 4h illus-
trates the four distinct variation patterns of transfer charac-
teristic curves observed in CNT-based FET-type biosensors 
exposed to biomarkers. These variation patterns illustrate the 
underlying sensing mechanisms, which include electrostatic 
gating, Schottky barrier modulation, gate capacitance modu-
lation, and carrier mobility modulation [218]. Electrostatic 
gating describes a process wherein adsorbed analytes modu-
late the local electric field or carrier concentration of CNTs 
through electrostatic interactions, resulting in a leftward or 
rightward shift of the transfer characteristic curves [219]. 
Since the interaction is mediated solely by electrostatic 
forces, it does not involve direct charge transfer [220]. The 
Schottky barrier modulation is attributed to the adsorption 
of biomarkers at the electrode-CNT contact, which alters the 
energy band alignment by modifying the local work func-
tion [221]. The Schottky barriers exert disparate inhibitory 
effects on the transport of holes and electrons, thereby influ-
encing the p- and n-branches of the transfer characteristic 
curves to diverge in opposing directions. Gate capacitance 
modulation is attributable to adsorbed low permittivity bio-
markers, which exert an effect on the gate capacitance and, 
as a consequence, modify the gate voltage control efficiency 
[222]. Consequently, the p- and n-branches of the transfer 
characteristic curve are tilted to the left and right, respec-
tively. Carrier mobility modulation refers to the scattering 
effect of adsorbed biomarkers on carriers, thus affecting the 
carrier mobility [223]. This results in a simultaneous change 
to the conductance of the p- and n-branch of the transfer 
characteristic curve. The four curve variation patterns illus-
trated in Fig. 4h provide a qualitative basis for analyzing 
the sensing mechanism. By extracting the output variables 
that reflect the subtle changes in the curves, it is possible to 
achieve the identification of analytes.

In graphene-based FET-type chemical sensors, the left/
right shift of the Dirac point is employed extensively for 
analyte differentiation identification [224]. Figure 4i illus-
trates a schematic of the differentiation between positive 
and negative samples of COVD-19, utilizing Dirac point 
offsets [225]. This research demonstrated 100% detection 
accuracy for ten positive and ten negative samples using 
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unmodified crumpled graphene. The use of the Dirac point 
offset as the sole output variable presents a significant chal-
lenge in the detection of multiple analytes in complex chemi-
cal atmospheres.

Similar to Fig. 4h, graphene-based chemical sensors are 
also capable of reflecting the underlying sensing mecha-
nisms through the curve variation patterns, which pro-
vides a good basis for the analyte identification. Figure 4j 
illustrates four variation patterns of transfer characteristic 
curves for graphene-based FET-type chemical sensors, cor-
responding to four sensing mechanisms [131]. Firstly, the 
transfer of positive and negative charges between the ana-
lyte and graphene results in an overall left/right shift of the 
curve, namely a left/right shift of the Dirac point. Secondly, 
the charged analyte affects the hole mobility through the 
Coulomb force, which causes a change in the slope of the 
p-branch. Thirdly, similarly, electron mobility is affected 
by charged analytes, causing a change in the slope of the 
n-branch. Finally, the upward/downward shifts of the Dirac 
point, which is the residual carrier to charged impurity con-
centration ratio, can also be affected by the charged analyte. 
The distinctive V-shaped transfer characteristic curve of 
graphene displays diverse variation patterns in analytes. By 
extracting multiple output variables that can characterize the 
curve variations, a multi-dimensional sensing information 
space is established, enabling the final analyte identification.

Figure 4h-j illustrates the distinct transfer characteristic 
curves of carbon-based FETs in the presence of different 
analytes, where the extraction of multiple output variables 
that quantitatively describe the curve variations serves as 
a prerequisite for analyte identification. Three primary 
methods are typically employed for parameter extraction: 
1) intrinsic electrical parameters of FETs, 2) drain-source 
current (Ids) at various gate voltages (Vgs), and 3) compos-
ite parameters. Firstly, the intrinsic electrical parameters 
of FETs include threshold voltage (Vth), transconductance 
(gm), carrier mobility (μ), subthreshold swing (SS), cur-
rent on/off ratio (Ion/Ioff), and saturation current. The Vth, 
which characterizes the gate voltage at which the FET tran-
sitions from the off-state to the on-state, can be extracted 
using methods such as the maximum transconductance 
method or linear extrapolation technique [226]. This 
parameter effectively evaluates the overall lateral shift of 
the curves. The gm, defined as gm = (∂Ids/∂Vgs)|Vds = const, 
quantitatively describes the amplification capability of the 
FETs and can be used to assess the slope of the p/n branch 

[130]. The μ, which characterizes the ability of charge 
carriers to move under an applied electric field, is calcu-
lated as μ = (Lc/WcVdsCox)∙(∂Ids/∂Vgs), where Lc, Wc, and 
Cox represent the channel length, channel width, and gate 
oxide capacitance per unit area, respectively. This param-
eter serves as a quantitative descriptor of analyte-induced 
modifications in the properties of the sensing material [227, 
228]. Although SS, Ion/Ioff, and saturation current can also 
quantitatively describe curve variations, they are less fre-
quently employed. Secondly, to achieve a more detailed 
characterization of curve variations, the Ids at different Vgs 
can be extracted. This method is straightforward and reli-
able, requiring no complex calculations [229]. Thirdly, com-
posite parameters are derived from combinations of multiple 
variables or functions through mathematical operations or 
transformations. Examples include the ratio of the remaining 
carrier concentration to the concentration of charged impuri-
ties (n*/nimp), the ratio of electron to hole carrier mobility 
(µe/µh), and the product of carrier mobility and threshold 
voltage (µVth). Well-designed composite parameters not only 
facilitate multi-analyte identification but also provide quan-
titative insights into sensing mechanisms [131, 132].

3  Carbon‑Based Field‑Effect Transistor‑Type 
Chemical Sensors for Multivariable Sensing 
Applications

The distinctive variation patterns of transfer characteristic 
curves of carbon-based FET-type chemical sensors in ana-
lytes not only elucidate the underlying sensing mechanisms 
but also facilitate the extraction of pivotal electrical param-
eters as output variables for analyte identification. This sec-
tion presents methodologies for the extraction electrical 
parameters from transfer characteristic curves, as well as 
discuss their applications in combination with pattern rec-
ognition algorithms for classification and recognition.

3.1  Feature Extraction and Multivariable Sensing 
Applications of CNTs‑Based FETs

Unlike graphene, the transfer characteristic curves of CNT-
based FET-type chemical sensors do not usually have a dis-
tinct bipolar character. Therefore, output variable extrac-
tion is usually performed by utilizing the curve changes 
induced by one type of carrier, e.g., p-branch (holes) or 
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n-branch (electrons) curve changes. Silva et al. used metal 
nanoparticle-modified CNT-based FET-type sensor arrays 
(bare-oxidized SWCNT, Au, Pt, Rh, and Pd) to classify five 
basic tastants: saltiness (NaCl), sweetness (glucose), sour-
ness (citric acid), bitterness (caffeine), and umami (glutamic 
acid) [229]. Figure 5a depicts the SEM images of the sensor 
array and the channel area (inset). Figure 5b illustrates the 
method of extracting eleven features from the transfer char-
acteristic curve. The meanings of each parameter are as fol-
lows: (1) relative change in transconductance, (2) threshold 
voltage (Vth) shift, (3, 10) relative change in conductivity 
at ± 0.6 Vg, (4–9) change in overall conductance normal-
ized to conductance at Vth, and (11) the relative change in 
minimum conductance. The eleven features were input into 
the LDA algorithm as output variables of the sensor array 
for the differentiation of the five analytes. The results of the 
differentiation without overlap in two dimensions are shown 
in Fig. 5c. In contrast, when only three features (minimum 
transconductance, maximum transconductance, and thresh-
old voltage) were utilized, the classification outcomes of 
the five analytes overlapped (Fig. 5d), indicating that an 
insufficient number of features can impede the identifica-
tion of alterations in the curve. In subsequent work, Bian 
et al. adopted the same feature extraction scheme to suc-
cessfully differentiate five purine compounds (adenine, gua-
nine, xanthine, uric acid, and caffeine) [230]. They found 
that employing SVM could reduce the number of required 
feature variables while maintaining almost the same clas-
sification accuracy. Furthermore, the interactions between 
structurally similar purine derivatives and the sensor were 
analyzed using density functional theory (DFT) calcula-
tions. These works employ the multivariable output capac-
ity of carbon-based chemical sensors to develop a solution 
for achieving analyte identification with non-specifically 
modified sensor arrays. The employed feature extraction 
scheme is an effective means of accurately portraying the 
curve variation. Shao et al. employed Au nanoparticles to 
modify a CNT-based FET-type sensor for the recognition of 
four classes of opioids [231]. Figure 5e illustrates the vari-
ation of transfer characteristic curves in fentanyl, codeine, 
hydrocodone, and morphine. To extract sensing informa-
tion from the curves with a similar variation pattern, the 
authors extracted fifteen feature parameters as inputs to the 
LDA, achieving a recognition accuracy of 91.2% for the 
four opioids. To improve the detection of trace fentanyl (less 
than 10 ng  mL−1), the fentanyl antibodies were immobilized 

on the surface of gold nanoparticles, resulting in a LoD of 
10.8 fg  mL−1. In this work, the sensor array, composed of 
both specific and non-specific sensing units, is employed for 
the recognition of multiple analytes and the extension of the 
sensor’s linear range.

To augment the number of analyte species that can be 
identified and to diminish the number of sensing units in 
the array, Shi et al. employed a Pd-modified CNTs random 
network as the channel of a FET-type gas sensor for the 
identification of six atmospheric pollutants [130]. In this 
study, three types of gas adsorption sites were constructed: 
the homogeneous CNTs random network, Pd nanoparticles 
deposited on the CNTs surface, and the source-drain elec-
trodes composed of Pd/Au. These provide different pathways 
for analytes with different chemical properties to interact 
with the sensor. Figure 5f illustrates the variation patterns 
of the transfer characteristic curves in four gases: tilt, 
translation, and rotation. From these curves, eight feature 
parameters were extracted: Δgm, ΔVth, ΔIds(−60V), ΔIds(−40V), 
ΔIds(−20V), ΔIds(0V), ΔIds(20V), and ΔIds(40V). The parameter 
Δgm is used to quantify the tilt of the curve, which represents 
the change in carrier mobility. Similarly, the parameter ΔVth 
is employed to describe the curve’s left–right translation, 
which corresponds to the alteration in carrier concentration. 
Additionally, the remaining ΔIds at varying gate voltages are 
utilized to illustrate the curve’s variation trend in greater 
detail. Figure 5g illustrates the outcomes of the classifica-
tion process conducted using PCA, wherein all six gases 
were successfully distinguished from one another, exhibiting 
no overlap. This work essentially analyzes the influences 
of gas molecules on the transfer characteristic curves and 
establishes the correlation between electrical parameters and 
gases with different chemical properties. The classification 
and identification of six gases by one sensor is realized, 
overcoming the problem of many sensing units and large 
size required for the sensor array.

Multivariable sensing technology has also been widely 
applied in biosensors, with the majority of applications focus-
ing on distinguishing target analytes from interfering sub-
stances. This is particularly critical because many biological 
samples (e.g., blood, sweat, saliva, and urine) contain not only 
the target analytes but also various substances that can influ-
ence sensing results [232]. In the works by Bian et al. and Liu 
et al., CNT-based FET-type sensors were used for the detec-
tion of  Hg2⁺ [205], live/dead cells [233], and bacterial vagi-
nosis (BV) positive/negative samples [234]. In these studies, 
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Fig. 5  a SEM images of the carbon nanotube-based FET-type sensor array and channel region. b Eleven feature parameters extracted from 
the variation of transfer characteristic curves. Classification results of five basic tastants performed by LDA using c eleven and d three fea-
ture parameters. Reproduced with permission [229].  Copyright 2017, American Chemical Society. e Variation of transfer characteristic curves 
of carbon nanotube-based FET-type sensors in fentanyl, codeine, hydrocodone, and morphine. Reproduced under terms of the CC-BY license 
[231]. Copyright 2024, Wiley–VCH. f Variation of transfer characteristic curves of carbon nanotube-based FET-type sensors in four atmospheric 
pollutants including tilt, translation and rotation. g Classification results of six atmospheric pollutants using eight feature parameters combined 
with PCA. Reproduced with permission [130]. Copyright 2024, American Chemical Society. h Diagram illustrating the changes in the transfer 
characteristic curve at various stages of the enzymatic reaction. i Typical  Gm variation during the enzymatic reaction. j Time-evolved transfer 
characteristic curves displayed as a 2D current heatmap. h‑j reproduced with permission [49]. Copyright 2024, American Chemical Society. k 
Qualitative analysis of 13 oxyanions (500 μM) using LDA, achieving 100% correct classification. Reproduced with permission [235]. Copyright 
2022, American Chemical Society
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the authors extracted features from the transfer characteris-
tic curves and, by combining pattern recognition algorithms 
(e.g., random forest, LDA, SVM, and PCA), optimized the 
feature parameters to achieve highly selective detection of the 
target analytes. Jang et al. integrated a paper-based analyti-
cal cartridge with a FET and analyzed the kinetic data from 
transfer characteristic curves using a deep learning model, 
successfully performing quantitative analysis of cholesterol 
concentrations in patient plasma samples [49]. As shown in 
Fig. 5h, conventional FET analysis methods typically focus 
on a single output variable (e.g., ΔVth) and the states at the 
initial and end points, which fail to capture changes occurring 
during enzyme reactions that are influenced by time-dependent 
enzymatic reaction rates and sample matrix effects. In Fig. 5i, 
the changes in  Gm during enzymatic reactions are displayed, 
reflecting the effects of enzymatic reaction rates, mixing pro-
cesses in the cartridge, and sample matrix effects. To compre-
hensively capture and interpret the dynamic nature of these 
biochemical processes, the authors leveraged the universal 
function approximation capability of neural networks to ana-
lyze the heatmap of transfer characteristic curves shown in 
Fig. 5g. This heatmap incorporates all the enzymatic kinetics 
details, such as  Vth, ΔVth,  Gm, ΔGm, mobility, time, and drift. 
Through deep learning-based analysis of these feature param-
eters, detection of proteins in plasma samples was achieved 
with minimal interference from varying pH levels in plasma, a 
coefficient of variation (CV) as low as 6.46%, and an  r2 greater 
than 0.976. Mitobe et al. developed an organic FET biosensor 
with an extended-gate structure [235]. By analyzing the output 
characteristic curves using LDA and SVM, they achieved the 
detection of 13 oxygen-containing anions with a single sen-
sor and demonstrated the highly selective analysis of hydro-
gen monophosphate present in human serum. These studies 
collectively highlight the immense potential of multivariable 
sensing technology in biosensing applications. By leveraging 
the high-dimensional sensing space constructed from multiple 
output variables, it is possible not only to achieve multi-analyte 
recognition but also to eliminate the influence of interfering 
analytes, thereby improving selectivity.

3.2  Bipolar Curve Feature Analysis for Enhanced 
Analyte Recognition of Graphene‑Based FETs

The distinctive V-shaped transfer characteristic curve and 
exceptional monomolecular sensitivity of graphene have 

contributed to its extensive utilization in multivariable 
chemical sensors. Researchers have devised a multitude of 
techniques for extracting features as sensor output variables, 
based on the characteristics of the curve and the underly-
ing sensing mechanisms. Sensi et al. designed an ambipo-
lar electrolyte-gated transistor immunosensor (rGO-EGT) 
using rGO as the channel and an infliximab (IFX)-specific 
probe functionalized on the gate electrode [236]. This sen-
sor enables the selective and quantitative detection of anti-
drug antibodies (ADAs). The concentration of IFX antibod-
ies (ATI) in patient serum is typically very low (1–10 pM), 
and detection is often hindered by interference from tumor 
necrosis factor-alpha (TNF-α). The authors first employed 
the Gumbel distribution to fit the transfer characteristic 
curves, from which they extracted three key parameters: 
Vcnp, Icnp, and α, corresponding to the voltage, current, and 
curvature parameters at the Dirac point, respectively. These 
parameters were used to quantitatively analyze the changes 
in the transfer characteristic curves of the rGO-EGT in the 
presence of analytes. The sensor not only effectively dis-
tinguished ATI from TNF-α but also achieved a theoretical 
detection limit for ATI as low as 10 aM. Figure 6a illustrates 
the graphene-based FET-type biosensor developed by Tsui 
et al. [237]. The identification of COVID-19 positive and 
negative samples was conducted using the three curve fea-
ture extraction schemes depicted in Fig. 6b in conjunction 
with LDA, SVM, and PCA pattern recognition algorithms. 
The Dirac Point Set comprises four dimensions: the voltage 
and current at the baseline Dirac point, and the voltage and 
current at the sample Dirac point. The Curve Estimation Set 
contains nine dimensions: the Dirac point, four uniformly 
spaced I-V points to the left of the Dirac point, and four 
uniformly spaced I-V points to the right. The All Points Set 
employs all points in the curve to construct the feature space. 
Figure 6c illustrates the outcomes of the classification pro-
cess utilizing the manual decision boundary delineated by 
the Dirac Point Offset, with an accuracy rate of 68.4%. There 
is considerable overlap in the classification results obtained 
using the Dirac Point Set in conjunction with LDA, with an 
accuracy of 65.7%. By using the higher dimensional Curve 
Estimation Set and All Points Set to depict the curve varia-
tions in more detail, with the support of the LDA algorithm, 
the accuracy is 96.2% and 99.0%, respectively. It can be 
observed that the utilization of higher-dimensional feature 
spaces facilitates enhanced recognition. However, an excess 
of features yields limited improvement and increases the 
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computational burden of the sensing system. The sensing 
mechanism should be employed as a guiding principle to 
extract critical feature parameters as the output variables 
of the sensor.

Figure 6d illustrates a graphene-based FET-type gas sen-
sor developed by Hayasaka et al. The transfer characteristic 
curve is composed of four distinctive physical attributes, 
forming four-dimensional output variables. This enables 
precise quantitative classification of water, methanol, and 
ethanol, as well as qualitative differentiation of binary mix-
tures [131]. Figure 6e illustrates the transient conductivity 
distribution of the unmodified graphene sensor (Pristine 
GFET) in three analytes as a function of gate voltage. In 
accordance with the four gas detection mechanisms illus-
trated in Fig. 4j, the V-shaped conductivity curves are 
decomposed into four distinct physical parameters: carrier 
concentration (ne/h), hole mobility (µh), electron mobility 
(µ), and the ratio of the remaining carrier concentration to 
the concentration of charged impurities (n*/nimp). Informa-
tion specific to the gas molecules on the graphene surface, 
such as charge magnitude, dipole moment, etc., is stored 
through these physical parameters [238–240]. Figure 6f-g 
illustrates the confusion matrices for predictions generated 
by a multilayer perceptron classifier with a feed-forward 
neural network structure. The Pristine GFET exhibits an 
accuracy of 96.2%, whereas another sensor with  RuO2 func-
tionalization via ALD (ALD-RuO2-GFET) demonstrates 
an accuracy of 100%. Figure 6h shows the classification 
accuracy when using any two or three of the four pristine 
GFET features (ne/h, µe, µh, and n*/nimp), as well as the clas-
sification accuracy when the ALD-RuO2-GFET features 
are included. It can be observed that extending the feature 
space to higher dimensions results in improved accuracy. 
Figure 6i depicts the results of the feature importance study, 
which was conducted using a one-way analysis of variance 
(ANOVA) F-test. The results indicate that µe is the most 
important feature, while n*/nimp is the least important. This 
work presents a novel approach to multi-analyte identifica-
tion, whereby key physical parameters that reflect the sens-
ing mechanism are extracted from transfer characteristic 
curves. This method avoids the addition of multiple func-
tional materials, offering a robust theoretical and experi-
mental foundation for the development of miniaturized 
sensor arrays.

In addition to the doping and scattering induced by gas 
adsorption, Agbonlahor et al. demonstrated that the distinc-
tive charge transfer resulting from the formation of van der 
Waals (vdW) bonding (i.e., graphene-molecule vdW com-
plexes) between adsorbed gases and graphene channels can 
also be utilized as a means of gas recognition [132]. Fig-
ure 6j illustrates a schematic of the activated carbon (a-CF) 
functionalized graphene-based FET gas sensor, accompa-
nied by a laser microscopy image of the channel region. This 
work introduces a Charge Neutrality Point Disparity (CNPD) 
test scheme. The method employs a voltage (Vt) that modu-
lates the strength of the vdW interaction between graphene 
and adsorbed gas molecules, applied via the gate before the 
transfer characteristic curve measurement. Figure 6k illus-
trates a schematic of the transfer characteristic curve test 
utilizing CNPD, along with the eight feature parameters 
extracted from it. The d-CNPD monitors the charge transfer 
induced by Vt modulated gas adsorption. The µe and µh are 
used to detect electron and hole scattering, respectively. The 
µhVt-ratio and µeVt-ratio are employed to assess the impact of 
Vt polarity on graphene-gas hole/electron, respectively. The 
Iration and α are utilized to monitor the Ids alterations. The 
µe/µh is utilized to assess the relative changes in electron and 
hole mobility. Figure 6l illustrates the confusion matrices 
for the identification of atmospheric ammonia, atmospheric 
acetone, ammonia in dry air, and acetone in nitrogen using 
XGBoost, KNN, and Naïve Bayes models. The respective 
accuracies are 100%, 96.34%, and 95.12%. The significance 
of the feature parameters obtained using the Game theory 
approach of SHapley Additive exPlanations (SHAP) is 
shown in Fig. 6l, revealing the correlation between the fea-
ture parameters and the accurate model output predictions. 
In this study, the researchers concentrated on the doping 
and scattering characteristics of graphene-molecule van der 
Waals complexes. These were derived as feature variables 
that reflected the properties of the analytes through CNPD 
testing, which ultimately resulted in the precise identifica-
tion of four analytes using a single sensor.

Whether it is a CNT or a graphene-based FET-type 
chemical sensors, the rich transfer characteristic curves 
in the analytes are the key to their multivariable sensing 
capability. Various feature parameter extraction schemes are 
directed to the purpose of establishing one-to-one fingerprint 
information between analytes and curve variation patterns 
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Fig. 6  a Optical photograph and schematic of graphene-based FET-type biosensor. b Three transfer characteristic curve feature extraction schemes: the Dirac Point 
Set, the Curve Estimation Set, and the All Points Set. c Manual decision boundary estimation of the Dirac voltage difference, classification of the Dirac Point Set 
using LDA, and classification of the Curve Estimation Set using LDA. Reproduced with permission [237].  Copyright 2023, IEEE. d Schematic diagram of a gra-
phene-based FET-type gas sensor. e Transient conductivity distribution of an unmodified graphene sensor (Pristine GFET) in three analytes as a function of gate volt-
age. Confusion matrices for prediction using a multilayer perceptron classifier with a feed-forward neural network structure: f Pristine GFET, g ALD-RuO2-GFET. h 
Accuracy of predictions using different number of feature parameters. i Results of feature importance studies performed using one-way analysis of variance (ANOVA) 
F-test. Reproduced under terms of the CC-BY license [131]. Copyright 2020, Nature Publishing Group. j Schematic and laser microscopy images of the channel 
region of a graphene-based FET-type gas sensor functionalized using activated carbon (a-CF). k Schematic of transfer characteristic curve test using Charge Neutral-
ity Point Disparity (CNPD) and eight feature parameters extracted from it. l Confusion matrices for four analytes identified using XGBoost, KNN and Naïve Bayes 
models. Importance of feature parameters obtained using Game theory approach of SHapley Additive exPlanations (SHAP). Reproduced with permission [132]. 
Copyright 2023, Elsevier
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by extracting key parameters that are closely related to the 
sensing mechanism. Overcoming the complex specificity 
modification process of the sensor array, the qualitative and 
quantitative analysis of multiple analytes using a few or even 
a single sensor is realized.

4  Conclusion and Outlook

In this review, research progress of carbon-based multivari-
able chemical sensors used for the recognition of multiple 
analytes in complex chemical environments was reviewed. 
From the earliest monovariable chemical sensors to sensor 
arrays to multivariable chemical sensors, the evolution of 
these technologies reflects researchers’ continuous efforts 
to develop high-performance, multifunctional, and miniatur-
ized sensing devices. The rapid developments in the sensing 
field have resulted in the emergence of a large number of 
sensing materials with excellent properties and converters 
with various structures. How to fully exploit the variations 
in the properties of the sensing material and the output vari-
ables of the transducer will be critical to achieving further 
progress in the field. The design of multivariable chemical 
sensors is based on three fundamental criteria: 1) the use of 
sensing materials that can respond differently to analytes; 
2) the incorporation of transducers that are able to read and 
translate changes in the properties of the sensing materials 
into multiple independent output variables; and 3) the inte-
gration of pattern recognition algorithms that are capable of 
analyzing the data and providing identification results [8]. 
The large specific surface area, monomolecular detection 
capability, and diverse modes of interaction with analytes 
of carbon-based materials such as graphene and CNTs make 
them ideal as sensing materials for multivariable sensors. 
The unique amplification capability and transfer character-
istic curve of FETs that varies with the external chemical 
environment make them capable of multivariable outputs. 
The combination of carbon-based materials and FETs has 
reinvigorated the development of multivariable sensors. 
With the in-depth study of carbon-based FET-type chemical 
sensors, a variety of schemes for extracting output variables 
from transfer characteristic curves have been developed. 
From the simple extraction of feature points in the curve 
to the decoupling of physical parameters from the curve 
that can reflect the sensing mechanisms, it has been shown 
that the establishment of fingerprint information between 

analytes and output variables needs to be oriented to the 
comprehensive understanding of the sensing mechanisms. 
The advancement of computer science has led to the advent 
of numerous high-performance pattern recognition algo-
rithms, which have undoubtedly served as a catalyst for the 
development of multivariable sensor output variable extrac-
tion and analyte identification.

The multianalyte recognition capability of carbon-based 
multivariable sensors enables them to provide excellent 
selectivity and stability in various types of complex chemical 
environments, such as the detection of blood/sweat biomark-
ers, atmospheric pollutants, and toxic industrial chemicals. 
To further develop the application potential of multivariable 
sensors, it is essential to explore the following aspects.

Firstly, the root of multivariable output capability is attrib-
uted to the diverse sensing mechanisms between the sensing 
material and the analyte. Bottom-up theoretical computa-
tional tools facilitate an exhaustive, quantitative comprehen-
sion of the impact of analyte species and concentration on 
material properties [241–243], including temperature, con-
ductivity, work function, and permittivity. This understand-
ing can guide the design of novel sensing materials as well 
as the modification of existing materials. In recent years, 
the development of hybrid materials, particularly those 
combining carbon with other 2D materials (e.g., graphene-
MoS2 heterostructures), has emerged as a promising trend 
[244–246]. These hybrid materials leverage the synergistic 
effects of their constituent components, enabling tailored 
electronic properties, improved interfacial interactions, and 
enhanced sensitivity [247]. Such advancements are pivotal 
for achieving sensing materials with monomolecular sen-
sitivity and diverse response modes, driving the evolution 
of multivariable sensors. Furthermore, the development of 
pre-positioned molecular filters that are integrated with sens-
ing materials will enhance the stability and selectivity of the 
sensors in challenging chemical environments [248, 249], 
such as those containing potent interfering analytes and high 
humidity. Complementing this, advanced materials like tai-
lored nanomaterials and polymer composites [250–252], as 
well as hybrid sensing platforms combining multiple trans-
duction mechanisms (e.g., optical, electrochemical, and 
thermal) [253–255], further enhance selectivity and reduce 
overlap, improving sensor reliability.

Secondly, the FET must be capable of accurately con-
verting the input signal from the sensing material, while 
accounting for any output bias introduced by external 
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factors. The sensing material is in direct contact with the 
dielectric layer of the FET, and the complex interfacial envi-
ronment affects the carrier transport in the sensing material 
thereby generating an output drift, e.g., carrier fluctuation 
due to surface defects and dangling bonds. The optimization 
of the dielectric layer preparation process and the implemen-
tation of surface treatment can enhance the output stability 
of FET devices. Furthermore, the testing of transfer charac-
teristic curves necessitates the continuous scanning of the 
gate voltage. However, prolonged gate bias may result in the 
fixation of charged analytes on defects in the dielectric layer. 
This will offset some of the gate voltage, causing a threshold 
voltage drift [256]. The development of novel electrical test 
methods, such as pulsed gate voltage scanning, can reduce 
the impact on the intrinsic electrical performances of FETs 
[257, 258].

Thirdly, the extraction and screening of output variables 
from multivariable sensors, as well as the analysis of high-
dimensional sensing data, necessitates the utilization of 
high-performance pattern recognition algorithms that can 
be directly integrated into sensor systems to enable real-
time processing and interpretation of complex data streams. 
Given the constrained computational resources of miniatur-
ized sensing devices, future pattern recognition algorithms 
will need to pre-screen the “most valuable” items from a 
large number of output variables in order to improve the 
efficiency of analyte identification. To this end, more effi-
cient algorithms, such as sparse representation techniques 
[259, 260] or feature selection methods based on mutual 
information [261–263] or PCA, can be employed to extract 
independent and informative features from the output vari-
ables. These methods reduce redundancy and dimensional-
ity, thereby optimizing computational efficiency without 
compromising analytical performance. Furthermore, it is 
challenging to gather a substantial amount of experimental 
data for the model training of pattern recognition algo-
rithms within a limited time. Developing pattern recogni-
tion algorithms applicable to a small number of samples 
will reduce the difficulty of obtaining experimental data 
and improve development efficiency.

In conclusion, the integration of carbon-based materials 
with FETs represents a significant step forward in the prac-
tical application of multivariable sensors for analyte iden-
tification. Looking ahead, further advancements in sensing 
materials, transducers, and pattern recognition algorithms 

are poised to usher in a new era of highly efficient and 
versatile sensors. Beyond their technical potential, these 
innovations promise transformative societal impacts. In 
environmental monitoring, such sensors could enable real-
time, precise detection of pollutants, driving more effective 
conservation and public health strategies. In healthcare, 
they may revolutionize early disease diagnosis, personalized 
medicine, and continuous health monitoring through wear-
able or implantable devices. As these technologies evolve, 
their integration with artificial intelligence and data analytics 
could further enhance their predictive and diagnostic capa-
bilities. Ultimately, the continued development of chemical 
sensing technologies holds immense promise for addressing 
pressing global challenges, fostering a healthier and more 
sustainable future.
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