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HIGHLIGHTS

• A novel near-sensor edge computing system integrates aluminum nitride (AlN) microrings for photonic feature extraction and Si 
Mach–Zehnder interferometers for photonic neural network operations, achieving real-time artificial intelligence (AI) processing.

• Demonstrates high classification accuracy (96.77% for gestures, 98.31% for gaits) with low latency (< 10 ns) and minimal energy 
consumption (< 0.34 pJ).

• Enables low-power, high-speed AI applications with seamless hybrid photonic-electronic integration on a bilayer AlN/Si waveguide platform.

ABSTRACT The rise of large-scale artificial 
intelligence (AI) models, such as ChatGPT, Deep-
Seek, and autonomous vehicle systems, has signif-
icantly advanced the boundaries of AI, enabling 
highly complex tasks in natural language process-
ing, image recognition, and real-time decision-
making. However, these models demand immense 
computational power and are often centralized, 
relying on cloud-based architectures with inher-
ent limitations in latency, privacy, and energy effi-
ciency. To address these challenges and bring AI 
closer to real-world applications, such as wearable 
health monitoring, robotics, and immersive virtual 
environments, innovative hardware solutions are 
urgently needed. This work introduces a near-sensor edge computing (NSEC) system, built on a bilayer AlN/Si waveguide platform, to provide 
real-time, energy-efficient AI capabilities at the edge. Leveraging the electro-optic properties of AlN microring resonators for photonic fea-
ture extraction, coupled with Si-based thermo-optic Mach–Zehnder interferometers for neural network computations, the system represents a 
transformative approach to AI hardware design. Demonstrated through multimodal gesture and gait analysis, the NSEC system achieves high 
classification accuracies of 96.77% for gestures and 98.31% for gaits, ultra-low latency (< 10 ns), and minimal energy consumption (< 0.34 pJ). 
This groundbreaking system bridges the gap between AI models and real-world applications, enabling efficient, privacy-preserving AI solutions 
for healthcare, robotics, and next-generation human–machine interfaces, marking a pivotal advancement in edge computing and AI deployment.
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1 Introduction

With the rapid development of Artificial Intelligence of 
Things (AIoT), the number of sensor nodes and the volume 
of sensing data have both increased dramatically [1]. This 
poses significant challenges to the computational capacities 
and energy consumption of artificial intelligence (AI) [2]. 
Recent emerging large-scale AI models have necessitated 
the establishment of dedicated AI data centers. These cloud-
based computing frameworks are under immense pressure to 
manage the rising demands for data bandwidth, high trans-
mission rates, extensive storage capacities, and efficient 
coding and decoding processes [3]. To address these limi-
tations, edge computing has emerged as a complementary 
solution to cloud computing [4–7]. This framework reduces 
the volume of data transmitted to the cloud, thereby alle-
viating bandwidth and energy requirements. Additionally, 
edge computing offers enhanced privacy by enabling data 
processing closer to the source, using metadata, and mini-
mizing the exposure of sensitive information. As AI systems 
evolve to meet the needs of modern applications, integrating 
edge computing with cloud infrastructures is becoming an 
essential strategy for achieving sustainable and efficient AI 
operations.

The traditional von Neumann architecture, which relies 
on logical operations performed by fundamental compo-
nents like transistors, has served as the backbone of com-
puting for decades. However, with the rapid expansion of 
AI applications, there has been a notable shift toward neu-
romorphic chips, such as memristors and memtransistors 
[8–12]. These devices enable parallel matrix operations and 
are better suited for the complex computational demands 
of AI workloads. Beyond foundational hardware upgrades, 
industry trends have increasingly focused on integrated solu-
tions tailored for edge computing. Companies like STMi-
croelectronics have developed hybrid chips that combine 
microelectromechanical systems (MEMS) inertial sensors 
or microphones with memory, data buffers, and transmission 
capabilities, all packaged into a single unit. Besides, MEMS-
based edge computing has demonstrated significant potential 
for edge AI applications by integrating sensing and compu-
tation within a single device [13–15]. Recent advancements 
include MEMS neural networks for direct sensor-to-com-
putation processing and MEMS reservoir computing sys-
tems leveraging stiffness modulation for efficient, real-time 

data processing at the edge with 99.8% accuracy and chaos 
forecasting [16]. These innovations highlight the growing 
emphasis on compact, efficient systems that minimize the 
need for external data processing and storage. In the research 
domain, in-sensor computing has emerged as a key area of 
focus [17, 18]. This approach integrates sensing and com-
putation directly at the hardware level, offering significant 
advantages in terms of latency and energy efficiency. As 
shown in Fig. 1a, examples include purely electronic systems 
that pair resistive-based sensors with memristors, as well as 
optoelectronic frameworks utilizing programmable photo-
detectors [19–22]. By processing data directly at the sen-
sor, in-sensor computing minimizes reliance on centralized 
systems, marking a significant shift toward next-generation 
AI architectures that are faster, more efficient, and optimized 
for edge applications. This localized preprocessing at the 
sensor level effectively reduces data volume, transmission 
load, and overall energy consumption, enabling faster and 
more efficient AI computations. Various works on in-sensor 
computing have been published to handle images [19–32], 
gas [33, 34], or biological sensing information [35–40].

Mennel et al. demonstrate in-sensor image recognition in 
a two-dimensional (2D) photodiode array by utilizing the 
tunable photoresponsivity matrix as a synaptic weight matrix 
so that the processed image data is computed during the pho-
todetection process [30]. Zhou et al. present a neuromorphic 
event-based image sensor that leverages a spiking neural net-
work for in-sensor processing [25]. This innovation reduces 
redundant data generation during sensing and eliminates 
the necessity for data transfer between sensors and com-
putational units, thereby significantly improving efficiency 
and processing speed. Furthermore, Chen et al. introduce 
an all-analog chip, denoted as ACCEL, which integrates 
electronics and optics [23]. This chip utilizes free-space dif-
fractive optical computing as an optical encoder for feature 
extraction. Then the classification tasks are achieved directly 
using weighted photodetectors arrays with embedded analog 
circuits, eliminating the need for analog-to-digital convert-
ers. This approach results in a remarkably low computing 
latency of 72 ns per frame, showing the advances in using 
edge computing to process image data. In addition to image 
processing, Li et al. proposed a groundbreaking "perception-
memory" system that seamlessly integrates electronic tat-
toos with memristors, showcasing a highly energy-efficient 
and real-time biosignal processing approach [38]. This 
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Fig. 1  System illustration of hybrid photonic-electronic near-sensor edge computing(NSEC) enabled by AlN/Si photonic integrated circuits. a In-sensor comput-
ing with electronic-integrated circuits. (i) Microelectronic in-sensor computing chip enabled by memristors/memtransistors for electric sensing signal processing. 
(ii) Optoelectronic in-sensor computing enabled by photodetectors for optical sensing signal processing. b In-sensor computing with photonic integrated circuits. c 
Hybrid photonic-electronic near-sensor edge computing with AlN/Si photonic integrated circuits d Photonic feature extraction units on NSEC chip. (i) Schematic 
diagram of the TENG force/pressure sensor, where the output voltage is proportional to the applied force or pressure during the contact-release cycles of the tribo-
electric structures. (ii) The voltage applied to the top electrode modulates the AlN waveguide structure via the induced electric field along the z-direction, affecting 
the fundamental TE mode. (iii) Original TENG sensor output under repeated applied force, as measured by a conventional electric circuit. (iv) The open-circuit 
voltage output of the TENG under applied forces. This signal is equivalent to the mathematical integration of the original TENG sensor output due to charge accu-
mulation in the open-circuit configuration. (v) Modulated photonic output induced by the electric field of the open-circuit ground-signal-ground (GSG) electrode 
on top of the AlN waveguide structure, which is directly connected to the TENG sensor. Thanks to the charge accumulation and retention mechanism of a capacitor, 
the photonic output reflects the time-domain profile of the applied force, effectively performing feature extraction of the TENG sensor data equivalent to an integra-
tion operation. e Photonic neural network unit on the NSEC chip. After photonic feature extraction, the data is fed into Si MZIs to perform photonic matrix–vector 
multiplication as the linear layer of the PNN. The weights are adjusted by the applied voltage to the Si MZIs. The nonlinear activation is then performed by the 
backend electronics, and error backpropagation is used to update the weights, achieving in-situ training
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innovative work not only advances wearable AI systems but 
also enhances user interaction capabilities, paving the way 
for next-generation smart healthcare and human–machine 
interfaces. Currently, in-sensor and near-sensor computing 
primarily rely on microelectronic or optoelectronic devices. 
To achieve low latency and low-power edge computing, 
further advancements are needed in device integration and 
computational capacities.

Photonic integrated circuits (PICs) [41–43] have garnered 
extensive application in the realm of AI accelerators [43–48], 
attributable to their elevated integration levels, high-dimen-
sional parallel computational capabilities, and broad bandwidth 
characteristics. Diverging from signal crosstalk encountered in 
electrical circuits, light of different wavelengths within the same 
optical path can be independently extracted through wavelength 
demultiplexing for photodetection [49–52]. Consequently, 
photons of distinct wavelengths can carry disparate streams 
of information and concurrently transmit in parallel through 
the same medium [53–55]. Govern by the photonic memory 
[56–58] enabled by phase change materials (PCMs), Dong et al. 
demonstrate a high-dimensional in-memory photonic tensor 
core that leverages spatial, radio frequency, and optical wave-
length domains, increasing parallelism of data processing by a 
factor of 25, significantly enhancing performance [59]. Xu et al. 
proposed and developed Taichi, which is a large-scale photonic 
chiplet system with an integrated diffractive-interference hybrid 
design and distributed computing architecture, achieving 160 
TOPS/W energy efficiency, and significant improvements in 
AI-generated content efficiency [60]. Furthermore, PICs have 
emerged as a transformative platform for in-sensor computing 
(Fig. 1b), enabling advanced computational capabilities directly 
at the sensor level using silicon photonic waveguides or on-chip 
photodetector [61–63]. Liu et al. [63] demonstrate an energy-
efficient on-chip waveguide-based neuromorphic in-sensor 
computing solution using a responsivity-tunable graphene 
photodetector integrated with silicon waveguides, enabling 
multimodal data processing, including image preprocessing, 
gesture recognition, and spectroscopic classification in the mid-
infrared range. Xiao et al. [62] present a photonic in-sensor 
computing system that processes optical-domain spectroscopy 
sensing signals using a silicon photonic processor, achieving 
97.58% accuracy in classifying 45 protein classes and enabling 
efficient multimodal sensory data processing.

In the broader context of edge AI, two primary frameworks 
“wireless-driven AI architectures and fiber-to-the-home 
(FTTH) infrastructures” offer substantial opportunities for 

advancing edge computing systems. These frameworks under-
score the potential for entirely optical edge computing, where 
data is processed exclusively in the optical domain, effectively 
overcoming many limitations of traditional electronic systems, 
such as latency and energy inefficiency. However, a significant 
challenge remains in bridging optical edge computing systems 
with electrical-domain signals, particularly for wearable sen-
sors and other electronic devices that generate non-optical 
outputs. Our research addresses this challenge by proposing 
a novel framework for integrating electrical-domain sensor 
signals into an optical edge computing system. This approach 
enables efficient processing of electrical signals within the 
optical domain, creating a seamless interface between elec-
tronic sensors and photonic computing systems. Moreover, 
this framework paves the way for future enhancements that 
include direct processing of optical-domain signals from 
applications such as virtual reality (VR) and augmented real-
ity (AR), which require high-speed, low-latency data handling 
[64, 65]. For instance, the system connects directly to wear-
able sensors, converting their electrical signals into optical 
formats for processing within the photonic edge computing 
framework. This capability ensures compatibility with current 
sensor technologies while establishing a scalable platform for 
next-generation applications. The integration of both electri-
cal and optical signals within a unified edge computing archi-
tecture reduces latency, enhances computational efficiency, 
and supports a diverse range of use cases. By enabling a fully 
integrated optical edge computing platform with input termi-
nals of electrical and optical signals, this research advances 
the field of edge AI, providing a versatile and high-perfor-
mance solution for emerging applications interfacing with 
FTTH infrastructures. The proposed system bridges critical 
gaps between electronic and photonic technologies, aligning 
with the evolving demands of AI-driven innovations and set-
ting the stage for next-generation architectures that are faster, 
more efficient, and highly adaptable.

2  Experimental Section

2.1  Design of Hybrid Photonic‑Electronic Near‑Sensor 
Edge Computing System

A novel near-sensor edge computing (NSEC) system is pro-
posed, uniquely integrating two input modalities, electri-
cal signals from wearable sensors and optical signals for 
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advanced applications, on a unified platform, as shown in 
Fig. 1c. This dual-modality design eliminates the need for 
multiple data conversions, enabling seamless on-chip pro-
cessing of both electrical and optical inputs. By leveraging 
photonic feature extraction for electrical signals and neural 
network computations for optical data, the NSEC system 
achieves significant reductions in energy consumption, 
latency, and storage requirements. This innovative approach 
not only enhances the versatility of edge AI architectures but 
also offers a scalable solution for integrating multimodal 
inputs, paving the way for advanced applications such as 
wearable sensor networks, AR, and VR. The NSEC chip, 
which is the key component of the NSEC system, is designed 
with two main functional blocks: photonic feature extraction 
and photonic neural networks, which correspond to the two 
key phases of AI edge computing. In phase 1, aluminum 
nitride (AlN) microring resonators (MRRs) convert signals 
from a variety of wearable electronic IoT sensors into opti-
cal signals by electro-optic (EO) conversion aid by Pockels 
effect, simultaneously extracting features during this conver-
sion (Fig. 1d). In phase 2, Si Mach–Zehnder interferometers 
(MZIs) perform photonic neural network computations by 
thermo-optic effect on the extracted optical signals, resulting 
in the desired AI processing outcomes (Fig. 1e).

The feature extraction process leverages the unique EO 
properties of AlN MRRs, which enable efficient modula-
tion of optical signals in response to voltage inputs. AlN, 
a wide-bandgap piezoelectric material, exhibits excep-
tional EO performance due to the Pockels effect, allow-
ing its refractive index to change linearly with the applied 
electric field [66, 67]. This property provides a high-speed 
and energy-efficient platform for directly interfacing with 
electrical-domain signals. In this proof-of-concept demon-
stration, the triboelectric nanogenerator (TENG) serves as 
a self-powered input sensor, generating voltage signals pro-
portional to the applied pressure or force during its contact-
separation process (Fig. 1d–i). The AlN MRRs capitalize 
on the TENG-generated voltage to modulate optical signals 
in real time. The capacitive nature of the TENG and AlN 
system ensures compatibility with the open-circuit configu-
ration, allowing charge accumulation without the need for 
external power sources. This makes AlN an ideal interface 
material for converting electrical-domain signals from vari-
ous sensors into the optical domain. While the TENG is 
employed here as a demonstration, the AlN-based system is 
not limited to this sensor type. Its compatibility extends to 

a variety of wearable sensors and MEMS devices, such as 
resistive pressure sensors, accelerometers, and bioelectrical 
sensors, enabling seamless integration with a broad range of 
edge AI applications.

The superior EO properties of AlN ensure low latency, 
high modulation bandwidth, and minimal power consump-
tion, making it a robust interface between electrical-domain 
sensing signals and optical-domain processing. This versa-
tility positions AlN as a critical enabler for photonic edge 
computing systems designed to process data from diverse 
sensor modalities efficiently and accurately. The voltage 
signals from TENG sensors induce an electric field along 
the z-axis of the AlN waveguide, which in turn modulates 
its refractive index via the Pockels effect (Fig. 1d-ii). We 
design the length (1.2 µm) and width (0.5 µm) of the AlN 
waveguide to support the fundamental transverse electric 
(TE) mode. As shown in Fig. 1d-ii, the refractive index of 
the AlN waveguide under the TE mode and the electric field 
intensity along the z-axis can be expressed by the following 
equation:

where no, r13, Ez is the refractive index of ordinary light, 
electro-optic coefficient, and the electric field intensity. 
This modulation results in a resonance wavelength shift in 
the AlN MRR, correlating the optical output with the input 
electrical signals from the TENG sensor (Fig. 1d-ii-v). By 
fixing the wavelength at the resonant peak, the optical output 
signal reflects the applied pressure or force, allowing for 
dynamic and accurate feature extraction in the time domain. 
The original TENG output typically consists of a positive 
spike during the contact process and a negative spike dur-
ing the release process (Fig. 1d-iii). This output captures 
only the changes in applied force, rather than its continuous 
temporal profile, making it insufficient for distinguishing 
dynamic actions such as stepwise bending of a glove sensor 
versus distinct, separate bending motions. By integrating the 
TENG signal through the AlN MRR, our system converts 
this spike-based data into a continuous signal that aligns 
with the applied force in the time domain (Fig. 1d-iv, v). 
This feature extraction process is mathematically equiva-
lent to performing an integration operation on the original 
TENG data, enabling the retention of complete temporal 
dynamics. This mathematical integration ensures that the 
collected output signal faithfully represents the continuous 
pressure or force applied, enabling precise and dynamic 
feature extraction. Unlike traditional readout circuits that 
rely on instantaneous current release, our photonic feature 
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extraction provides a seamless mapping of the sensor input 
to its dynamic temporal profile. Our previous studies con-
firm that this integration-based feature extraction approach 
not only enhances the accuracy of neural network classifica-
tion but also supports real-time, continuous monitoring of 
sensor inputs [68–70]. By preserving the temporal fidelity of 
the signal, the photonic neural network can effectively ana-
lyze dynamic inputs, ensuring accurate and efficient signal 
processing for advanced sensing applications.

After feature extraction, the processed optical data is 
transmitted to the Si waveguide layer and directed to Si MZIs 
(Fig. 1e), where it undergoes weighting matrix manipulation 
as part of a fully connected 4 × 4 photonic neural network 
(PNN). The weights in the network are dynamically adjusted 
in situ by applying voltage to the MZIs. Specifically, a TiN 
heater is used to locally heat one arm of the MZI, induc-
ing a temperature difference between the two arms. This 
creates a refractive index difference, resulting in a phase 
shift at the output ports. The optical intensity at one output 
port varies based on the constructive or destructive interfer-
ence caused by this phase difference. The weighted optical 
signals are then summed using a combiner and measured 
by a photodetector for further processing. This system sup-
ports in-situ training by leveraging backpropagation. Dur-
ing the training phase, the nonlinear activation (e.g., ReLU) 
and backpropagation are performed by backend electronics. 
The errors are propagated back to update the MZI weights, 
enabling in-situ training and real-time adaptability. After 
training, the NSEC chip operates independently, handling AI 
inference tasks entirely on-chip. The photonic PNN compu-
tations are integrated seamlessly with backend electronics, 
ensuring efficient weight updates and robust processing. In 
the proof-of-concept demonstration presented in this paper, 
the size of the input and output neurons is set to 4. However, 
the system is inherently scalable, allowing the size of the 
network to be increased linearly by incorporating additional 
hybrid photonic-electric NSEC building blocks. This scal-
ability enables the system to support more sensor nodes and 
handle larger numbers of input and output channels, mak-
ing it highly adaptable for broader applications. Addition-
ally, the in-situ training capability enhances the system’s 
ability to learn and adapt to specific applications, making 
it suitable for complex tasks requiring continuous updates 
and optimization.

2.2  Fabrication and Characterization of Bilayer AlN/Si 
Photonic Integrated Circuits

The NSEC chip fabrication process is intricately designed 
and executed on the bilayer AlN/Si waveguide platform 
within the advanced facilities of the 8-inch photonic foundry 
at Advanced Micro Foundry Pte Ltd in Singapore. This pro-
cess follows a series of precise steps to ensure the creation 
of a photonic chip for NSEC applications (Detailed process 
flow is shown in Fig. S2). The fabrication starts with the 
utilization of a standard Silicon-On-Insulator (SOI) wafer 
featuring a 220 nm device layer. This foundational layer 
sets the stage for subsequent processes aimed at defining the 
critical components of the chip. To define the Si waveguide, 
the wafer undergoes deep ultraviolet (DUV) lithography and 
precise Si etching steps. After this step, the fabrication pro-
cess proceeds with the growth of a  SiO2 layer using plasma-
enhanced chemical vapor deposition (PECVD), employing 
Tetraethyl orthosilicate (TEOS) as the precursor material. 
To ensure a uniformly flat surface conducive to subsequent 
depositions and processes, the wafer undergoes chemical 
mechanical planarization (CMP). The next stage involves the 
deposition of AlN using physical vapor deposition (PVD). 
A subsequent round of DUV lithography and precise etch-
ing is employed to define the AlN waveguide accurately, 
ensuring its alignment with the Si waveguide for efficient 
light propagation and modulation. Continuing the process, 
TEOS  SiO2 deposition and CMP processes are repeated to 
create additional insulating layers and maintain the desired 
surface flatness. Following this, DUV lithography and etch-
ing tools are utilized once again to define the  SiO2 pattern, 
creating a distinct height difference essential for the elec-
trode arrangement of the AlN MRR. The final stages of the 
fabrication process involve the deposition and etching of 
TiN and Al layers separately. These layers are meticulously 
crafted to form the microheater for Si thermo-optic devices 
and the electrode for the AlN MRR, respectively. Addition-
ally, another layer of  SiO2 is deposited to facilitate the crea-
tion of electrical interconnections, essential for the overall 
functionality and integration into larger systems.

The NSEC photonic chip leverages a bilayer waveguide 
structure consisting of a Si bottom layer and an AlN top 
layer, fabricated via monolithic integration. Efficient light 
coupling between these layers is achieved using inter-
layer adiabatic couplers (Fig. 2a), designed to minimize 
optical loss during transitions. The coupling mechanism 
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is illustrated schematically in Fig. 2a-i, showcasing the 
gradual transfer of light from the Si waveguide to the AlN 
waveguide. The electric field profile along various regions 
of the coupler highlights the progression of coupling. The 
fabricated adiabatic coupler, shown in Fig. 2a-ii, achieves 
an ultra-broadband low-loss performance with a coupling 
loss of just 0.04 dB per transition, as measured across the 
telecommunication band (Fig. 2a-iii). The AlN electro-optic 
modulators operate on the Pockels effect, allowing dynamic 
modulation of optical signals in response to applied volt-
ages. The bilayer AlN MRR is depicted schematically in 
Fig. 2b-i, and the microscope image of the fabricated device 
is shown in  Fig. 2b-ii. Characterization results presented in  
Fig. 2b-iii reveal a resonance tuning property of 0.26 pm  V−1 
under direct current (DC) conditions, demonstrating robust 
electro-optic modulation performance. These capabili-
ties enable precise photonic feature extraction, seamlessly 
translating TENG sensing signals into the optical domain. 
The schematic structure and optical image of Si MZIs for 
photonic neural network computations are shown in Fig. 2c-
i, ii. The Si MZIs execute the weighting functions required 
for neural network operations by inducing refractive index 
changes through localized heating. This mechanism adjusts 
the phase difference between the interferometer arms, pro-
ducing constructive or destructive interference at the output 
ports. The measured MZI spectra under varying applied 
voltages (Fig. 2c-iii) demonstrate precise control over signal 
weights, essential for performing matrix–vector multiplica-
tion in neural network computations. Furthermore, Fig. 2c-
iii highlights the modulation depth of approximately 30 dB 
with a half-wave voltage (Vπ ) of around 5.6 V, showcasing 
the precise thermo-optic modulation capabilities of the Si 
MZI across the telecommunications C and L bands. The 
comprehensive characterization of the interlayer coupler, 
AlN MRRs, and Si MZIs validates the functionality and 
integration of the NSEC photonic chip. More detailed design 
and characterization of Si/AlN dual-layer photonic device 
are shown in Figs. S3–S7.

2.3  System Configuration and Characterization

The optical measurement of the NSEC chip is conducted 
by our customized NIR fiber-optic alignment systems. 
The NIR light emits from a tunable laser (Daylight 8160B 
lightwave measurement system) and is coupled to the NIR 

optical fibers (Thorlab SMF-28). The 6-axis manual align-
ment stages (Kouzu GXM07S) are used to align the NSEC 
chip and optical fibers to make the NIR light coupled to a 
photonic waveguide and transmit back to the output optical 
fibers. Photodetectors (Thorlab DET08CFC) are used to col-
lect the optical signal and convert to electrical signal. The 
wearable electric sensor signal is connected to AlN MRRs 
for photonic feature extraction and the weighting signal is 
added by electrical circuits for photonic AI computing. Then 
the output optical signal is fed into photodetectors to trans-
fer optical signals to electric signals for analysis. For the 
electrical circuits, the microcontroller (STMicroelectronics, 
NUCLEO-F746ZG) was used to control the 12-bit ADC 
board (MAX22531EVKIT) to collect the analog output from 
the amplifying circuit after the photodetector. The micro-
controller also controls the DAC board with 12-bit accuracy 
(MAX11300PMB1) to apply the voltage.

2.4  Implementation of Neural Networks in NSEC 
System

The TENG sensor dataset is collected from the NSEC 
chip to achieve in-situ training and photonic inference. In 
the data collection process, the participants were asked to 
wear TENG gloves and TENG socks to repeat the hand 
gestures and normal walking status. Finally, a total of 
40 samples (80%) were used as the training set, while 
the other 10 samples (20%) were used as the testing set. 
The development of a robust gesture recognition system 
involved the training of a two-layer Multilayer Perceptron 
(MLP) on a standard consumer-grade computer. The MLP 
architecture, implemented using Python with a PyTorch 
backend, comprised two fully connected layers capable 
of extracting intricate patterns from the four-channel sen-
sor data. The ultimate objective was to accurately predict 
the 13 different hand gestures based on the input sensor 
data. During the training phase, the network was opti-
mized using the cross-entropy loss function, aiming to 
minimize the discrepancy between the predicted logits 
and the actual target values. To facilitate efficient optimi-
zation, an adaptive moment estimation (Adam) optimizer 
was employed, leveraging a learning rate of 0.0001. This 
approach allowed the network to dynamically adjust its 
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learning rate based on the gradient of the loss function, 
enhancing convergence and overall training efficiency. The 
training process was conducted over 400 epochs, enabling 
the network to iteratively learn and refine its predictive 
capabilities (Detailed loss curve is shown in Fig. S9). Each 
epoch involved forward and backward propagation, where 
the network’s parameters were updated using the Adam 
optimizer to improve prediction accuracy. This iterative 
training process played a crucial role in enhancing the 

model’s ability to generalize and make accurate predic-
tions on unseen data. Following the completion of the 
training phase, the MLP model underwent rigorous testing 
using a dedicated testing dataset. The inference process 
involved feeding the testing data into the trained model to 
evaluate its performance in real-world scenarios. By com-
paring the model’s predictions with the ground truth labels 
in the testing set, we were able to assess the accuracy and 
robustness of the gesture recognition system.

Fig. 2  Characterization of photonic devices on NSEC chip. a Interlayer coupler of Si/AlN dual-layer photonic waveguide. (i) Schematic dia-
gram of the interlayer adiabatic coupler, demonstrating light coupling from the Si waveguide layer (bottom) to the AlN waveguide layer (top). 
The inset shows the electric field profile at various regions along the coupler, illustrating the progression of light coupling. (ii) Optical micro-
scope image of the adiabatic coupler. iii. Measured coupling loss across the full spectrum of the telecommunication band, indicating ultra-
broadband low-loss operation of the interlayer adiabatic coupler. b AlN electro-optic microring resonator. (i) Schematic diagram of the bilayer 
AlN MRR, highlighting the modulation mechanism based on the Pockels effect in AlN. (ii) The optical microscope image of the AlN MRR 
(iii) Measured tuning properties of the AlN MRR, showcasing the electro-optic modulation performance enabled by the Pockels effect. c Si 
thermo-optic MZI. (i) Schematic diagram of the Si MZI, illustrating its role in performing the weighting function in the neural. (ii) The optical 
microscope image of the Si MZI. (iii) Measured MZI spectra under different applied voltages, demonstrating the ability to control signal weights 
through voltage adjustments
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3  Results and Discussion

3.1  Gesture Recognition by Sensor Gloves Using Pho‑
tonic Feature Extraction (Phase 1)

The self-powered pressure sensor, utilizing TENG technology, 
is strategically installed on the four finger joints of a glove 
to capture bending motions (Fig. 3a). During finger bending, 
the positive and negative triboelectric materials (nitrile and 
silicone rubber) come into contact and generate electrical 
charges through friction. For photonic feature extraction of 
these TENG-generated signals, we employed an AlN MRR 
with a diameter of 60 µm and a coupling gap of 0.4 µm. The 
AlN MRR spectrum, presented in Fig. 3b, c, features a reso-
nance peak at 1577.525 nm with a high Q-factor of 65,700, 
reflecting its superior sensitivity and precision. The signal 
from the index finger was directly connected to the electrodes 
of the AlN MRR to monitor bending-induced variations. To 
simultaneously measure the TENG sensor’s output voltage and 
the modulated optical signal, we employed an electrometer 
(Keithley 6514) in parallel to record the open-circuit voltage as 
a reference. Experimental results (Fig. 3d) illustrate four con-
secutive bending tests of the index finger at incremental angles 
of 30°, 60°, 90°, and 120°. Both the TENG output voltage and 
the optical output of the AlN MRR increased progressively 
with larger bending angles. Furthermore, the optical signal 
demonstrated precise temporal alignment with the electrical 
signal, validating the system’s capability for real-time sensing 
and processing. To assess repeatability, the system underwent 
100 consecutive 30° bending tests of the index finger. The 
results revealed consistent changes in both the electrical output 
voltage and the optical signal, with minor deviations attrib-
uted to manual control considered as system errors for neural 
network training. These findings underscore the robustness 
of AlN MRRs in performing photonic feature extraction for 
TENG-based pressure sensors.

Furthermore, we extended the application of photonics fea-
ture extraction from the aluminum nitride-integrated circuit 
to gesture recognition in American Sign Language (ASL). As 
illustrated in Fig. 3e, we selected 13 representative gestures, 
symbolizing English letters and Arabic numerals, for demon-
stration purposes. The signals from the TENG sensors on the 
four fingers were individually connected to four identical AlN 
MRRs for the retrieval of feature-extracted signals. One set of 
signals for the 13 gestures is displayed in Fig. 3f. Throughout 

the varying gestures, we observed a relatively stable maxi-
mum signal output, which correlates with the degree of finger 
bending. Specifically, we extracted the output variation values 
for each finger’s corresponding sensor, as shown in Fig. 3g. 
These signals represent the input to the neural network after 
completing photonics feature extraction. To train the neural 
network model, we conducted 50 repeated tests for each ges-
ture set, randomly dividing them into 80% for training and 
20% for testing purposes. The classification task for gestures 
was accomplished using a fully connected neural network, 
and its framework is depicted in Fig. 3h. We input the signals 
obtained after photonics feature extraction into the trained 
neural network, achieving a recognition accuracy of 100% 
(Fig. 3i). In the subsequent sections, we will delve further into 
the on-chip implementation of photonics feature extraction and 
neural network computations, specifically focusing on pho-
tonic near-sensor edge computing.

3.2  Gait Analysis by Sensor Socks Using Photonic Fea‑
ture Extraction (Phase 1)

In addition to the glove sensors, we have also integrated 
self-powered TENG sensors into socks, as illustrated in 
Fig. 4a. Four TENG sensors are strategically placed on the 
forefoot and heel of both the left and right feet, each meas-
uring 3 × 3  cm2. Before conducting human gait analysis, 
we characterized the TENG sensors using a standard force 
gauge. The results, shown in Fig. 4b, c, were obtained by 
testing pressures of 50, 100, 200, 400, and 800 N, with 
three repeated measurements for each pressure condition. 
As the pressure increases from 50 to 800 N, the open-circuit 
output voltage of the TENG gradually changes from −6 to 
−69 V. This output is considerably larger compared to the 
TENG glove, necessitating the selection of an appropriate 
probe wavelength to read this signal variation from the AlN 
electro-optic microring resonator. Consequently, we tested 
the resonance spectra of the AlN MRR at these five output 
voltages, as depicted in Fig. 4d. The maximum blue-shift 
range of the spectrum reaches 18 pm. To observe the vari-
ation in the modulated light signal, we selected five wave-
lengths (λ1:1577.316 nm, λ2:1577.32 nm, λ3:1577.326 nm, 
λ4:1577.328 nm, and λ5:1577.33 nm), and the results are 
presented in Fig. 4e. Regardless of the wavelength, the 
temporal signal at each wavelength corresponds well with 
the variation in our input pressure signal. To better discern 
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the patterns of change, we plotted the voltage variations 
in Fig. 4f. When the probe wavelength is smaller than the 
resonant wavelength, we observe that the modulated light 
signal initially decreases with voltage before reversing and 
increasing. This change occurs because of the blue shift 
in the resonance peak. Initially, the signal moves toward 
the valley of the resonance, but then it returns to a point 
of higher light intensity after passing through the valley. 
Conversely, when the probe wavelength is larger than the 
resonant wavelength, the modulated light signal consistently 
increases with voltage but quickly reaches saturation. After 
careful consideration, we selected the resonant wavelength 

(λ3:1577.326 nm) as the photonics feature for the TENG 
socks in the application of gait recognition. Upon ascertain-
ing the probe wavelength, we leverage it for the recognition 
of human gait. The depiction of the correlation between gait 
recognition states and an individual’s steps is presented in 
the illustrated Fig. 4g. Within a single gait cycle, segmenta-
tion occurs into two main phases: stance and swing, consist-
ing of seven distinct states. The sensor socks integrate four 
sensors with each connected to AlN electro-optic microring 
resonators. Unlike the static gesture recognition discussed 
earlier, the sensor sock signals enable real-time dynamic 
monitoring. As an individual walks, these signals undergo 

Fig. 3  Feature extraction of TENG glove sensor using photonic chips for gesture recognition. a System schematic of TENG glove with pres-
sure sensors on 4 fingers (thumb, index, middle, ring). Each sensor on different fingers is connected to AlN MRRs respectively. b Broadband 
spectrum of AlN MRR with a diameter of 60 µm and gap of 0.4 µm. c Zoom-in view of one resonance peak at 1577.525 nm showing a Q factor 
of 65700. d The open circuit voltage of TENG sensors and related photodetector voltage of modulated AlN MRR at 1577.526 nm wavelength 
for index finger bending at 30°, 60°, 90°, and 120° in continuous time response. The index finger returns to its initial straightened state after each 
bend.  e 13 different gestures represent the English letters and Arabic numerals in American sign language (ASL). f The sensor response of 13 
gestures after feature extraction on AlN MRR. g The extracted voltage change value of 13 different gestures. h. The neural network model of 
gesture recognition. i The confusion matrix of recognition results using photonic feature extraction.
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photonics feature extraction and computational processing, 
resulting in classification outcomes that accurately represent 
the state of gait analysis. The temporal signals for the four 
TENG sensor channels after photonics feature extraction 
are shown in Fig. 4h. Through the identification of tempo-
ral markers corresponding to the elevation and grounding 
of the left and right feet, the dataset is labeled into seven 

classes, each aligning with one of the seven gait states. The 
data after photonics feature extraction is subsequently sub-
jected to neural network computations, with the neural net-
work architecture depicted in Fig. 4i. Following the training 
regimen, the accuracy of gait recognition attains a level of 
99%, as shown in the confusion map in Fig. 4j.

Fig. 4  Feature extraction of TENG sock sensor using photonic chips for gait analysis. a schematic drawing of TENG sock sensors. 4 sensors 
are placed on different positions of a pair of socks-left front (LF), left rear (LR), right front (LF), right rear (RR). b, c Standard force measure-
ment using TENG sock sensors. Force profile generated by force gauge at different time (b). Corresponding TENG sensor output measured in 
open-circuit condition (c). d MRR resonance spectrum at extracted voltages of TENG output. Five probing wavelengths for continuous-time 
monitoring are labeled accordingly. e Continuous-time monitoring of MRR signal corresponding to the TENG output in (c) at different probing 
wavelengths. f The extracted MRR signal change (photo voltage difference) at applied forces with different probing wavelengths. g Gait analysis 
states in one gait cycle. h The corresponding MRR signals of 4 TENG sock sensors in one gait cycle. i The neural network model for gait analy-
sis using TENG sock sensors with feature extraction from MRR. j The confusion matrix of gait analysis state using MRR signals
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3.3  Near‑Sensor Edge Computing by Photonic Feature 
Extraction and PNNs (Phase 2)

The schematic representation of the photonic near-sensor 
edge computing chip system is delineated in Fig. 5a. In order 
to concurrently process signals from four distinct channels, a 
laser beam undergoes splitting through a PLC splitter, result-
ing in its distribution into four distinct paths. Subsequently, 
these separated light beams are guided into four distinct AlN 
electro-optic microring resonators, where sensor signals are 
intricately interfaced to enable preliminary photonics feature 
extraction. In the NSEC, the signals undergoing photonic 
feature extraction are seamlessly transmitted to a Si MZI for 
subsequent engagement in PNN computations. The modula-
tion of the weights of PNN is orchestrated through the judi-
cious application of voltage to the thermo-optic modulator. 
The modulated signals, imbued with weighted significance, 
are then amalgamated leveraging a PLC combiner. The cal-
culated results are recorded through a photodetector to con-
vert to electric signals for post-processing. In the equivalent 
neural network, the sensor signals, having undergone pho-
tonics feature extraction through aluminum nitride microring 
resonators, serve as inputs to a 4 × 4 fully connected neural 
network. Matrix computations are executed through silicon 
MZI for network output generation. Subsequently, the output 
optical signal is converted into a digital signal using a photo-
detector for backend nonlinear activation and classification 
operations by the digital electronic processor. During the 
training process, the computed loss function is iteratively 
updated through gradient backpropagation to adjust weights 
for subsequent epochs, striving for optimal accuracy. In the 
inference process, sensor signals are fed into the trained 
weight matrix. At this point, the bar state of MZI is utilized 
for weight matrix computation. However, owing to the pres-
ence of modulation noise in the photonic chip, computed 
results may exhibit deviations, thereby impacting the final 
accuracy of inference. Simultaneously, monitoring signals 
from the cross-state of MZI are also captured. While distinct 
from the bar state, these signals exhibit complementary rela-
tionships. Mathematically, the response to the modulation 
power can be conceptualized as two sinusoidal waves with 
a phase difference of 90 degrees. In other words, if the bar 
state output is represented as wijIj, the cross-state can be 
considered as (1 − wij)Ij. The signals from the four chan-
nels of the cross-state are not aggregated, serving the pur-
pose of monitoring the accuracy of each weight. Real-time 

adjustments to the applied voltage of MZI are made to cor-
rect discrepancies. In addition to hardware-level optimiza-
tions, algorithmic enhancements are pursued through the 
quantization of weights. However, prior to specific algorith-
mic optimizations, understanding the noise characteristics of 
the entire system is crucial. Therefore, characterization of 
noise in both the AlN MRR and the Si MZI is undertaken.

In Fig. 5b, the modulation characteristics and noise of the 
aluminum nitride electro-optic modulator at a fixed wave-
length are presented. The optical microscope image of the 
aluminum nitride electro-optic modulator used in the tests 
is displayed in the inset of Fig. 5b. Additionally, we have 
zoomed in to showcase the adiabatic coupler section of 
the waveguide, a critical component for guiding light from 
the bottom silicon layer to the top aluminum nitride layer. 
The test wavelength is fixed at the peak wavelength of the 
microring resonator (1573.325 nm), and a cyclic scan of the 
voltage is conducted from 1 to 90 V with intervals of 0.2 V. 
After 20 cycles of testing, the results are plotted in Fig. 5b. 
It is evident that as the voltage increases, the optical signal 
also increases while maintaining a favorable linearity. The 
standard deviation during the aluminum nitride electro-optic 
modulator process is calculated to be 0.02. Maintaining the 
same wavelength, we continue to assess the noise of the 
silicon thermo-optic modulator, as depicted in Fig. 5c. How-
ever, when applying an electrical signal, the microheater 
on one arm of the MZI heats, leading to a change in the 
refractive index of that arm and, consequently, a variation 
in output. We scan the voltage from 0 to 7.5 V with intervals 
of 0.05 V, detecting the output in the bar state. From Fig. 5c, 
it can be observed that the optical signal initially decreases 
and then increases with the rising voltage. This behavior is 
attributed to the fact that the modulation of the MZI is effec-
tively induced by phase, thus exhibiting periodicity. The out-
put signal follows a sinusoidal relationship with the phase, 
resembling a sine wave. The refractive index change caused 
by the thermo-optic modulator is directly proportional to the 
temperature. Hence, the output optical signal should exhibit 
a sinusoidal relationship with the power of the modulating 
electrical signal, specifically a sinusoidal relationship with 
the square of the voltage. Therefore, we choose the modula-
tion signal before the π phase, i.e., before  Vπ = 5.2 V, for the 
weight update function. We repeat the voltage cycle 20 times 
to characterize the noise of the Si MZI, resulting in a final 
standard deviation of 0.016.
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Fig. 5  Demonstration of an NSEC system using AlN/Si PIC systems. a Optical characterization setup of AlN/Si photonic integrated circuit 
systems for NSEC. The implementation of a fully connected 4 by 4 neural network using 4 AlN MRRs for photonic feature extraction and 4 Si 
MZIs for matrix–vector manipulation. The right part shows the equivalent neural network model for the gesture identification and gait analysis 
tasks achieved by NSEC. b The measured modulation signal of AlN MRRs under continuous voltage sweep. The inset optical microscope image 
shows the device of AlN MRR and the adiabatic coupler for light transmission from the bottom Si layer to the top AlN layer. c The measured 
modulation signal of Si MZIs under continuous voltage sweeps. The inset optical microscope image shows the device of Si MZIs with a micro-
heater. d, e The measured calculation accuracy of multiplication (d) and MAC operation (e) using MRR and MZI devices. f, g Photonic feature 
extraction and AI computation results of gesture recognition (f) and gait analysis (g) tasks. (i, ii) the matrix–vector manipulation results from 
the NSEC chip with analog operation (i) and 4-bit quantization (ii). (iii, iv) The confusion matrix of recognition results using NSEC output with 
analog operation (iii) and 4-bit quantization (iv)
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Upon individually characterizing the noise of the AlN 
MRRs and Si MZIs, we seamlessly integrate these devices to 
examine the noise distribution during the computational pro-
cess. Commencing with the selection of 1000 sets of random 
numbers as multiplication factors, two numbers are chosen 
randomly for multiplication, and the numerically com-
puted result is denoted as ’expected’. Simultaneously, these 
numerical values are translated into corresponding electri-
cal modulation signals and fed into the aluminum nitride 
microring resonator and Si MZI. The optical responses are 
then measured and normalized to align with the numerically 
calculated outcomes. Statistical analysis reveals a Gaussian 
noise distribution in the results of all random number multi-
plications, with a standard deviation of 0.011, as illustrated 
in Fig. 5d. Subsequently, we assess the accuracy of both 
multiplication and addition operations, where the results of 
two sets of multiplications are summed. In the optical com-
putation, these results are presented in Fig. 5e, highlight-
ing that the noise adheres to a Gaussian distribution, with 
a standard deviation of 0.017. Following the characteriza-
tion of computational noise, we showcase near-sensor edge 
computing through demonstrations of gesture recognition 
and gait analysis. Initiating the training process with analog 
weights for sensor gloves and socks signals, we perform fea-
ture extraction by connecting TENG sensors to AlN MRR. 
Neural network computations are then executed directly in 
Si MZI. The computational outcomes once converted to 
digital signals, undergo nonlinear activation and loss func-
tion calculation on a computer. Subsequent backpropagation 
through gradient descent updates the Si MZI signals for sub-
sequent epochs, steadily converging the loss function toward 
zero. Post-training, we evaluate the precision of each weight 
through the cross-state of Si MZI, maintaining signals with 
identical intensity for the four AlN MRRs. Under analog 
conditions, the measured weight values exhibit some devia-
tion from the actual measured values (Fig. 5e, f–i), influenc-
ing the precision of subsequent neural network computa-
tions. Consequently, we propose a quantization approach for 
weight assignment. This method involves fixed numerical 
values for each weight state, with the difference between 
adjacent weights determined by the quantized number of 
bits. When noise is smaller than the difference between two 
quantized weights, the input weights are likely to fall into 
the correct state, minimizing overall error and enhancing 
accuracy. Simulation results demonstrate that when weights 
are quantized to 4 bits, neural network accuracy surpasses 

96%. While increasing bit numbers further enhances accu-
racy, a trade-off between bit numbers and noise is neces-
sary. Notably, the standard deviation of the multiplication 
operation primarily falls within the range of ± 0.033, closely 
approaching the spacing between states of a 4-bit system. 
Consequently, with 4-bit quantization, the majority of 
weights (> ~ 99%) align within an accurate range, yielding 
high neural network accuracy. Having validated the quan-
tization weight algorithm, we proceed to conduct real-time 
on-chip analyses of signals from TENG gloves and socks. 
Gesture recognition accuracy is reported as 74.56% (analog 
weight) and 96.77% (4-bit quantization weight), while real-
time gait analysis accuracy stands at 59.2% (analog weight) 
and 98.31% (4-bit quantization weight). These results collec-
tively affirm the viability of our comprehensive near-sensor 
edge computing system for AIoT applications.

3.4  Near‑Sensor Edge Computing for Metaverse Appli‑
cations

In recent years, with the rapid rise of AIoT, the metaverse 
has emerged as a popular application direction, gradually 
changing people’s lifestyles. Recently, the introduction 
of next-generation smart devices such as Apple Vision 
Pro has accelerated the empowerment of entering the 
metaverse world for individuals. In mixed reality (MR) 
applications, gesture recognition has become a fundamen-
tal human–computer interaction mode for controlling virtual 
space interfaces. Therefore, developing a gesture recogni-
tion human–machine interface with low data volume, low 
latency, and low-power consumption has become an impor-
tant development trend. On the other hand, due to the over-
lap of VR space and display space in mixed reality, users 
may encounter obstructed lines of sight and risks of falling 
while moving in physical space. Although MR equipment 
like Apple Vision Pro currently limits users from high-speed 
movement, detecting accidental falls is also crucial for user 
safety. Based on these two demands, our developed near-
sensor edge computing system paired with sensor gloves and 
socks can effectively address these issues (Fig. 6a).

Firstly, the sensor gloves can directly track the degree of 
finger bending of the user and quickly obtain control signals 
for controlling VR space through low latency, low-power 
AI processing by NSEC. This significantly reduces the data 
volume at the sensing end and the computational load of 
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the neural network compared to methods that rely on video/
image or light detection and ranging (LiDAR)-based hand 
motion recognition, thereby greatly reducing data latency 

and power consumption. As shown in Fig. 6b, we perform 
two gestures in physical space, representing "turn on the 
lights" and "turn on the fan" in virtual space. Through 

Fig. 6  Near-sensor edge computing toward metaverse applications. a Schematic drawing of the intended use case for mixed reality applications 
assisted by sensor gloves and socks with NSEC chip. b The sensor gloves provide the human–machine interface with machine learning results 
generated by NSEC. (i) The gesture photo in real space. (ii) The corresponding control in VR space with the gestures. (iii) The NSEC output for 
different gestures. c The sensor socks provide user safety monitoring with gait analysis results generated by NSEC in a mixed reality environ-
ment. (i) The gait patterns in real space. (ii) The corresponding gait state is demonstrated by an avatar in VR space. (iii) The NSEC output for 
different gait states
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computational processing by NSEC, we achieve a real-time 
and efficient human–machine interface, displaying the cor-
responding "turn on the lights" and "turn on the fan" com-
mands operated by the user in VR space. The corresponding 
NSEC signals are displayed in Fig. 6b-iii. Furthermore, the 
sensor socks can monitor the user’s gait characteristics in 
real-time, and through machine learning computations by 
NSEC, it can detect falls by users. As shown in Fig. 6c, we 
demonstrate normal walking and falling by the user in physi-
cal space. The output signal from NSEC allows the avatar 
created in VR space to simulate the user’s gait in real-time 
and detect instances of the user falling, issuing warnings 
promptly. The corresponding NSEC signals are displayed 
in  Fig. 6c-iii.

Through these two application demos, we observe that 
utilizing near-sensor edge computing in combination with 
various modal sensors provides a solution with low data vol-
ume, low latency, and low-power consumption compared to 
traditional methods relying on video or image recognition 
and LiDAR signal recognition. This solution can be widely 
applied in various AIoT fields such as human–machine 
interface, health monitoring, smart home devices, and 
more, thereby offering a promising approach for metaverse 
applications.

4  Conclusions

The hybrid photonic-electronic NSEC system represents a 
pioneering integration of high-speed photonic computing 
chips with wearable sensors, marking a paradigm shift in edge 
AI applications interfacing with FTTH infrastructures. By 
seamlessly combining AlN electro-optic MRRs for photonic 
feature extraction and Si thermo-optic MZIs for PNN com-
putations, the NSEC chip achieves real-time AI processing 
with minimal latency, low-power consumption, and high clas-
sification accuracy. This innovation highlights the transforma-
tive potential of photonic computing in wearable AI systems. 
By integrating TENG sensors, the NSEC chip demonstrates 
its capability to operate in a nearly energy-neutral manner, 
powered entirely by the sensor’s friction-induced charge gen-
eration. This eliminates the need for external power sources, 
making it highly efficient for pressure sensing and AI pro-
cessing applications. The NSEC chip realized by the bilayer 
AlN/Si photonic platform ensures low energy consumption, 
as the AI computations are performed directly at the edge, 

with peak energy consumption during inference maintained 
at just 0.34 pJ. Additionally, the high modulation bandwidth 
(> 10 GHz [67, 71]) of the AlN electro-optic modulators facil-
itates ultra-low latency processing (< 0.1 ns), enabling rapid 
signal transmission and real-time AI inference. The overall AI 
latency of the NSEC system is approximately 10 ns, which 
includes the photodetector response (~ 0.2 ns) and nonlinear 
activation processing by the FPGA (~ 10 ns), ensuring highly 
efficient edge AI computations. This integrated architecture 
eliminates reliance on cloud-based data transmission, signif-
icantly reducing data latency, improving energy efficiency, 
and enhancing privacy—key advantages that align with the 
advancing trends of AI toward agentic AI and physical AI at 
the edge. A distinguishing feature of the NSEC system is its 
ability to seamlessly integrate two input modalities: electrical-
domain signals and optical-domain signals. By supporting 
electrical inputs from wearable sensors, such as resistive sen-
sors [72–74], MEMS sensors [75–77], triboelectric sensors 
[78–82], and bioelectrical sensors [83, 84], alongside optical 
inputs from devices like spectroscopic sensors [85–91], visual 
sensors [24], LiDAR [92], and polarization detectors [93–95], 
the system demonstrates unprecedented versatility. This dual-
modality capability enables efficient data processing across a 
wide range of sensor types, bridging the gap between electri-
cal and optical sensing technologies within a unified photonic 
computing platform.

The NSEC system has been validated through real-world 
applications, including static gesture recognition using sen-
sor gloves and dynamic gait analysis with sensor socks, 
achieving high classification accuracies exceeding 96%. 
These results underscore its capability for advanced applica-
tions such as healthcare monitoring, smart wearable systems, 
and metaverse interfaces, which demand high-speed, low 
latency, and energy-efficient data processing. Furthermore, 
the NSEC system sets the stage for integrating additional 
wearable sensors with photonic computing chips, creat-
ing comprehensive edge AI systems. This transformative 
approach represents a paradigm shift in how wearable AI 
systems process data by embedding intelligence directly 
within physical devices. By addressing key challenges, 
including data latency, energy consumption, and privacy 
concerns, the NSEC system establishes a robust foundation 
for decentralized, high-performance, and energy-efficient 
edge AI systems across diverse applications.
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