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Grain Boundaries Contribute to the Performance 
of Perovskite Solar Cells by Promoting Charge 
Separations
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 HIGHLIGHTS

• Sub-micrometer-resolved photocurrent mapping in operational perovskite solar cells, achieved through our home-built photolumi-
nescence and photocurrent imaging microscopy, reveals enhanced photocurrent at grain boundaries compared to grain interiors.

• Local pump-probe femtosecond transient absorption and Kelvin probe force microscopy measurements corroborate the presence of a 
built-in electric field in the vicinity of grain boundaries that promotes electron–hole separation and the subsequent charge collection, 
thereby contributing to the performance of perovskite solar cells.

ABSTRACT Historically seen 
as a limitation, grain boundaries 
(GBs) within polycrystalline metal 
halide perovskite (MHP) films are 
thought to impede charge transport, 
adversely impacting the efficiency of 
perovskite solar cells (PSCs). In this 
study, we employ home-built confo-
cal photoluminescence microscopy, 
combined with photocurrent detec-
tion modules, to directly visualize 
the carrier dynamics in the MHP 
film of PSCs under real operating conditions. Our findings suggest that GBs in high-efficiency PSCs function as carrier transport channels, where 
a notable enhancement in photocurrent is observed. Femtosecond transient absorption and Kelvin probe force microscopy measurements further 
validate the existence of a built-in electric field in the vicinity of GBs, offering additional driving force for charge separation and establishing 
channels for swift carrier transport along the GBs, thereby expediting subsequent charge collection processes. This study elucidates the pivotal 
role of GBs in operational PSCs and provides valuable insights for the fabrication of high-efficiency PSCs.
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1 Introduction

Polycrystalline semiconductor films are widely utilized in 
a variety of devices, including solar cells [1–6], thin-film 
transistors (TFT) [7–10], thin-film thermoelectric generators 
[11, 12], and microelectromechanical systems (MEMS) [13]. 
The performance of these devices hinges on the polycrys-
talline film’s microstructures, particularly grain boundaries 
(GBs) [14]—the interfaces that separate individual grains 
oriented in distinct crystallographic directions [15]. Metal 
halide perovskite solar cells (PSCs) have achieved fast pro-
gress in power conversion efficiency (PCE), which is largely 
determined by the quality of the metal halide perovskite 
(MHP) polycrystalline film that contains a large quantity of 
GBs [16, 17]. Comprehending the role of GBs in polycrys-
talline MHP film is imperative for the rational design of the 
active layer and, ultimately, for enhancing device perfor-
mance [18–20].

In the realm of PSCs, the GBs in MHP films have pre-
dominantly been labeled as detrimental factors that influence 
device stability [21, 22] and efficiency [17, 23–25]. This 
perspective is primarily attributed to the markedly greater 
defect density at GBs in comparison with the bulk phase 
[23]. It is widely accepted that GBs inherently hinder charge 
transport through their scattering effects or trapping mecha-
nisms, consequently exacerbating nonradiative recombina-
tion and leading to energy loss [25, 26]. However, PSCs 
using single-crystal MHP films or those with ultra-large 
grains did not achieve higher PCE as anticipated, suggesting 
that the impact of GBs may not be entirely negative [27, 28]. 
Actually, in other solar cells such as polycrystalline CdTe 
[6] and copper indium gallium selenide (CIGS) [29], certain 
specific GBs have been found to paradoxically enhance the 
efficiency of charge transport. Recent studies have proposed 
that GBs in MHP films may enhance the efficiency of PSCs 
by facilitating the separation of electrons and holes [30, 31] 
However, this conclusion was drawn from the investiga-
tion on isolated MHP films, rather than on fully assembled 
or operational PSCs. Therefore, the role of GBs (such as 
whether they facilitate carrier transport as in CdTe or CIGS 
solar cells) is indeed unclear in an operational PSC.

In this work, we employ home-built confocal photolumi-
nescence (PL) microscopy, combined with a photocurrent 

detection module, to directly map the local photocurrent 
and PL in operational PSCs with different PCE values with 
a sub-micrometer spatial resolution. We find that the local 
photocurrent at the GBs is notably higher than the inside of 
grains and exhibits an inverse correlation with the local GB 
PL intensity. Furthermore, the high-efficiency PSCs show 
a greater amplitude of photocurrent enhancement at GBs 
compared to the low-efficiency PSCs. Local pump-probe 
femtosecond transient absorption and Kelvin probe force 
microscopy (KPFM) measurements corroborate the presence 
of a built-in electric field in the vicinity of GBs that pro-
motes electron–hole separation and the subsequent charge 
collection at GBs. Conversely, a high density of defects at 
GBs can trap carriers, leading to performance degradation, 
as observed in low-efficiency PSCs. This research clarifies 
the dual role of GBs in PSCs, emphasizing their beneficial 
impact on high-efficiency devices, which will significantly 
contribute to enhancing the performance of PSCs.

2  Experimental Section

2.1  Materials

The  SnO2 colloid (tin (IV) oxide) precursor (15 wt% in 
 H2O colloidal dispersion) was obtained from Alfa Aesar. 
Ndimethylformamide (DMF), dimethyl sulfoxide (DMSO, 
99.9%), acetonitrile (ACN, 99.8%), methylbenzene (99.9%), 
chlorobenzene (CB, 99.8%) and Bis (trifluoromethane) sul-
fonimide lithium salt (Li-TFSI, 99.95% trace metals basis) 
were obtained from Sigma-Aldrich. Lead iodide  PbI2 
(> 99.999%) and Formamidinium iodide (FAI) (99.8%) 
were obtained from Advanced Election Technology Co., 
Ltd. Methylammonium bromide (MABr) (99.9%) and meth-
ylammonium chloride (MACl) (99.9%) were purchased 
from Xi′an Polymer Light Technology. 2,2,7,7′-tetrakis 
(N,Ndip-methoxyphenylamine)-9,9′- spirobifluorene (Spiro-
OMeTAD, 99.8%) was purchased from Borun New Material 
Technology. Au and Ag were purchased from ZhongNuo 
Advanced Material (Beijing) Technology Co., Ltd. All the 
chemicals were used as received without further treatment.
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2.2  Fabrication of Perovskite Solar Cells 
and Perovskite Thin Films

2.2.1  Device Fabrication

The ultra-thin ITO (0.15 mm) substrates were washed with 
deionized water, ethanol and isopropanol successively and 
were dried under nitrogen flow. After 15 min of UV-ozone 
treatment, the  SnO2 colloidal dispersion was diluted to 2.5 
wt% with deionized water. Subsequently, the prepared  SnO2 
solution was spun onto the blow-dried ultra-thin ITO sub-
strate with 3000 r  min−1 for 30 s and heated at 150 °C for 
30 min in ambient air to prepare the electron-transport layer 
(ETL), then reserved 5 min UV-ozone treatment and trans-
ferred to the  N2 glove box. The  (FAPbI3)0.95(MAPbBr3)0.05 
precursor solution was prepared by adding FAI (274.46 mg), 
 PbI2 (735.77 mg), MABr (9.41 mg),  PbBr2 (30.83 mg) and 
MACl (30.83 mg) into 1.2 mL of a mixed solvent of DMF 
and DMSO (7:1 by volume) stirred at room temperature for 
6 h. To prepare the metal halide perovskite (MHP) film, 50 
μL of above perovskite precursor was spread on the ITO/
SnO2 substrates and spun by a two-stage spin-coating pro-
cess (1000 r  min−1 for 10 s and 5000 r  min−1 for 30 s). Dur-
ing the second spin coating stage, 150 μL of methylbenzene 
was continuously dripped on the spinning substrate 15 s 
prior the end of the program. The films were then transferred 
to a hot plate and annealed at 120 °C for 5and 20 min. Pre-
cursor solution of HTL was prepared by dissolving 72.3 mg 
spiro-OMeTAD, 28.8 μL 4-tert-butylpyridine, 17.5 μL lith-
ium bis (trifluoromethylsulphonyl) imide acetonitrile solu-
tion (520 mg  mL−1), and 20 μL FK209 acetonitrile solution 
(300 mg  mL−1) into 1 mL CB. The HTL solution was then 
deposited on top of the perovskite layer by spin coating at 
3,000 r  min−1 for 30 s. Finally, an 80 nm Au electrode was 
deposited by thermal evaporation on top of the HTL.

2.2.2  Preparation of High‑Quality and Low‑Quality 
(FAPbI3)0.95(MAPbBr3)0.05 Perovskites Thin Film

The distinction between high-quality and low-quality per-
ovskite films in this study was achieved solely by modulat-
ing the annealing time, while all other fabrication param-
eters remained identical. Both films were prepared using 
the same precursor solution and spin-coating conditions. 
The  (FAPbI3)0.95(MAPbBr3)0.05 precursor solution was 

prepared by adding FAI (274.46 mg),  PbI2 (735.77 mg), 
MABr (9.41 mg),  PbBr2 (30.83 mg) and MACl (30.83 mg) 
into 1.2 mL of a mixed solvent of DMF and DMSO (7:1 by 
volume) stirred at room temperature for 6 h. 50 μL of above 
perovskite precursor was spread on the glass substrates and 
spun by a two-stage spin-coating process (1000 r  min-1 for 
10 s and 5000 r   min-1 for 30 s). During the second spin 
coating stage, 150 μL of methylbenzene was continuously 
dripped on the spinning substrate 15 s prior the end of the 
program. High-quality films were synthesized by annealing 
the sample at 120 °C for 20 min in a nitrogen atmosphere. In 
contrast, low-quality films resulted from a shorter annealing 
duration of 5 min.

3  Results and Discussion

3.1  PL and Photocurrent Mapping in Operating PSCs

Although the role of GBs in charge transport within MHP 
films in PSCs is still uncertain, it is expected that their influ-
ence may vary in devices exhibiting different PCE levels. 
The annealing time significantly influences the crystallin-
ity of MHP film, giving rise to grains with different size 
distributions [32, 33]. This, in turn, results in the formation 
of GBs with different characteristics (such as the density of 
defects) that affect the photovoltaic performance of PSCs. 
We fabricated PSCs with different PCEs by manipulating 
the annealing time of MHP film. In comparison with the 
MHP film annealed for 20 min under optimized conditions, 
the film annealed for 5 min shows lower PL intensity and 
a shorter PL lifetime (Fig. S1), suggesting inferior crystal-
linity and a higher density of defects. This is further sup-
ported by the XRD (Fig. S2) and SEM characterizations 
(Fig. S3). Cross-sectional SEM images confirm that the GBs 
are predominantly vertically aligned from the substrate to 
the surface (Fig. S4). XRD patterns display incomplete 
transformation of  PbI2 and insufficient growth of MHP 
annealed for 5 min, while SEM images reveal noticeable 
macroscopic defects, with a few voids visible [34]. The two 
different MHP films were fabricated into PSCs for further 
characterization under operational conditions.

Recently, concentrated efforts have been made to measure 
photoresponse at the micro–nano-scale in perovskite thin 
films through scanning imaging methods such as conduc-
tive-AFM (C-AFM) [30], photoconductive AFM (PC-AFM) 
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[35], and KPFM [6, 36]. However, these techniques depend 
on a tip-scanning process and require direct contact between 
the tip and the active layer, posing challenges for the meas-
urement of local photovoltaic parameters in operating PSCs.

As an alternative, we employed a home-built setup of 
laser-scanned PL microscopy coupled with a photocurrent 
detection module to collect PL and photocurrent on a work-
ing PSC, as depicted in Fig. 1a. Briefly, the PSC is excited 
by a focused laser beam through a 100 × objective. The PL 
signal is detected by a single-photon detector coupled with 
a time-correlated single photon counting (TCSPC) module. 
Simultaneously, the photocurrent and photovoltage sig-
nal generated by focused excitation is monitored using a 
picoammeter. By scanning the laser beam across the PSC via 
galvanometer mirror rotation, PL, photocurrent and photo-
voltage images are acquired [37]. We use an autofocus sys-
tem to dynamically stabilize the focal plane during the meas-
urement. To obtain high-resolution photocurrent and PL 
mappings, we employed a thin ITO-coated glass (0.15 mm 
in thickness) for the PSCs fabrication. The spatial resolution 
of the photocurrent mapping and confocal PL measurement 
is  ~ 500 and  ~ 300 nm (Fig. S5), respectively. The device 

architecture and performance of the two PSCs utilizing MHP 
films with different annealing times (5 and 20 min) are illus-
trated in Fig. S6, showcasing PCEs of 16.10% and 22.40%. 
The two devices undergoing subsequent characterizations 
are designated as the low-efficiency and high-efficiency 
PSCs, respectively.

PL mapping is an effective method to resolve the micro-
structures of the perovskite film (Fig. S7). The PL inten-
sity and photocurrent images were collected over an area of 
10.5 μm × 10.5 μm for the MHP films in operational PSCs. 
In the high-efficiency PSCs, the PL intensity image (Fig. 1b) 
unveils a heterogeneous grain distribution along with clearly 
defined grain and GB structures. In contrast to the intensity 
observed on the grains, a notable reduction in PL intensity 
is noted at the GBs, possibly stemming from either defect 
trapping or effective charge extraction mechanisms [31, 38]. 
Following the PL measurement, a corresponding photocur-
rent image of the same region was acquired (Fig. 1c), which 
distinctly showcases the microstructures of the grains and 
GBs, aligning morphologically with the PL intensity image 
(Fig. 1b). In contrast to the PL intensity distribution, the 
photocurrent at GBs displays relatively higher intensity 

Fig. 1  a Schematic presentation of the laser-scanned and time-resolved PL microscopy coupled with a photocurrent detection module. This 
spatial resolution of PL and photocurrent imaging is 260 nm and 500 nm, respectively. b Confocal PL intensity image of a PSC with PCE of 
22.40%. c Photocurrent image on the same area as in b. d Comparison of the one-dimensional profiles of photocurrent amplitude and PL inten-
sity extracted from the yellow cross lines in b and c. e Confocal PL intensity image of a PSC with PCE of 16.10%. f Photocurrent image on the 
same area as in e. g Comparison of the one-dimensional profiles of photocurrent amplitude and PL intensity extracted from the yellow cross 
lines in e and f. h Statistical diagram of the photocurrent enhancement at GBs for PSCs with PCE of 16.10% and 22.40%, respectively. i Photo-
voltage image of a PSC with PCE of 22.29%. j Comparison of the one-dimensional profiles of photovoltage amplitude and PL intensity extracted 
from the yellow cross lines in i and Fig. S11
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than that observed over the grains. To unveil the correla-
tion between photocurrent and PL intensity distributions, 
we juxtapose the PL profiles with the photocurrent data 
acquired from the cross-sectional lines in the images of 
Fig. 1b, c. Figure 1d displays a pronounced anticorrelation 
between PL and photocurrent intensity, particularly at GBs. 
The elevated photocurrent and diminished PL intensity at 
GBs validate their beneficial role in charge separation and 
carrier transport. To determine the existence of photocur-
rent enhancement at the grain boundaries under the device’s 
actual operating conditions, we utilized a large-area excita-
tion source of continuous white light, designed to mimic 
the operational state of the device (Fig. S8). The spatially 
resolved photocurrent mapping demonstrates consistent spa-
tial characteristics between operational and non-operating 
states (Fig. S9). Moreover, we investigated the correlation 
between photocurrent enhancement and power density, with 
the results presented in Fig. S10. Our results showed that the 
observed photocurrent enhancement was consistent under 
different power densities. Detailed analysis and discussion 
are provided in supporting information.

We also examined whether GBs also exhibit a positive 
impact on low-efficiency PSCs. Although the grains and 
GBs are distinctly visible in the PL intensity image (Fig. 1e), 
distinguishing between the grains and GBs in the photocur-
rent image poses a challenge (Fig. 1f). Unlike the results 
in high-efficiency PSCs, the enhancement in photocurrent 
at GBs in the low-efficiency PSCs is not pronounced and 
PL intensity and photocurrent are not clearly anti-correlated 
(Fig. 1g). This phenomenon is ascribed to the presence of a 
high density of defects that trap carriers in the low-efficiency 
PSC. We further calculated the percentage of photocurrent 
enhancement (PPE) at GBs for each grain present in the 
photocurrent images of the two PSCs with different PCEs. 
The high-efficiency PSC exhibits an average PPE of approxi-
mately 5%, whereas the average value for the low-efficiency 
PSC is only around 1.4%. This comparison indicates that 
the role of GBs differs between high-efficiency and low-
efficiency PSCs. This result is consistent with a previous 
proposition grounded in examinations of bare MHP films 
using atomic force microscopy (C-AFM) [23]. Our present 
research stands as the pioneering study to elucidate the posi-
tive impact of GBs through the direct visualization of pho-
tocurrent within operational PSCs.

3.2  Built‑in Fields at GBs and Charge Separation 
Dynamics

In addition to photocurrent, the local photovoltage distribu-
tion was also recorded for the operational PSCs. The high-
efficiency PSC under open-circuit conditions also exhibits 
a notable enhancement in photovoltage at GBs (Fig. 1i). 
Figure 1j displays a pronounced anticorrelation between PL 
(Fig. S11) and photovoltage intensity at GBs. This indicates 
that, in comparison with the grains, the GBs are more effec-
tive in charge separation, resulting in the generation of a 
higher number of free carriers at the GBs. Previous studies 
have speculated that the beneficial impact of GBs on carrier 
kinetics may be linked to the existence of a built-in electric 
field at these boundaries, leading to a downward bending of 
the energy band and thereby aiding in the separation of elec-
tron–hole pairs [31]. We examined this speculation through 
KPFM measurements, which were carried out on an isolated 
high-quality MHP film (used in high-efficiency PSCs). The 
AFM topography image (Fig. 2a) distinctly differentiates 
between the grains and GBs. The surface contact potential 
difference (CPD) image acquired simultaneously in Fig. 2b 
sharply exhibits the contrast between the GBs and the grain 
interior (GI). The GBs show a smaller surface work func-
tion compared to the GI, generating a built-in electric field 
of  102–103 V  cm−1 at GBs. This distinction can be further 
examined by aligning the surface topography with the cor-
responding one-dimensional surface potential fluctuation 
along the designated yellow-dashed line. As depicted in 
Fig. 2c, a sharp contrast in the surface potential between the 
GBs and GI is observed which is consistent with previous 
works [31]. The corresponding KPFM measurements pro-
vide an unequivocal understanding of the physical picture 
at the GBs of the perovskite polycrystalline film. As shown 
in Fig. 2d, the localized built-in potential results in electron 
attraction to the GBs and hole repulsion to the GI, thereby 
facilitating electron–hole separation.

To gain a comprehensive understanding of photogen-
erated carrier behavior in high-quality perovskite film, we 
employed TRPL measurements to probe the PL kinetics at 
both GB and GI in isolated perovskite film. Results reveal 
that the PL decay is faster at GBs than in GI, suggesting 
rapid carrier separation at GBs (Fig. S12a). To gain insight 
into this process, we utilize pump-probe transient absorption 
microscopy (TAM) to investigate the carrier kinetics at GBs 
and within GI.
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Figure 3a shows the experimental setup of the pump-
probe TAM, by which the transient absorption (TA) spectra 
at GB and GI are obtained. The TA spectra for both GB and 
GI in the high-quality MHP film are dominated by an exciton 
bleach (XB) feature due to the state-filling effect of band-
edge electrons and holes (Fig. 3b, c) [39–41]. Meanwhile, 
the TA spectra display notable differences between GB and 
GI in the long wavelength region (> 800 nm). Specifically, 
the GB shows a much slower recovery process at the XB 
band and a positive signal above 800 nm. The latter implies 
the presence of a derivative-like signal above 800 nm which 
is usually observed as a characteristic of internal charge 
separation. This charge separation, driven by the built-in 
electric field at GB, can form a photoinduced electric field 
[39, 42] (also called a modulated field, opposite to the built-
in field) and then lead to the occurrence of a derivative-like 
Stark signal by shifting band gap energy.

Stark signal in TA spectra, a signature of the photoin-
duced electric field, is widely reported in many semiconduc-
tor materials [43]. To accurately determine the kinetics of 

XB and electric field, we utilized a global-fitting procedure 
[44] to decompose the TA spectra at GB into two compo-
nents: XB and stark signal (Inset in Figs. 3b and S13). The 
increase of the stark signal implies electron–hole separation, 
while its recovery indicates a reduction in the photoinduced 
electric field resulting from electron–hole recombination.

To unravel the carrier dynamics at GB and GI, we com-
pare the XB kinetics in Fig. 3d, where a notable rising com-
ponent in XB kinetics at the GB is observed. Because the 
electrons contribute a larger amplitude in the TA signal than 
the holes for perovskite materials [45], the rising component 
in the TA kinetics mainly reflects electron transfer from GI 
to GB driven by the build-in electric field at GB, and mean-
while, the holes transfer away from the GB. By global fitting 
the TA kinetics (see Supporting Information for the detail of 
fitting function), we determined an initial rapid decay and a 
rising process signifying an electron–hole separation time of 
τ
cs
≈ 166.9 ps (Table S1), aligning with the rising compo-

nent in the stark signal at the GB (the photoinduced electric 
field) (Fig. S14). Meanwhile, XB kinetics at GB exhibit a 

Fig. 2  KPFM data for the bare perovskite film showing a the topography and b the respective CPD map. c One-dimensional line profiles of the 
topography and CPD amplitude along the yellow-dashed lines indicated in a–b. d Schematic illustration of the band alignment between GBs and 
GI. The built-in electric field induces a downward bending of the energy band at GB, resulting in electron accumulation
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markedly prolonged lifetime (14.5 ns) relative to those in GI 
(5.0 ns), demonstrating the presence of a long-lived elec-
tron–hole separation state at GB. This observation aligns 
with KPFM results and corresponds with the noted electron 
accumulation at GB in  CH3NH3PbI3  (MAPbI3) perovskite 
films due to the electric field-induced downward band bend-
ing at GB [31]. This, in turn, facilitates electron–hole separa-
tion and enhancement of photocurrent in high-performance 
PSCs.

To further confirm the role of GB, we conducted TA 
measurements on a low-quality MHP film (Fig. S15), where 
the TA spectra of GBs exhibit a similar positive signal above 
800 nm, indicating the ubiquity of a built-in electric field at 
GBs. We further isolated pure XB and stark signal using the 
global-fitting procedure (Fig. S16). A comparison of the XB 
kinetics at GBs between low-quality and high-quality per-
ovskite films (Fig. 3e) indicates a much smaller amplitude 
in the rising component and a much faster decay process in 
low-quality perovskite films. This is because of the presence 
of a larger density of defects at GB in low-quality perovskite 
films, which thus weaken the build-in electric field-induced 
charge separation effect. By fitting the TA decay kinetics 

with a multi-exponential function, we identified the charge 
separation time of a fast defect-trapping process of 522.9 ps 
in the low-quality film (Table S2) which is consistent with 
the TRPL results (Fig. S1). These defects trap carriers, lead-
ing to carrier loss and consequently a reduction in photocur-
rent at GBs in low-performance PSCs.

3.3  Dual Role of GBs in PSCs

The above experimental results indicate that the GBs exhibit 
a dual nature in PSCs, similar to a double-edged sword. As 
schematically illustrated in Fig. 4a, the GBs serve as essen-
tial charge separation channels and play a positive role in 
high-performance PSCs by accumulating electrons and 
promoting charge collection to electrodes. On the other 
side, GBs are also ununiform microstructures where a high 
density of defects can be presented particularly in PSCs 
with a low-quality of perovskite film. In this case, the posi-
tive charge separation effect is significantly weakened by 
the defects. To quantify the contribution of GBs in PSCs 
of varying PCEs, we recorded the photocurrent in different 

Fig. 3  a Schematic illustration of pump-probe transient absorption microscopy. b TA spectra of high-quality perovskite film in GB, with an 
inset demonstrating its decomposition at 216 ps into Stark effect and bleach signals. c GI at indicated delay times under excitation intensity 
of 1.42 μJ   cm−2 at 515 nm. d Comparison of the XB Kinetics at GB and GI reveals a distinctive 300 ps rise component in GBs. The solid 
lines are their exponential fits. e Comparison of the XB Kinetics at GBs in high- and low-quality perovskite films under excitation intensity of 
1.42 μJ  cm−2. The solid lines are their exponential fits. The inset represents the entire XB kinetics
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PSCs with a PCE distribution from 22.45% to 16.10% (Fig. 
S17), which demonstrated an evident diminishing contrast in 
photocurrent intensity between GB and GI associated with 
a decrease in PCE. Figure 4b statistically analyzes the rela-
tionship between PCE and PPE, revealing a notable positive 
correlation that follows an exponential growth trend, thereby 
underlining the advantageous role of GBs in boosting PSC 
performance.

4  Conclusions

In summary, this research provided meaningful insights into 
the dual role of GBs in operational PSCs and their impact 
on device performance. A notable photocurrent enhance-
ment at GBs indicated that GBs function as pivotal elec-
tron–hole separation channels and play a positive role in 
high-performance PSCs. The presence of a built-in electric 
field at GBs, confirmed by KPFM and TA spectra measure-
ments, effectively promotes charge separation, facilitating 
electron accumulation and subsequent charge extraction. 
On the other hand, the presence of high defect densities 
at GBs in low-performance PSCs leads to carrier loss and 
consequent reduction in photocurrent at GBs. This work 
clarified the role of GB in operational PSCs and highlights 
the potential for manipulating GB properties for the logical 
design of perovskite active layers and the development of 
high-performance and stable PSCs.
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