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HIGHLIGHTS

• Artificial intelligence-enabled wearable device with boron nitride nanotubes (BNNTs)-based piezoelectric film for accurate joint 
torque sensing.

• Inverse-designed structure optimizes biomechanical compatibility for enhanced knee motion tracking.

• High-sensitivity BNNTs/polydimethylsiloxane composite enables precise and dynamic knee motion signal detection.

• Lightweight neural network processes complex signals for accurate torque, angle, and load estimation.

• Real-time monitoring system provides instant knee torque assessment for daily use.

ABSTRACT Joint health is critical for musculoskeletal (MSK) conditions 
that are affecting approximately one-third of the global population. Moni-
toring of joint torque can offer an important pathway for the evaluation of 
joint health and guided intervention. However, there is no technology that 
can provide the precision, effectiveness, low-resource setting, and long-
term wearability to simultaneously achieve both rapid and accurate joint 
torque measurement to enable risk assessment of joint injury and long-term 
monitoring of joint rehabilitation in wider environments. Herein, we pro-
pose a piezoelectric boron nitride nanotubes (BNNTs)-based, AI-enabled 
wearable device for regular monitoring of joint torque. We first adopted an 
iterative inverse design to fabricate the wearable materials with a Poisson’s 
ratio precisely matched to knee biomechanics. A highly sensitive piezoelec-
tric film was constructed based on BNNTs and polydimethylsiloxane and 
applied to precisely capture the knee motion, while concurrently realizing 
self-sufficient energy harvesting. With the help of a lightweight on-device artificial neural network, the proposed wearable device was 
capable of accurately extracting targeted signals from the complex piezoelectric outputs and then effectively mapping these signals to 
their corresponding physical characteristics, including torque, angle, and loading. A real-time platform was constructed to demonstrate 
the capability of fine real-time torque estimation. This work offers a relatively low-cost wearable solution for effective, regular joint torque 
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monitoring that can be made accessible to diverse populations in countries and regions with heterogeneous development levels, poten-
tially producing wide-reaching global implications for joint health, MSK conditions, ageing, rehabilitation, personal health, and beyond.

KEYWORDS Artificial intelligence wearables; Joint torque monitoring; Boron nitride nanotubes; Piezoelectric devices; Inverse design

1 Introduction

Musculoskeletal (MSK) conditions are a leading cause of 
disability worldwide, affecting approximately 1.71 billion 
people in 2019 and placing a significant burden on health-
care systems and economies [1–4]. Among the major MSK 
disorders, joint-related conditions such as osteoarthritis 
and rheumatoid arthritis significantly impact mobility and 
rehabilitation needs [5, 6]. These conditions not only com-
promise joint stability but also increase susceptibility to 
injuries, creating a cycle that leads to chronic pain, reduced 
function, and long-term disability [7]. Given the increasing 
prevalence of MSK disorders, particularly among high-risk 
populations such as the elderly and individuals with obesity, 
reliable methods for joint health monitoring are essential 
[2, 8–11].

A key factor in joint health assessment is the ability to 
quantify joint torque, which plays a crucial role in under-
standing internal joint mechanics, injury risk, and rehabili-
tation progress [12, 13]. Joint torque, influenced by joint 
angles, motion speed, external loads, and muscle activation, 
directly reflects internal joint stresses [13]. Excessive torque, 
particularly in joints like the knee, is a primary factor in 
injuries such as ligament tears, meniscus damage, and ten-
don overload [14, 15]. The knee joint, classified as a modi-
fied hinge joint, is one of the most mechanically complex 
load-bearing structures in the human body [16]. It primar-
ily provides two degrees of freedom: flexion–extension 
and axial rotation. Flexion and extension are the dominant 
motions, typically ranging from ~ 0° to 135°, depending on 
individual anatomy and activity [17]. Axial rotation occurs 
to a limited extent when the knee is flexed, while minor 
lateral movements (abduction/adduction) may occur under 
specific conditions as passive responses to external forces. 
However, existing methods for assessing joint torque, includ-
ing isokinetic dynamometry [18], and inverse dynamics 
models [19], are confined to laboratory settings, or require 
complex motion capture setups, limiting their feasibility 
for real-world applications. The direct measurements like 

piezoelectric [20] and piezoresistive sensors [21] are inva-
sive, having only one degree of freedom, and fail to com-
prehensively evaluate its multifaceted biomechanics, thus 
necessitating the development of advanced wearable sensors 
capable of capturing these interactions.

Recent advances in wearable technologies have provided 
encouraging non-invasive approaches, such as surface elec-
tromyography (sEMG) [22, 23] and force myography (FMG) 
[24, 25], that have been used to measure the effective torque 
at the joints. However, EMG reflects neural activation rather 
than direct muscle force and is prone to artefacts, while 
FMG only captures surface-level muscle expansion of all 
muscles with agonist and antagonist muscle pairs. Ultra-
sound techniques [11, 26] allow muscle-specific measure-
ments with reasonably good precision, but their bulky form 
factor and high power consumption make them impractical 
for long-term wearable monitoring. A close comparison of 
recent advancements in joint monitoring (Table S1) further 
underscores the need for a new approach that provides pre-
cise, cost-effective, and efficient joint torque assessment, 
while also enabling long-term rehabilitation monitoring in 
real-world settings.

Wearable piezoelectric sensors present a promising 
alternative for real-time biomechanical monitoring [27]. To 
be suitable for dynamic joint motion sensing, piezoelectric 
materials must exhibit high sensitivity, flexibility, and 
stretchability. Boron nitride nanotubes (BNNTs) have 
emerged as a novel class of piezoelectric nanomaterials 
with unique advantages for wearable applications due 
to their exceptional mechanical strength [28], thermal 
stability [29], and intrinsic piezoelectric properties [30]. 
BNNTs exhibit high piezoelectric coefficients even at the 
nanoscale, attributed to the polarization induced by the 
electronegativity difference between boron and nitrogen 
atoms. This makes them highly responsive to mechanical 
deformation, offering a flexible and ultrathin platform 
for strain-induced charge generation. Previous studies 
have demonstrated piezoelectric responses in BNNT-
polyimide composites [31], BNNT-doped photocurable 
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polymers [32] and polydimethylsiloxane (PDMS)-BNNT 
composites [33], offering promising routes for fabricating 
mechanically durable piezoelectric materials. Despite 
these advantages, integrating high concentration BNNTs 
into wearable piezoelectric systems remains challenging, 
primarily due to dispersion difficulties in polymer matrices 
and the tendency of nanotubes to aggregate, reducing their 
piezoelectric efficiency. Existing methods, such as surface 
functionalization and ultrasonic dispersion, improve 
dispersibility but often compromise nanotube integrity and 
alignment, limiting their overall performance.

Integrating artificial intelligence (AI) into wearable 
sensing further enhances the interpretation of joint 
biomechanics and injury risk assessment [34]. Recent 
advancements in on-device AI [35–37] have enabled precise 
motion tracking and real-time data analysis, allowing 
for more accurate injury prevention and rehabilitation 
monitoring. However, to be viable for long-term, widespread 
use, both AI models and wearable devices must operate 
in low-power (both computational and operational) and 
resource-limited settings, while ensuring sustainable, 
continuous monitoring.

Herein, we present a new wearable technology for regu-
lar joint torque monitoring, utilising piezoelectric BNNTs-
based elastomer with embedded on-device AI algorithms. 
The structure of the piezoelectric elastomer was inversely 
designed to adapt the flexible and auxetic mechanics of 
knee joint-specific wearables, while harnessing the unique 
properties of piezoelectric BNNTs-based elastomers to 
achieve self-powered sensing, high sensitivity and harvest-
ing complex motion signals at joints (Fig. 1a). A light-
weight artificial neural network (ANN) algorithm was 
employed to analyse complex dynamic motion signals of 
the knee joint for accurate torque monitoring and to per-
form the consequent effective risk assessment (Fig. 1b). 
This technology offers a sustainable solution for long-term 
joint health monitoring, making it particularly suited for 
resource-constrained environments, where established 
healthcare, energy and computational infrastructures are 
not commonly available. Thus, this AI-enabled, piezoe-
lectric boron nitride nanotubes-based joint-specific wear-
able can concurrently enable both rapid, effective injury 
assessment and long-term rehabilitation of joint for diverse 
populations globally in countries and regions with hetero-
geneous development levels.

2  Materials and Methods

2.1  Material Synthesis

BNNTs with a boron nitride content greater than 99% were 
purchased from BNNT Materials (United States). To disperse 
BNNTs in PDMS, a concentration of 12 wt% BNNT relative 
to the PDMS base was used. Initially, BNNTs were added 
to tetrahydrofuran (THF) at a 4:1 ratio (THF to PDMS) to 
reduce viscosity, facilitating dispersion. Manual stirring was 
initially performed to ensure partial dispersion, followed by 
vortexing to further break down BNNT clusters. The mixture 
was vortexed for 24 h and then stirred continuously using 
a magnetic stirrer for 72 h to achieve uniform dispersion of 
BNNTs. To prevent BNNT re-clustering during this process, 
an argon purge was employed to gradually evaporate THF 
while stirring, a process that lasted approximately 48 h. This 
slow evaporation allowed the viscosity to increase steadily, 
ensuring that BNNTs remained homogeneously dispersed 
throughout the PDMS matrix.

Once dispersion was complete, the BNNT/PDMS mixture 
was combined with a crosslinking agent at a 1:10 ratio 
relative to the PDMS base (excluding BNNT content). The 
final mixture was stirred for 10 min to ensure homogeneous 
dispersion. For film preparation, the composite was degassed 
in a vacuum chamber to remove air bubbles. The degassed 
mixture was placed onto a PET film positioned on a glass 
plate and cast to a thickness of 1 mm. The cast mixture 
was left at room temperature for 24 h to cure. Demoulding 
coatings were applied as needed, depending on the PET 
sheet properties, to facilitate film removal.

2.2  Laser Cutting and Electrodes Coating

The designed pattern was imported to the laser cutting 
machine (Trotec, Speedy100R) to fabricate the negative 
Poisson’s ratio (NPR) structure. The film coated with con-
ductive layer was placed in the machine with laser power in 
25 W and cutting speed in 1 mm  s−1. The film was then used 
to coat electrode layers on both sides. Gold sputtering was 
performed for 20 min to deposit an ultrathin (~ 500 nm) gold 
layer. While gold is generally perceived as a high-cost mate-
rial, the thin film sputtering technique used in our fabrication 
process significantly reduces material consumption, making 
it a cost-effective choice. The total gold usage per device 
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is less than 10 mg, and based on current market prices, the 
estimated material cost remains below $0.80 per device. 
This makes it comparable to alternative materials like silver, 
while offering superior long-term stability and performance.

2.3  Tensile Testing

PDMS is mixed with crosslink agent at a 10:1 ratio and 
spread onto flat glass. It is crosslinked at 80 °C for 3 h to 

Fig. 1  Schematic illustration of AI-assisted knee joint monitoring. a Design, synthesis, fabrication, and integration of BNNT/PDMS-based flex-
ible sensors for ergonomic knee adaptation and sensitive dynamic motion capture. b AI-assisted estimation of joint injury risk based on dynamic 
joint signals. c Inverse design of the device’s auxetic structure to align with knee biomechanics
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form a thin film. Both PDMS and BNNTs-PDMS films were 
cut into a dog-bone shape, commonly used for tensile testing, 
with a gauge width of 8 mm, a gauge length of 20 mm, and a 
thickness of 0.30 mm. This standardized geometry ensures 
uniform stress distribution during mechanical testing. At 
least three samples were tested for each material with a 
constant displacement rate of 10 mm  min−1 using Instron 
5564. Tensile modulus of each sample was determined 
within the 20% of the maximum strain and calculated based 
on the Eq. (1):

where �l is the maximum stress within the linear tensile 
range, �l is the corresponding elastic strain. Toughness 
of each material was calculated from the area under the 
nominal stress–strain curve:

where �f  is the strain upon failure, σ is the engineering stress 
and ε is the engineering strain.

2.4  Finite Element Analysis

The finite element analysis was carried out with COMSOL 
Multiphysics. A step displacement was applied to the NPR 
[38–40] model formulated in COMSOL, whose Poisson’s 
ratio and von Mises stress were calculated to evaluate the 
performance of the model design. The BNNTs/PDMS 
material parameters were set up as tensile testing results 
which are Young’s modulus E = 0.63 MPa and Poisson’s 
ratio μ = 0.20, assuming a linear elastic response. The 
tensile process of the patch in general usage is within the 
low frequency (< 10 Hz) and elastic range, the structure 
is considered as linear elastic material during the finite 
element analysis. The initial structure was meshed in 
quadratic triangular elements and then optimised with 
tensile displacement of 10  mm and film thickness of 
0.30 mm. During the optimization, Nelder-Mead simplex 
algorithm [41] was adopted as shown in Fig. S1f, in which 
the judgement condition δ = 0.01. Structure parameters were 
regulated within ranges shown in Fig. S1c. The optimised 
structure was then calculated with displacement from 2 to 
10 mm to analyse its influence on the Poisson’s ratio.

(1)E =
�l

�l

(2)T = ∫
�f

0

�d�

2.5  Materials Characterization

The crystalline structures of the nanocomposites were 
characterized using X-ray diffraction (XRD) with a Rigaku 
MiniFlex system, utilising a Cu Kα radiation source 
(λ = 1.541 Å). Atomic force microscopy topography and 
nano-FTIR spectra of the nanocomposites were obtained 
using a scattering-type scanning near-field optical 
microscope (Neaspec s-SNOM). The measurements were 
performed under tapping mode using a platinum-coated 
atomic force microscopy (AFM) tip (~ 20  nm radius, 
NanoAndMore) oscillating at 250  kHz, while being 
illuminated by a broadband femtosecond infrared laser 
(TOPTICA Photonics) [42]. Fourier-transform infrared 
(FTIR) spectra were collected using a Nicolet iS10 
spectrometer with an attenuated total reflectance (ATR) 
module. For scanning electron microscopy imaging, samples 
were coated with a thin layer of Au/Pd and observed using 
a Zeiss EVO microscope.

2.6  Standard Piezoelectric Output Testing

The prepared BNNT/PDMS was prepared as a sandwiched 
by two copper electrodes for 2.0 cm × 2.0 cm standard device 
and tested in compression mode using a vibrational punch 
with a surface area of 1.13  cm2. The compression force was 
applied using a magnet shaker (Brüel & Kjær LDS V201) 
driven by a voltage-amplified arbitrary function generator 
(GW Instek AFG-2105). The output voltage was recorded 
using an oscilloscope (Rigol DS1054Z), while the output 
current of the device was measured using an electrometer 
(Keithley 6514). The maximum power density (P) was 
determined using the formula:

where V is the voltage measured across a resistance load R, 
A denotes the nominal contact area of the device.

2.7  Data Processing and Machine Learning Model

Machine learning dataset was collected and processed using 
Arduino Nano 33 BLE equipped with an ADC module 
for voltage measurement. At least 100 motion data were 
collected from each movement. Pre-Processing Pipeline: 

(3)P =
V2

A ⋅ R
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The average duration of recorded data for each experimental 
condition was 5 min, sampled at a frequency of 1000 Hz. 
The pre-processing procedure consisted of three steps: 
(1) Segmentation: The subject was instructed to perform 
knee flexion exercises every 3 s during data recording, 
and the signals were segmented accordingly, resulting in 
1056 segments. (2) Short-Time Fourier Transform (STFT) 
spectrum [43]: Each segment was subjected to an STFT with 
a window size of 256 data points and 50% overlap, using 
Python’s SciPy library. (3) Feature Extraction: The mean 
frequency components of the STFT were computed to serve 
as input features for model training.

To improve the robustness of joint torque estimation, multiple 
noise reduction techniques were implemented. White noise was 
filtered during preprocessing, while physiological noise from 
heart rate and respiration was attenuated using STFT filtering 
to remove low frequency artefacts. Mechanical noise, caused by 
sensor instability or sudden impacts, was minimized by securing 
the sensor with medical tape and leveraging frequency domain 
filtering to suppress transient disturbances. To enhance model 
generalization, cross-validation and data washing were applied 
to mitigate overfitting, while a fine-tuning process allowed the 
model to adapt to new users with minimal additional data. These 
strategies ensured stable signal acquisition and improved the 
reliability of real-time torque estimation across different move-
ment conditions. All models were implemented and trained 
using TensorFlow (version 2.10.0), running on Python 3.7.12. 
Three models were developed:

2.7.1  Baseline Model Based on Standard Knee Torque 
Dataset

The dataset was divided into training, validation, and test 
sets in a 7:1:2 ratios. An ANN with two dense layers was 
developed to analyse the features from different knee torque. 
By adding and adjusting a third dense layer, the model can 
be tailored to achieve different objectives, such as classifi-
cation to identify discrete torque categories or regression to 
estimate continuous torque values.

2.7.2  Classification Based Knee Torque, Angle, and Load 
Estimation Model

The knee torque estimation model was developed using a 
baseline neural network architecture. The dataset for this 

model was labelled with nine distinct torque levels, enabling 
the third dense layer to output probabilities corresponding 
to these 9 categories. A softmax layer was appended to 
normalize the probabilities, facilitating the classification 
of knee torque into one of the predefined levels. The 
model was trained using the Adam optimizer, with the 
sparse categorical cross-entropy loss function employed to 
evaluate classification error. Accuracy was defined as the 
proportion of correctly predicted labels relative to the total 
number of samples. The model was trained for 100 epochs, 
allowing sufficient exposure to the dataset for effective 
feature learning. The knee angle and load estimation 
models were developed using a similar methodology. 
These models utilised datasets labelled with knee angle 
and load categories, respectively, with the third dense layer 
configured to output probabilities for 3 distinct classes. This 
consistent approach ensured that the models were capable of 
accurately classifying knee biomechanical parameters based 
on their respective datasets.

2.7.3  Regression Based Knee Torque, Angle and Load 
Estimation Model

The regression model was developed to predict continuous 
knee torque values based on the extracted features. Build-
ing upon the baseline architecture, the third dense layer of 
the model was configured with a single output neuron, cor-
responding to the continuous torque value. The model was 
trained using the Adam optimizer, which adapts the learning 
rate during training to achieve efficient convergence. The 
mean squared error (MSE) was used as the loss function to 
measure the squared differences between predicted and true 
torque values. The training process was conducted over 100 
epochs. The angle and load estimation models employed the 
same structure as the torque estimation model. These models 
were trained using datasets labelled with angle and load, 
respectively. The Pearson correlation values were computed 
using the formula:

where r represents Pearson correlation coefficient, X 
represents the predicted value, and Y represents the true 
value.

(4)r =

∑

(Xi − X)(Yi − Y)
�

∑

(Xi − X)2 ⋅

�

∑

(Yi − Y)2
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2.8  Computational Efficiency of the Model

The computational efficiency of the model was analysed 
by measuring the model size and the required floating 
point operations. To further evaluate the model efficiency, 
the models were subsequently converted into TensorFlow 
Lite format and deployed on the STM32 microcontroller 
(NUCLEO F401RE, ARM 32-bit Cortex-M4 CPU) using 
STM32CubeIDE (version 1.16.0) with X-Cube-AI extension 
(version 9.0.0). Post-deployment evaluation was conducted 
using X-Cube-AI to assess the performance and resource 
utilization of the deployed model.

2.9  Real Time Monitoring and Evaluation

The real-time monitoring system employs a knee torque 
classification model, integrated into a MATLAB application, 
to evaluate knee biomechanics in real-time. To ensure 
reliability under real-world conditions, where knee torque 
may occasionally be absent, the dataset includes instances 
of zero torque, enabling the model to accurately predict such 
states. The system features a graphical user interface (GUI) 
that provides real-time visualization of knee torque values. 
Sensor data is transmitted to the application via universal 
asynchronous receiver/transmitter (UART) communication 
and displayed on dedicated graphical axes within the GUI. 
The system continuously monitors knee torque, generating 
warnings and delivering medical advice if the measured 
torque exceeds predefined safety thresholds. The incoming 
piezoelectric responses are stored in a circular data buffer 
with a capacity of 3000 data points, corresponding to 
approximately 3 s of real-time data. This buffer dynamically 
updates to retain only the most recent 3000 data points, 
ensuring the system always operates with up-to-date 
information. Data processing occurs every 3  s, during 
which the system extracts the latest dataset from the buffer 
for analysis. The extracted data are processed using STFT to 
convert the time domain signals into the frequency domain. 
The mean value of the frequency spectrum is calculated 
and used as an input feature for the classification model. 
The pre-trained model, originally developed in Python and 
exported in TensorFlow format, is imported into MATLAB 
using the Deep Learning Toolbox Converter for TensorFlow 
Models (version 24.1.0). Predictions generated by the model, 
along with raw sensor data, are systematically recorded and 

stored in a CSV file for further analysis. This robust pipeline 
ensures accurate, real-time evaluation of knee torque, while 
providing actionable insights and warnings to users in 
dynamic conditions.

3  Results

3.1  Inverse Structure Design of the Flexible Wearable 
Device Based on Knee Biomechanics

The knee joint’s complex load-bearing structure and dynamic 
motion present significant challenges for accurate monitoring, 
particularly under complex loading conditions such as flex-
ion, extension, and rotation. Recent advancements in wearable 
joint monitoring devices have explored a variety of structural 
configurations to track complex joint movements, as shown in 
Table S2. Common designs include hinged systems, such as 
knee braces with textile-based sensors embedded in circular 
hinge sections, and devices with tensile “ligament” structures 
coupled with rotary position sensors at pivot points. These 
are often designed with holders near the knee joint that allow 
adaptation to bending motions and are optimised for capturing 
rotational data. Another prevalent approach uses strap-based 
devices, such as inertial or magneto-inertial measurement 
units worn on the ankle or thigh, or capacitive sensor sys-
tems worn as skin patches. These systems are typically suited 
for three-dimensional motion analysis but rely on external 
attachment, which can limit mechanical coupling with the 
joint itself. To address these challenges, our device employs 
an inverse design strategy tailored to the biomechanics of the 
knee joint, incorporating an auxetic design. By conforming 
to the natural flexion, extension, and rotational movement 
patterns, the flexible structure of our device ensures a closer 
mechanical match to the skin-joint interface. This not only 
improves motion tracking fidelity but also enables more 
detailed sensing of complex loading conditions, offering 
enhanced signal resolution for dynamic joint analysis.

Auxetic materials, characterized by a NPR, expand laterally 
when stretched and contract laterally when compressed, contrary 
to conventional materials whose Poisson’s ratio (μ) is bounded 
by the limits of (fully compressible) 0 ≤ μ ≤ 0.5 (incompressible). 
This unique mechanical behaviour allows auxetic structures to 
conform more effectively to the dynamic surface of the knee, 
ensuring consistent contact and flexibility during movement. A 
rotational square pattern was selected as the fundamental unit 
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of the structure. Three structure parameters were optimised to 
satisfy the requirement on Poisson’s ratio and material ultimate 
stress as shown in Fig. 1a, in which a is the length of the square, 
b is the joint width between squares, and θ is the original angle 
between squares. The Nelder-Mead method was used to opti-
mize the whole structure automatically, of which the target func-
tion is defined as following Eq. (5):

where μ is the Poisson’s ratio and σ is the maximum von 
Mises stress of the whole structure. As shown in Fig. 1c, the 
optimization process aimed to minimize the target value to 
approach 0, resulting in μ approaching − 1, consistent with the 
behaviour of human skin under 10% strain. When the maxi-
mum stress is larger than 0.5 MPa, an extra 10 will be added 
to the whole target as a penalty. Figure S1a-c illustrates three 
examples of structures with different structural parameters 
during the optimization. The patterned patch finite element 
model was set to be stretched along the length direction for 
10 mm, whose Poisson’s ratio was defined as:

where Wi and Li are initial width and length of the patch 
model respectively, while Wt and Lt are the width and 
length of that after tensile deformation. The material was 
modelled as a linear elastic material, with the maximum 
deformation remaining within its linear elastic range. It is 
worth noting that the stress concentration at the corners can 
compromise the structural integrity of the device (Fig. S1b), 
while rounding these corners may alter its negative Poisson’s 
ratio properties. Therefore, the parameter was carefully 
optimised to ensure that the maximum stress remained 
below 0.5 MPa. The optimization process based on the 
Nelder-Mead algorithm was performed over 40 iterations to 
achieve the targeted Poisson’s ratio, as shown in Fig. S1d-f. 
The optimised result yields a Poisson’s ratio in the range of 
-0.94 with the optimised parameters of a = 10 mm, b = 3 mm 
and θ = 175°. The parameter was then used in the fabrication 
of the flexible device for a more effective dynamic contact.

3.2  Design and Characterization of Elastic 
Composites Based on Boron Nitride Nanotubes 
and Poly(dimethylsiloxane)

BNNTs with a purity of nearly 99% boron nitride content 
were utilised in this study. As shown in Fig. 2a, BNNTs 

(5)f (𝜇, 𝜎;a, b, 𝜃) =

{

𝜇 + 1, 𝜎 ≤ 0.5MPa

𝜇 + 11, 𝜎 > 0.5MPa

(6)� = −
(Wt −Wi)∕Wi

(Lt − Li)∕Li

were prepared at a concentration of 12 wt% relative to the 
PDMS base. BNNTs exhibit piezoelectric properties due to 
their non-centrosymmetric structure, making them highly 
desirable for enhancing charge generation in piezoelectric 
composites. Ideally, a higher BNNT content improves the 
piezoelectric response; however, achieving both high load-
ing and uniform dispersion is extremely challenging due to 
the strong van der Waals interactions and high aspect ratio 
of BNNTs, which promote aggregation. The BNNTs were 
pre-dispersed in THF without modification and vortexed to 
break up initial BNNT clusters (THF in a 4:1 mass ratio to 
PDMS). This mixture was then added to the PDMS base 
and gently stirred for 48 h to ensure uniform dispersion of 
the BNNTs. THF was gradually evaporated under a nitrogen 
flow, while stirring until only one-fifth of the original vol-
ume remained, effectively preventing nanotube re-clustering. 
The BNNT mixture was then combined with a crosslink-
ing agent and curing agent in a 10:1 mass ratio. For cast-
ing, a doctor blade was gently used to spread the PDMS 
in a single direction, to promote the induced alignment of 
the BNNTs. It is worth noting that our fabrication method 
introduces a facile casting process that mechanically induces 
BNNT arrangement in plane, eliminating the need for addi-
tional poling treatments. Traditional piezoelectric materi-
als typically require high-voltage poling to align dipoles 
and activate their piezoelectric properties. However, our 
method leverages controlled casting-induced arrangement, 
which enables self-organization of BNNTs in a manner that 
enhances piezoelectric efficiency without extra processing 
steps. This not only simplifies fabrication but also reduces 
energy consumption and production costs, making the 
approach more scalable.

The uniform dispersion of BNNTs in the PDMS matrix 
was confirmed through a series of characterization tech-
niques, as shown in Fig. 2. Our approach successfully dis-
perses BNNTs throughout the matrix without compromis-
ing their alignment or functionality, as evidenced by both 
macroscale ATR-FTIR spectrograms and nanoscale nano-
FTIR measurements. ATR-FTIR spectroscopy (Fig. 2b) 
was employed to analyse the chemical interactions between 
BNNTs and the PDMS matrix. Both BNNTs/PDMS and 
pure PDMS exhibit characteristic peaks at 1020  cm⁻1 
(Si–O–Si stretching) and 1260 cm⁻1 (Si–CH3 deformation), 
indicating that the intrinsic structure of PDMS is preserved 
in the composite. Additionally, the BNNT/PDMS film shows 
a distinct absorption peak at ~ 1370 cm⁻1, corresponding 



Nano-Micro Lett.          (2025) 17:247  Page 9 of 20   247 

Fig. 2  Fabrication and characterization of flexible BNNTs/PDMS film. a Fabrication of BNNTs/PDMS film with uniform dispersion of nanotubes. b ATR infra-
red absorption of BNNTs/PDMS. c Topography and d s-SNOM infrared image of near field optical amplitude (O2A signal) of BNNTs/PDMS film (The points of 
the line scans are coloured). e NanoFTIR absorption spectra of BNNTs/PDMS surface taken from the coloured line scans defined in c, with a spatial resolution of 
≈20 nm [42]. f X-ray diffraction of BNNTs/PDMS. g Dielectric constant and h dielectric loss of BNNTs/PDMS. i Strain–stress curve of BNNTs/PDMS
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to B–N stretching vibrations, confirming the successful 
incorporation of BNNTs into the matrix without significant 
chemical modification or aggregation. The pristine BNNTs 
were also characterized using near field s-SNOM infrared 
imaging, as shown in Fig. S2a-c. The nanotubes observed 
as uniformly dispersed cylindrical fibres, were isolated to 
approximately 50 nm in width but extending to lengths of 
several micrometers, exhibited distinct characteristic absorp-
tion peaks at ~ 1370 cm⁻1 at the nanoscale.

In Fig. 2c, topographical imaging using AFM reveals a 
smooth and uniform surface morphology of the composite 
film, indicative of well-dispersed BNNTs throughout the 
matrix. This observation is further supported by s-SNOM 
infrared amplitude mapping (Fig. 2d), using the second-
harmonic near field optical signal O2A, which displays 
consistent PDMS with less distinct features corresponding 
to nanotubes. The line scans, contour plotted for spatial cor-
respondence, demonstrate localized BNNT distribution in 
PDMS with a spatial resolution of less than 20 nm. Nano-
FTIR absorption spectra (Fig. 2e) primarily show peaks 
associated with PDMS, reflecting its dominant presence 
in the matrix. The clean and uniform BNNTs/PDMS sur-
face observed by scanning electron microscopy and opti-
cal stereo transmission microscopy further supported the 
uniformity of PDMS, as shown in Fig. S2d. It is worth to 
note that localized peaks at 1370 cm⁻1, corresponding to 
B–N stretching, can also be observed in certain point scans 
(Fig. S2e), confirming the nanoscale integration of BNNTs 
within the composite. XRD patterns (Fig. 2f) display sharp 
peaks characteristic of BNNTs, including the (002) reflec-
tion located at approximately at 2θ of 25.9° and the (100) 
reflection near 41.7°. The broad peak observed around 12.3° 
in the XRD pattern of PDMS and the composite material 
reflects its amorphous nature, attributed to the short-range 
order of its silicon-oxygen (Si–O) backbone. The presence of 
the BNNTs characteristic peaks in the BNNTs/PDMS com-
posite verifies that the structure of BNNTs is well preserved 
in the PDMS matrix. The PDMS matrix itself is amorphous 
and could overlap or interfere with the BNNT peaks leading 
to broadening of the characteristic peaks.

Dielectric measurements demonstrate enhanced electrical 
properties in the BNNT/PDMS composite compared 
to pure PDMS (Fig. 2g, h). For instance, the dielectric 
constant increases from approximately 2.29–2.86 at 
1 MHz, indicating effective polarization induced by the 
BNNTs. Despite this enhancement, the dielectric loss 

remains low, signifying minimal energy dissipation and 
making the composite suitable for flexible electronics. 
The stress–strain curve (Fig.  2i) highlights the typical 
mechanical improvements especially in the ductility of the 
BNNTs/PDMS composite compared to pure PDMS. At 
least three samples (n = 3) were tested for quantification of 
the mechanical properties of BNNTs/PDMS composites 
(Fig.  S3a, b). The maximum strain increases from 
72.0 ± 10.0% in pure PDMS to 223.8 ± 48.4% in BNNTs/
PDMS, demonstrating enhanced ductility and flexibility 
due to the uniform dispersion of BNNTs. Notably, PDMS 
is characterized by brittle fracture behaviour, where cracks 
propagate rapidly under stress, leading to sudden failure. 
In contrast, BNNTs/PDMS exhibit a more ductile fracture 
mechanism, with significantly slower crack propagation and 
an increased ultimate strain. The toughness, representing 
the energy absorption before failure, increases from 
37.8 ± 8.3  J   cm−3 in pure PDMS to 81.9 ± 30.9  J   cm−3 
in BNNT/PDMS, reflecting the synergistic interaction 
between the nanotubes and the matrix. BNNTs distribute 
applied stresses evenly, reducing stress concentrations and 
enhancing the material’s ability to elongate under load. 
Their integration improves energy absorption by delaying 
crack propagation and allowing efficient stress transfer at the 
BNNT-PDMS interface. Additionally, BNNTs stabilize the 
matrix during deformation, preventing premature failure and 
enabling greater flexibility. These synergistic effects between 
the elastic PDMS and mechanically robust BNNTs result 
in a composite with significantly improved ductility and 
toughness, ideal for applications requiring both stretchability 
and durability. However, the tensile modulus decreases from 
1.6 ± 0.1 to 0.6 ± 0.1 MPa. The incorporation of BNNTs 
can affect the crosslinking density of the PDMS matrix 
by physically disrupting the polymer network, leading to 
reductions in the stiffness of the composite film. Collectively, 
the uniform and high concentration loading of BNNTs in 
the PDMS matrix demonstrated improved mechanical and 
dielectric properties, making them highly suitable for further 
flexible and durable piezoelectric wearable devices.

3.3  Electrical Performances of the Device Based 
on BNNTs/PDMS

To evaluate the capability of the BNNTs/PDMS material 
for use as responsive sensor to capture the dynamic knee 
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motions, the piezoelectric performance of the BNNTs/
PDMS film under standard loading conditions was evalu-
ated to demonstrate the performance of the piezoelectric 
material. To examine the effect of BNNTs content on piezo-
electric performance, composites with 0, 4, 8, and 12 wt% 
BNNTs were fabricated and tested. As shown in Fig. S3c, 
the voltage output increases systematically with higher 
BNNT loading, attributed to the enhanced charge genera-
tion and stress transfer facilitated by BNNTs, as PDMS itself 
is non-piezoelectric. However, beyond 12 wt%, agglom-
eration due to strong van der Waals interactions disrupts 
uniform dispersion, hindering effective stress distribution 
and reducing performance. Therefore, 12 wt% was identi-
fied as the optimal concentration, balancing high piezoelec-
tric sensitivity with uniform dispersion and film integrity. 
A thin film of 2 cm × 2 cm was used in the standard test 
under compression load, while the performances are illus-
trated in Figs. S4 and 3. The open-circuit voltage output of 
the BNNTs/PDMS film under cyclic compression at vari-
ous frequencies demonstrates a clear frequency-dependent 
response, as shown in Fig. 3a. The electrical performances 
are statistically quantified using mean ± standard deviation 
derived from five tested cycles. At a frequency of 2 Hz, the 
film produces a voltage of 5.76 ± 0.02 V, which slightly 
decreases to 4.74 ± 0.03 V at 5 Hz, 4.275 ± 0.01 V at 8 Hz, 
and 3.89 ± 0.01 V at 10 Hz. This reduction in voltage with 
increasing frequency can be attributed to shorter compres-
sion cycles at higher frequencies, resulting in reduced charge 
accumulation on the surface of the film. The data confirm 
the consistent piezoelectric response of the composite 
under low frequency loadings, which covers most of the 
knee motions (< 10 Hz). The relationship between voltage 
and applied force is linear and consistent, with a sensitiv-
ity of 0.50 ± 0.01 V  N−1. Compared to existing BNNT- or 
PDMS-based piezoelectric films (Table S3 and Fig. S5), the 
reported BNNTs/PDMS nanocomposite exhibits enhanced 
sensitivity. The improved performance can be attributed 
to the high BNNT loading (12 wt%), which increases the 
density of active piezoelectric domains, thereby enhancing 
charge generation under mechanical deformation. Addition-
ally, the uniform dispersion of BNNTs within the PDMS 
matrix ensures effective stress transfer, reducing localized 
charge screening effects and maximizing the overall piezo-
electric response. The intrinsic piezoelectricity of BNNTs, 
driven by the polarization induced by the electronegativ-
ity difference between boron and nitrogen atoms, is further 

amplified by their in plane arrangement, which facilitates 
directional charge accumulation.

The consistency across different forces highlights the 
film’s potential for precise sensing applications (Fig. 3b). 
A detailed analysis over 0.1 s reveals a typical piezoelectric 
behaviour (Fig. 3c), where the voltage increases with the 
applied force. Voltage is generated during the loading phase 
and returns to zero during unloading, further validating the 
dynamic response of the elastic BNNTs/PDMS film. This 
characteristic confirms the potential of the material for real-
time force monitoring in applications requiring dynamic load 
sensing. As shown in Fig. 3d, the short-circuit current output 
of the film increases with frequency, demonstrating values 
of 5.516 ± 0.25 mA  m−2 at 2 Hz and 6.9 ± 0.42 mA  m−2 at 
10 Hz. The generated current was normalized with the area 
under the loading curve. The higher current at increased fre-
quencies is consistent with the enhanced flow of charge car-
riers due to the repeated deformation of the composite. This 
robust current output reflects the efficient charge transfer 
properties of the BNNTs/PDMS film under cyclic compres-
sive loading. The self-powering capability of the BNNTs/
PDMS film was evaluated by charging commercial capaci-
tors of different capacitances (0.1, 0.47, and 1 μF) under 
a steady 2 Hz compression load of 12 N (Fig. 3e). Nota-
bly, the 0.1 μF capacitor was charged to 2.5 V within 20 s, 
showcasing the film’s ability to effectively convert energy 
during mechanical deformation. A maximum power output 
of 1.47 mW  m−2 was achieved when a 3 MΩ resistor was 
applied under a constant input frequency of 2 Hz and a peak 
compression load of 11.5 N (Fig. 3f). This demonstrates the 
composites’ efficiency in converting mechanical energy into 
electrical energy and the potential for self-powered sensing 
in wearable device.

To assess the mechanical durability of the device, we 
conducted continuous cyclic loading tests for 30,000 cycles 
under standardized conditions, as shown in Fig. S6a. The 
sensor exhibited a stable piezoelectric output throughout 
the cycles, with negligible performance degradation, indi-
cating its long-term reliability. Additionally, SEM imaging 
was performed after the durability test (Fig. S6c) to exam-
ine potential structural damage. The post-test surface mor-
phology remained consistent with that of newly prepared 
BNNTs/PDMS samples, with no visible cracks or deteriora-
tion, further confirming the mechanical integrity of the com-
posite. Furthermore, the influence of humidity on-device 
performance was investigated to evaluate its stability under 
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practical environmental conditions (Fig. S6b). The experi-
ment was conducted in a controlled glove bag environment, 
where relative humidity (RH) was precisely adjusted by 
purging dry nitrogen gas to decrease RH and introducing 
humidified air to increase RH. The results showed that the 
output voltage remained stable at RH levels below 75%, 
attributed to the hydrophobic nature of the PDMS matrix, 
which effectively prevents moisture absorption. However, 
when RH exceeded 75%, a gradual decrease in output volt-
age was observed, likely due to increased charge dissipation 

caused by moisture adsorption. Given that ambient humidity 
in daily environments typically ranges from 30% to 70%, the 
device is expected to maintain reliable performance under 
normal operating conditions. To further enhance humidity 
resistance for future applications, additional strategies such 
as hydrophobic polymer encapsulation and surface function-
alization with water-repellent coatings are being explored 
to prevent direct moisture exposure and improve long-term 
stability in high-humidity environments.

Fig. 3  Piezoelectric output of BNNTs/PDMS under standard loading conditions. a Open-circuit voltage output of a BNNTs/PDMS film 
(12 wt% BNNTs, 2 cm × 2 cm) under cyclic compression loading at frequencies of 2, 5, 8, and 10 Hz. b Voltage output of the BNNTs/PDMS 
film under cyclic loading forces. c Enlarged view of b, showing the detailed relationship between loading and voltage over 0.1 s. d Short-circuit 
current of the BNNTs/PDMS film under cyclic compression loading at 2, 5, 8, and 10 Hz. e Charging curves of capacitors (0.1, 0.47, and 1 μF) 
over 20 s under 2 Hz cyclic compression loading of the piezoelectric BNNTs/PDMS film. f Closed-circuit peak voltage and power density across 
a loading resistor powered by the BNNTs/PDMS film under a constant input frequency of 2 Hz and a peak compression load of 11.5 N
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3.4  Monitoring and Evaluation of the Dynamic 
Motions at the Knee Joint Based on Machine 
Learning Model

Combining the inversely designed wearable structure and 
the highly sensitive BNNTs/PDMS material, we fabricated 
a wearable device that is tightly attachable on the knee joint 
during movement, while able to collect the very detailed and 
complex motion signals during dynamic knee activities. The 
responsive motion signal of the device attached to the knee 
joint would generate electric signals under complex loading 
of flexion, extension, and rotation during knee motions. The 
responsive data was used to train a machine learning model 
for evaluating knee bending angles, loading conditions and 
further estimating torque applied to the knees.

To train a baseline model for mapping the relationships 
between the knee motions and the correspondence signal 
features, we collected a database in a well-controlled lab 
environment. The device was securely attached to the knee 
joint, with one end fixed at the bottom of the quadriceps 
femoris muscle, where it transitions into the tendon, and 
the other end fixed to the patellar tendon, ensuring stable 
positioning and optimal contact for accurate detection of 
knee motion and signal acquisition during joint activities 
(Fig. 4a). During the data collection, the participant was 
seated on a bench, performing knee flexion exercise using a 
dumbbell with the device attached on the side of the thigh 
(Fig. S7a). Data were collected under nine conditions to 
predict the torque. These conditions included three loading 
levels (0, 9.8, and 58.8 N) and three knee joint angles (20°, 
60°, 90°), resulting in nine combinations. Each condition 
was repeated 100 times for a training database. The fea-
tured signals (Fig. 4b) reveal distinct response patterns cor-
responding to different motions, with several small motion-
related features emerging prominently. While these features 
highlight the sensitivity of the device to subtle movements, 
some remain unexplainable, thus required machine learning 
algorithms to gain further insights. A preprocessing pipeline 
(Fig. 4c) was applied, including segmentation and normali-
zation. An example of segmented data under a 9.8 N mass 
(Fig. 4d) highlights the motion-specific signal characteris-
tics, while the STFT (Fig. 4e) visualizes the time–frequency 
components critical for the motion features.

The features were trained through three dense layers 
and two rectified linear unit (ReLU) layers (Fig. 4f) for 
classification of biophysical features embedded in the 

electrical signals. The accuracy and loss of the training and 
testing reached peaks up to 20 epochs, reflecting the data 
quality and robust model performance, the consistent trends 
in accuracy and loss between the training and validation 
datasets demonstrate no overfitting during model training, as 
shown in Fig. 4g, h. T-distributed stochastic neighbourhood 
embedding (T-SNE) visualization [44] of feature clustering 
(Fig. 4i) shows significant improvement in class separability 
from the initial epoch to the final epoch of 100.

To establish a connection between the biophysical 
mechanics of the motions and the corresponding responsive 
signals, the collected participant data were utilised to 
estimate the torque generated during the specified standard 
movements. The knee torque was calculated using following 
equation [45]:

where τ represents the joint torque, F represents the load 
on the knee, which is determined by the combined weight 
of the foot and the external load, L represents the distance 
measured from the knee joint to the ankle, and θ represents 
the angle of the lower leg relative to the vertical direction. 
The foot weight was estimated as 1.4% of the participant’s 
body weight, which equaled 10.98 N, and the measured 
distance was 0.47  m. The torque values corresponding 
to each experimental condition are shown in Fig. S7b. In 
each experimental condition, the typical outputs in the time 
domain and frequency domain can be found in Figs. S8 and 
S9, respectively.

The model was then used to estimate the torque level 
applied to the knee joint during movement based on the 
standard dataset. The confusion matrix (Fig. 4j) confirms 
high classification accuracy across different torque levels, the 
testing accuracy is 97.5%, validating the model’s precision 
in estimating the torque level applied. Furthermore, the 
predictions of knee loadings (Fig. 4k) and bending angles 
(Fig. 4l) show excellent agreement with the ground truth 
data, reflecting the system’s high reliability in evaluating 
joint biomechanics. To obtain continuous data using 
classification model, the probability value from the third 
dense layer was derived. The predefined numerical labels 
were taking a weighted sum using predicted probabilities 
as weights to obtain a continuous value. The root mean 
square error (RMSE) quantifies the average prediction 
errors, calculated as the square root of the mean of squared 
differences between predicted and actual values. In this 
study, the RMSE values for knee joint torque prediction is 

(7)� = F × L × sin(�)
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Fig. 4  Classification based model for monitoring knee joint activities. a Illustration of the participant performing knee flexion with the device 
attached on the knee joint and collected dataset. b Featured signals in response to different motions collected by the flexible device worn by the 
participant. c Preprocessing pipeline for the knee joint motion signal. d Example segmented data recording knee bending under a 9.8 N load-
ing. e STFT spectrum of the example data. f Structure of the classification model. g Training and h validation accuracy plot over 100 epochs. i 
Feature vector matrix at initial (epoch:1) and end (epoch:100) of the processing by the T-SNE algorithm. j Confusion matrix of the prediction 
accuracy of different knee joint torques. k Prediction of knee loadings based on the trained model. l Prediction of the knee bending angles based 
on the trained model
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2.45 Nm. The knee loading and bending angle prediction 
model has also been trained by changing the dataset label 
from torque to loading and angle respectively. For the knee 
loading and bending angle predictions in this study, RMSE 
values of 4.87 N and 5.36°, respectively, suggesting that 
the model effectively captures the underlying biomechanical 
patterns with minimal deviation from the actual values. 
Furthermore, the proposed models achieved both high 
accuracy and computational efficiency, making them 
suitable for deployment on resource-constrained edge 
devices commonly used in wearable technology, such as 
STM3 microcontrollers and Texas Instruments MSP430 
microcontrollers. This enables real-time, localized data 
processing with minimal latency, while preserving the 
overall wearability and practicality of the device. The 
architecture of the knee torque prediction model consists of 
75,017 parameters, requiring less than 0.29 MB of memory 
for storage. In terms of computational complexity, the model 
performs approximately 149,622 floating point operations 
during a single inference pass and the average inference time 
was recorded as 6.870 ms.

With limited labels and datasets, the estimation of bio-
mechanical parameters remains discrete, differing from the 
continuous and dynamically changing features observed in 
real-world scenarios. To address this limitation, we extended 
the classification model to a regression based approach, ena-
bling the prediction of biomechanical features not explicitly 
included in the training data. This regression model allows 
for the estimation of continuous biomechanical parameters, 
even with a constrained training dataset, effectively bridging 
the gap between discrete data points and real-time dynamic 
variability. Figure 5a illustrates a regression based machine 
learning model designed to estimate continuous biomechani-
cal parameters, including knee joint torque, bending angle, 
and load. The model architecture incorporates layered pro-
cessing with ReLU-activated nodes, followed by a regres-
sion output layer, enabling continuous mapping of complex 
biomechanical relationships. Notably, the T-SNE visualiza-
tion (Fig. 5b) reveals the progression of feature clustering 
during training. At epoch 1, the feature clusters appear more 
separated, reflecting the initial lack of correlation between 
groups of labelled signals. By epoch 100, the clusters 
become more interconnected, indicating the model’s abil-
ity to establish relationships between signal features across 
groups, estimating more continuous and correlated features. 
The model demonstrates strong performance in predicting 

torque (Fig. 5c), bending angle (Fig. 5d), and load (Fig. 5e), 
with strong correlation between predicted and true values 
and minimal variance, as shown by the shaded confidence 
intervals. To assess the strength of the correlation, Pearson 
correlation coefficients were calculated for each model. The 
correlation coefficient for the torque prediction model was 
0.9567, for the bending angle model was 0.9470, and for the 
knee angle model was 0.9118, indicating strong correlation 
between the predicted and actual values across all cases. An 
increase in variance was observed at higher torque levels, 
which can be attributed to two primary factors. First, higher 
torque movements introduce greater variability in motion 
execution, as participants experience muscle fatigue and 
involuntary micro-adjustments, leading to increased fluc-
tuations in joint kinematics. This inconsistency in repeated 
movements contributes to a broader distribution of recorded 
signals, reducing prediction precision. Second, at higher 
torque values, soft tissue deformation and muscle co-con-
traction become more pronounced, leading to greater vari-
ations in sensor signals even for the same estimated torque. 
These biomechanical adaptations, including changes in 
muscle stiffness and antagonist muscle contributions, intro-
duce inherent signal dispersion, increasing the uncertainty 
in torque estimation. Despite these challenges, the model 
maintains high accuracy across a wide range of motion con-
ditions. This issue could be addressed by enhancing signal 
processing algorithms and adaptive calibration techniques 
to further optimize performance in high-torque scenarios. 
Unlike classification models, which provide discrete outputs, 
this regression based approach delivers continuous predic-
tions, more closely describes the realistic dynamic biome-
chanical changes in torque, angle, and load. This continuous 
output is essential for applications requiring real-time adap-
tive monitoring, enabling a more comprehensive understand-
ing of joint mechanics in natural environments.

We further extended the system’s capability for real-time 
torque estimation. The nature of continuous real-time data 
is theoretically infinite in length and mainly dominated by 
resting-state signals. To enable real-time data processing, a 
dynamic sliding window approach was implemented. Con-
sidering the prevalence of resting states in real-time condi-
tions, the training dataset for the model was augmented to 
additional data representing resting states (0 Nm), ensuring 
accurate prediction across all possible states. Figure 5f illus-
trates the real-time knee torque prediction system, which 
integrates signal acquisition, processing, and monitoring 
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Fig. 5  Regression based model and real-time knee torque estimation. a Structure of the classification model. b Feature vector matrix at epoch 1 
and epoch 100 of the processing by the T-SNE algorithm. c Regression based prediction of knee joint torque; d prediction of knee bending angle 
and e prediction of knee loading. f Real-time estimation setups consisting real-time signal capturing, monitoring interfaces and real-time data 
processing. Voltage signals from the device were acquired using the ADC on Arduino board, digitized, and transmitted to a computer via UART 
for processing. The data is processed at real-time and estimated the torque to display on the interface. g 90 s example data of real-time capturing 
and professing and the accuracy of the real-time estimation of knee torque
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using a MATLAB application. Piezoelectric voltage signals, 
transmitted via UART, are displayed on the system’s GUI in 
real-time. The system continuously evaluates torque predic-
tions, triggering safety alerts, such as warning messages and 
a red lamp, estimating whether the torque exceeds predefined 
thresholds, thereby ensuring user safety. The real-time model 
predicts torque values and is displayed and stored along with 
raw data in the GUI. Figure 5g shows the system’s example 
performance over a 160 s real-time session. The real-time 
system predicts five torque levels with an overall accuracy 
of 77.5%. The torque warning threshold was set at 30 Nm. 
Due to laboratory constraints and ethical considerations, 
potentially damaging torque levels were not introduced 
during the experiments. Instead, a conservative threshold 
of > 30 Nm was chosen to trigger warnings [46], as dem-
onstrated in Video S1. This approach ensures user safety, 
while maintaining the effectiveness of the system in iden-
tifying high-torque scenarios. The predictions align closely 
with actual torque values, validating the model’s accuracy 
and reliability for dynamic monitoring. This capability for 
continuous, real-time torque estimation makes the system 
a robust tool for applications in rehabilitation and injury 
prevention, while the safety features add value for practical, 
user-focused deployment. To evaluate the model’s adaptabil-
ity to different users, a user-specific fine-tuning process was 
implemented. Each new participant followed a standardized 
movement collection protocol, generating a small personal-
ized dataset for calibration. This fine-tuning approach allows 
the model to adjust to individual biomechanical variations, 
enhancing its robustness (Fig. S10a). In a validation test with 
an additional participant, the fine-tuned model achieved an 
accuracy of 78.8% (Fig. S10b), demonstrating its ability to 
generalize across different users.

4  Discussion and Conclusions

In this study, we introduce an unconventional, piezoelectric 
boron nitride elastomer-based, AI-enabled wearable 
device specifically designed for continuous joint torque 
monitoring. Employing a reverse iterative design approach, 
we engineered wearable materials with an NPR (-0.94 
with a = 10 mm, b = 3 mm and θ = 175°) finely tuned to 
match the biomechanical properties of the knee joint. This 
was coupled with the development of a highly sensitive 
piezoelectric film (with a sensitivity of 0.50 ± 0.01 V  N−1), 

achieved by uniformly dispersing BNNTs into a PDMS 
matrix. The resulting film demonstrated the dual capabilities 
of accurately capturing knee motion and simultaneously 
enabling self-sufficient energy harvesting with a maximum 
power output of 1.47 mW  m−2. To process the complex 
piezoelectric signals generated during movement, we 
integrated a lightweight, on-device ANN. This AI-driven 
system successfully extracted targeted signals from the 
intricate data output (with a high classification rate of 
97.5%), subsequently mapping them to key physical 
parameters such as torque, angle, and loading. In the end, 
we constructed a real-time platform that demonstrated the 
robust capacity for real-time torque estimation using the 
wearable under dynamic conditions.

The proposed platform provides a non-invasive, indirect 
estimation of knee torque based on a relatively limited 
dataset collected from fundamental knee movements. As 
a proof-of-concept, the platform demonstrates promising 
accuracy in estimating knee dynamics, utilising a discrete 
knee torque training dataset and extending the mapping 
of movement signals to a continuous torque estimation 
model. While this approach serves as a valuable proof-
of-concept, several limitations must be considered: (1) 
Dataset labelling and simplified torque modelling: The 
accuracy of knee torque labelling in this study is based 
on a simplified reference model, which is among the most 
basic mathematical models for estimating knee torque. The 
inherent limitation of this labelling approach stems from 
the difficulty of directly measuring knee torque in healthy 
individuals during dynamic movement. Currently, the only 
direct measurement method relies on instrumented knee 
prostheses, which are not applicable to intact biological 
joints. Therefore, the estimated torque values in this study 
may not fully capture the complexities of real-world knee 
biomechanics. Future research could explore alternative 
dataset collection methods, including direct torque 
measurements from cadaveric models or prosthetic knee 
implants, to improve estimation accuracy. (2) Extending 
from basic torque estimation to complex physiological 
states: The current study successfully estimates knee torque 
under controlled laboratory conditions using an indirectly 
measured dataset. In these fundamental movements, the 
estimated torque values align well with actual biomechanical 
expectations, representing the best achievable validation 
within a controlled experimental setting. However, applying 
this model to more complex motion states, such as walking, 
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running, or jumping, presents greater challenges. While 
the model theoretically extends to these conditions, such 
estimations remain speculative, as current non-invasive 
techniques do not allow direct validation of knee torque 
during dynamic, high-intensity movements. Without direct 
measurement verification, conservative estimations were 
prioritized in this study rather than aggressive extrapolations. 
This can be addressed by incorporating cadaveric models or 
instrumented prosthetic joints to capture direct knee torque 
measurements under complex motion states, thereby refining 
the mapping between dynamic movement signals and knee 
joint mechanics.

In conclusion, this work presents a relatively low-cost 
and accessible solution for regular joint torque monitor-
ing, making it suitable for populations across regions with 
varying levels of development. The proposed system has the 
potential to advance global efforts in joint health monitor-
ing, the management of MSK conditions, rehabilitation, age-
ing disorders, and broader applications in personal health-
care. Future research will prioritize enhancing the system’s 
adaptability, scalability, and inclusivity. First, broadening 
its application to encompass various chronic conditions 
and diverse user groups, such as the elderly and individuals 
with MSK conditions and ageing disorders, will increase 
its practical clinical and healthcare applications in the field. 
Furthermore, investigating potential feasibilities to integrate 
extra complementary modalities, such as electricidal moni-
toring (e.g., EMG), and optical imaging (e.g., near-infrared 
spectroscopy), on the highly wearable flexible materials so 
as to offer unprecedented spatial–temporal resolution and 
patient comfort of joint torque monitoring. Besides this, 
augmenting the system’s resilience and ensuring seamless 
interoperability with external assistive technologies, includ-
ing wearable robotics and exoskeletons, will substantially 
extend its functional scope and utility.
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