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HIGHLIGHTS

• The latest advancements in the application of machine learning (ML) for the screening of solid-state battery materials are reviewed.

• The achievements of various ML algorithms in predicting different performances of the battery management system are discussed.

• Future challenges and perspectives of artificial intelligence in solid-state battery are discussed.

ABSTRACT Solid-state batteries are widely recognized as the next-generation energy storage devices with high specific energy, high 
safety, and high environmental adaptability. However, the research and development of solid-state 
batteries are resource-intensive and time-consuming due to their complex chemical environment, 
rendering performance prediction arduous and delaying large-scale industrialization. Artificial 
intelligence serves as an accelerator for solid-state battery development by enabling efficient 
material screening and performance prediction. This review will systematically examine how the 
latest progress in using machine learning (ML) algorithms can be used to mine extensive mate-
rial databases and accelerate the discovery of high-performance cathode, anode, and electrolyte 
materials suitable for solid-state batteries. Furthermore, the use of ML technology to accurately 
estimate and predict key performance indicators in the solid-state battery management system 
will be discussed, among which are state of charge, state of health, remaining useful life, and 
battery capacity. Finally, we will summarize the main challenges encountered in the current 
research, such as data quality issues and poor code portability, and propose possible solutions 
and development paths. These will provide clear guidance for future research and technological reiteration.
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1 Introduction

In the context of the global community actively seeking 
sustainable energy solutions [1–3], transformation of the 
energy structure is of decisive significance for alleviating the 
energy crisis, reducing environmental pollution, and promot-
ing sustainable economic development. As a crucial force 
in achieving low-carbon emissions reduction and address-
ing energy challenges, electric vehicles are experiencing 
rapid development at an unprecedented pace [4–6]. Solid-
state batteries, with advantages in energy density, safety, 
and cycle life over traditional lithium-ion batteries, have 
become a focus of next-generation energy storage devices 
[7–12]. Although solid-state batteries hold immense poten-
tial, their complex chemical environments necessitate novel 
approaches to overcome material and performance chal-
lenges. Meanwhile, the development momentum of artificial 
intelligence (AI) technology has shown an explosive growth 
trend and has already played a powerful driving role in vari-
ous different fields [13–20]. Machine learning (ML), deep 
learning (DL), etc., as the core branches of AI, possess the 
astonishing ability to process massive amounts of data [21]. 
Through complex algorithm models, they can excavate the 
hidden complex patterns, laws, and trends behind the data 
and, based on these findings, make highly accurate predic-
tions and intelligent decisions, thus enabling the screening 
of solid-state battery materials and the prediction of their 
performance.

Although the future of solid-state batteries is promis-
ing, there are still many challenges in their journey toward 
practical applications. In the aspect of material screening, 
identifying an ideal combination of solid-state electrolytes 
(SSEs) and electrode materials demands a comprehensive 
and profound exploration and screening of a voluminous 
and diverse material system [22]. Each step in experimental 
design, sample preparation, and performance characteriza-
tion requires significant time and financial resources. Tradi-
tional trial-and-error methods are often slow and inefficient, 
hindering their ability to keep pace with rapidly evolving 
technologies [23]. However, the application of AI and ML 
models has constructed an efficient and precise strategic 
system for screening SSEs and electrode materials, which 
significantly enhances the efficiency and success rate of 
material screening and substantially shortens the research 
and development cycle [24–26]. For example, Ahmad et al. 

[27] computationally screened over 12,000 inorganic solids 
for next-generation lithium-metal anode batteries. Using a 
ML model, they predicted new SSEs’ mechanical proper-
ties, and cross-validation verified the model’s robustness. In 
another study, Hajibabaei et al. [28] employed an extensible 
sparse Gaussian process regression form and replicated the 
experimental melting temperature and glass-crystallization 
temperature of  Li7P3S₁₁ and conducted a simulation analy-
sis of the lithium diffusion rate. As a result, an unknown 
phase with a low lithium diffusion rate, which should be 
avoided, was discovered. AI algorithms not only speed up 
material development but also predict solid-state battery 
key performance indicators. For example, Zahid et al. [29] 
proposed a state-of-charge (SOC) estimation method based 
on a neuro-fuzzy system with subtractive clustering. The 
results indicate that the proposed model exhibits high accu-
racy, with a maximum estimation error of less than 0.1%. 
This establishes the foundation for real-time adaptive bat-
tery management systems (BMS) with dynamic performance 
optimization capabilities.

The BMS is a system that conducts intelligent manage-
ment and maintenance of batteries. However, the accurate 
determination and prediction of core indicators such as the 
SOC [30], state of health (SOH) [31], remaining useful life 
(RUL) [32], and battery capacity have always been formida-
ble challenges that traditional research methods struggle to 
overcome. Traditional methods, such as the equivalent circuit 
model (ECM) and physical model (PBM), are constrained by 
the complex electrochemical processes, the variable operat-
ing conditions (such as temperature variations, fluctuations 
in charge-discharge rates, and mechanical stresses), and the 
dynamic changes in the internal physical and chemical prop-
erties of the battery during long-term use [33, 34]. These 
methods exhibit limitations when dealing with these issues. 
However, AI is able to undertake systematic learning and in-
depth analysis of a substantial volume of battery operation 
data by virtue of its formidable data processing capabilities 
and intelligent analytical algorithms. It can thereby estab-
lish highly accurate evaluation models, offering a reliable 
basis for the BMS. This effectively guarantees the safe and 
efficient operation of the battery and significantly expedites 
the progression of solid-state batteries from theoretical con-
cepts to practical applications. For example, Sahinoglu et al. 
[35] proposed a novel method for estimating the SOC of 
lithium-ion batteries based on ML. The results demonstrated 
that this method has more advantages compared to advanced 
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techniques such as support vector machine (SVM), relevance 
vector machine (RVM), and neural network (NN), with the 
root-mean-square error (RMSE) and mean absolute error 
(MAE) being less than 0.14% and 0.36%, respectively.

Currently, the research on the application of AI in tradi-
tional lithium-ion batteries has achieved substantial results 
[36–39]. However, the relevant research in the field of 
solid-state batteries is relatively scarce. In particular, for 
the reviews on the integration of AI and solid-state batter-
ies [40], most of them only focus on a specific dimension 
of material screening or performance evaluation, lacking 
a comprehensive and systematic analysis of this field. This 
article will deeply explore the enabling effects of AI in 
solid-state batteries (Fig. 1) around five key directions: 
material screening, SOC estimation, SOH estimation, RUL 
prediction, and battery capacity estimation. By analyzing 
the current application status of AI, this article elaborates 
on the performance improvements, technological break-
throughs, and innovative application examples it brings 
to solid-state batteries. This review aims to provide a 
comprehensive and systematic reference for researchers, 
engineers, and other professionals engaged in the research 
and development of solid-state batteries, as well as those 

in the interdisciplinary field of AI and battery technol-
ogy, thereby facilitating the acceleration of the commer-
cialization process of solid-state battery technology. The 
structure of this review is as follows: Section 2 elaborates 
in detail on the application methods, typical cases, and 
achievements of AI in the material screening of solid-state 
batteries. Section 3 focuses on the application of AI in 
performance evaluation, covering the construction of dif-
ferent models and case analyses, and conducts a detailed 
comparison of the performance of each model. Section 4 
comprehensively summarizes the main challenges faced 
in the integration of solid-state batteries and AI, such as 
issues of data quality and quantity, model adaptability and 
interpretability, etc., and looks ahead to the future research 
directions, providing clear ideas for subsequent research.

2  Application of Artificial Intelligence 
in Material Screening

As a complex electrochemical system, a battery is mainly 
composed of two key components: the electrodes and the 
electrolyte (Fig. 2a [43]). The electrodes consist of the posi-
tive electrode and the negative electrode. When designing 

Fig. 1  AI is applied in two aspects of solid-state batteries, material screening and performance evaluation. Solid-State Battery [41]. Copyright 
(2023) Spring Nature. Material Screening [27, 42]. Copyright (2018) American Physical Society, Copyright (2018) American Chemical Society



 Nano-Micro Lett.          (2025) 17:287   287  Page 4 of 31

https://doi.org/10.1007/s40820-025-01797-y© The authors

the electrodes, voltage and specific charge capacity play a 
decisive role in determining the total energy density of the 
battery. The electrolyte can be classified into liquid electro-
lytes [44–47] and SSEs [48–52]. Different types of electro-
lytes have different focuses on key performance parameters. 
For liquid electrolytes, the key parameters are the redox 
potential and the stability window, while for SSEs, ionic 
conductivity and mechanical strength need to be given pri-
ority attention. It is worth emphasizing that all the above-
mentioned parameters related to battery performance are 
closely associated with the selected materials. In this sec-
tion, we will mainly introduce the applications of ML and 
DL techniques in predicting material properties and material 
screening.

2.1  Electrode Materials Discovery

2.1.1  Cathodes

Leveraging the comprehensive materials project (MP) 
database, recent studies have demonstrated the versatility 
of ML in accelerating the discovery of advanced battery 
materials. Zhou et al. [53] employed crystal graph convo-
lutional neural networks (CGCNN) to screen nearly 13,000 
inorganic compounds from the MP database, identifying 
over 80 promising cathode candidates with validated align-
ment between predicted and experimental high-voltage and 
high-capacity properties. Similarly, Joshi et al. [54] utilized 
deep neural networks (DNN) trained on MP-derived fea-
ture vectors (e.g., lattice parameters, electronic descriptors) 
to predict electrode voltages of metal-ion batteries within 

Fig. 2  a Schematic of a battery cell showing the major material components (electrodes and electrolyte) and the key material properties actively 
under research [43]. Copyright (2023) The Royal Society of Chemistry. b Crystal structure diagram of spinel  LiX2O4 and layered  LiXO2 and 
cathode volume change predicted by PLS model and ab initio calculation [56].  Copyright 2017 The Chinese Ceramic Society. c Joshi et al.’s 
workflow diagram and some examples of the results [54]. Copyright 2019 American Chemical Society. d Molecules used to train an artificial 
neural network [58]. Copyright 2023The Royal Society of Chemistry
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one minute, proposing 5,000 novel candidates for Na-/K-
ion systems (Fig. 2c). Complementing these efforts, Stur-
man et al. [55] applied random forest (RF) models to ana-
lyze > 2,000 MP entries, correlating structural features with 
energy density to pinpoint  LiNi0.2Mn0.2Co0.2Fe0.2Ti0.2O2 as 
an optimal high-entropy cathode, achieving enhanced sta-
bility and electrochemical performance. Collectively, these 
works underscore the MP database’s pivotal role in ena-
bling diverse ML-driven workflows-from voltage prediction 
to multi-component material design-establishing a robust 
foundation for high-throughput discovery of next-generation 
battery materials.

Several studies integrated theoretical calculations with AI 
methods. Wang et al. [56] combined ab initio calculations 
with partial least squares (PLS) analysis to conduct research 
on the positive electrodes of lithium-ion batteries. Focusing 
on spinel  LiX2O4 and layered  LiXO2 oxides (X = various 
elements), they identified the radius of  X4⁺ ions and X octa-
hedron descriptors as key determinants of cathode volume 
change during deintercalation. These findings enable virtual 
screening and combinatorial design of low-strain cathode 
materials (Fig. 2b). Similarly, Sarkar et al. [57] proposed 
the combination of artificial neural networks (ANN) and 
quantum-mechanical calculations based on first-principles 
to predict the electrochemical potential of cathode materi-
als and the voltage of lithium-ion batteries. Furthermore, 
Allam et al. [58] employed the density-functional theory-
machine learning framework to devise a high-throughput 
screening strategy for novel molecular electrode materials. A 
quasi-Newton-trained ANN enabled precise redox potential 
prediction (Fig. 2d).

In addition, AI techniques have exhibited dual capa-
bilities in advancing battery material research: facilitating 
high-throughput candidate screening and enabling in-depth 
analysis of structure–property relationships. Shandiz et al. 
[59] used multiple ML algorithms to analyze 339 kinds of 
cathode materials containing specific Li-Si-(Mn, Fe, Co)-O 
components. The results of data analysis clearly confirm that 
there is a strong correlation between the crystal structure of 
the cathode and other physical properties Similarly, Eremin 
et al. [60] combined topology/density functional theory 
(DFT)/ML to identify Li-layer descriptors for NCA energy 
balance. ML analysis shows that the topology of the Li layer 
and the relative configuration of Li and Al are important 
descriptors for the energy balance estimation of NCA, and 
ridge regression (RR) training gives a satisfactory level 

of absolute error in the prediction of configuration energy 
(Fig. 3a, b). Kim et al. [61] devised ML-driven strategy to 
screen dopants for nickel-rich cathodes. By training an ML 
model on 4401 material datasets, they identified 107 high-
capacity candidates with minimal volume change during 
cycling (Fig. 3c). Notably, 101 Co-free compounds demon-
strated superior chemical stability, exemplifying AI’s role in 
refining existing materials.

2.1.2  Anodes

Amorphous silicon-lithium alloys are widely used as anodes 
for high-energy density batteries. Artrith et al. [62] devel-
oped a genetic algorithm integrated with an ANN-based 
machine learning potential to explore amorphous silicon 
anodes, enabling sampling of low-energy configurations 
across the  LixSi phase space (Fig. 4a), thereby resolving the 
issue that the structural dimensions and sampling statistics 
necessary for atomic modeling of amorphous materials are 
difficult to achieve using first-principles methods. Comple-
mentarily, in an attempt to tackle the issue of the low rate-
performance of nanostructured silicon as a high-capacity 
anode material for lithium-ion batteries and to gain in-depth 
insights into the factors governing lithium diffusion within 
amorphous lithium–silicon alloys, they leveraged a potential 
trained on 40,000 + ab initio calculations and visualized the 
delithiation process of lithium–silicon nanoparticles for the 
first time. Results revealed that silicon matrix rearrangement 
from isolated atoms to clusters enhanced lithium diffusion, 
with the highest rate occurring via cluster-to-cluster hop-
ping. This identified silicon cluster size and aggregation 
concentration as key design parameters for high-rate anodes 
(Fig. 4b) [63].

In addition, Onat et al. [64] introduced an “Implantable 
Neural Network” method, extending the traditional training 
paradigm by incorporating pre-trained segments that can 
capture the unique features of different components into the 
overall network architecture, thus optimizing the simulation 
of material behaviors. This approach demonstrated superior 
adaptability to amorphous silicon–lithium alloys across com-
positions, accurately predicting diffusion coefficients, and 
can be conveniently applied to the modeling of more com-
plex material systems involving two or more different ele-
ments. Similar AI-driven strategies are proving transforma-
tive for carbon-based anodes. Transitioning to graphite and 
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non-graphitized carbon materials, due to the complex struc-
tures of disordered “hard” carbon and nanoporous carbon, con-
ducting similar research on them faces numerous challenges. 
To address this, Huang et al. [65] innovatively combined the 
DFT with the ML method to investigate the intercalation of 
alkali metal (Li, Na, K) atoms in model carbon systems with 
different densities and degrees of disorder. By stochastically 
calculating voltage-filling curves for Li/Na/K intercalation in 
model carbons, they achieved atomic-level insights into alkali 
metal behaviors, advancing DFT/ML-based energy material 
modeling (Fig. 4c-e).

2.2  Solid Electrolyte

2.2.1  AI‑Driven Solid Electrolyte Discovery

ML has revolutionized various fields [66], and its appli-
cation in the discovery of functional materials for batter-
ies has shown great potential. This has led to significant 
progress in the discovery of new materials for solid-state 
batteries. Zhang et al. [67] proposed a material discov-
ery method based on unsupervised learning. This method 
does not require labeled data and effectively addresses the 
problem in which the scarcity of data hinders the progress 

Fig. 3  a Material analysis diagram combined with machine learning [60]. b The different values of the possible motifs of the lithium layer cor-
responding to the Li atom in the layer indicated by the LiO_net_2D descriptor and the two denoted configurations of the LiO_net_3D descriptors 
for the lithium layer 1,2,6C1 with the same motifs [60].  Copyright 2017 American Chemical Society. c A process flowchart constructed for pre-
dicting cathode materials using ML in combination with a database [61]. Copyright 2023, Elsevier
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of models in the discovery of functional materials using 
machine learning. Taking solid-state lithium-ion conduc-
tors as a model, the method utilized limited conductiv-
ity data to screen a candidate list of lithium-containing 
materials. Eventually, 16 novel fast lithium conductors 
were discovered (Fig. 5a). This approach was extended 
to Hofmann-type complexes with 2D Li⁺ channels, where 
weakly coordinated microenvironments were optimized 
via ML-guided synthesis, achieving 65% capacity reten-
tion over 500 cycles in Li||SPAN batteries [68]. Similarly, 
Sendek et al. [69] screened 12,831 lithium-containing sol-
ids according to the criteria of high structural and chemi-
cal stability, low electronic conductivity, and low cost, 
narrowing candidates to 21 high-potential SSEs (Fig. 5b). 
Breakthroughs in antiperovskite screening have been 

achieved through the identification of a geometric-kinetic 
descriptor (t/η), which guides the synthesis of highly con-
ductive lithium-based nitrohalide material [70]. Fujimura 
et al. [71] combined the theoretical and experimental data-
sets and employed the SVM method to directly evaluate 
the ionic conductivity of  Li8−cAaBbO4 LISICON. They 
identified several compositions with ionic conductivities 
higher than those of previously known LISICON (Fig. 5c). 
Furthermore, the integration of bond valence methods with 
graph neural networks enables efficient screening of 329 
candidate materials, among which 28 exhibit exceptional 
compatibility with lithium metal [72].

In response to the challenge of screening inorganic 
solid-state electrolytes (ISSEs), Chen et  al. proposed 
a ML-assisted hierarchical screening strategy. By 

Fig. 4  a Schematic of the amorphous  LixSi phase diagram constructed using ANN Potential assisted Genetic Algorithm (GA) [62].  Copyright 
2018 American Institute of Physics. b During the decomposition process of a silicon nanoparticle containing 12,000 atoms, silicon atoms disso-
ciate into clusters and chains [63]. Copyright 2019 arXiv. c Graphite-like structure model library is the basis of this work [65]. d Diagram of the 
protocol used to obtain the voltage-filling relationship [65]. e Example of resulting data [65]. Copyright 2019 Royal Society of Chemistry
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pre-screening 20,717 lithium-containing materials, con-
structing a support database, and combining classifica-
tion and regression models with molecular dynamics sim-
ulations, they identified three materials with high ionic 
conductivity at room temperature, such as  Li3BiS3, and 
evaluated their compatibility with cathodes [73]. On the 
other hand, Guo et al. used a general machine learning 
interatomic potential (ML-IAP) to replace DFT for high-
throughput calculations and identified 130 new promising 
solid-state electrolyte materials. Through parameterizing 
the screening criteria and implementing a hierarchical 
evaluation process, they revealed the crucial influence of 

characteristics such as the maximum packing efficiency on 
 Li+ conduction [74].

2.2.2  Composite Electrolyte Design

Hatakeyama-Sato et al. [75] utilized machine learning to 
conduct an analysis of a database that encompasses 240 
lithium-ion conducting solid polymer electrolytes. Sub-
sequently, polyglycol ether derivatives with high electri-
cal conductivity were synthesized. In addition, based on 
the constructed database, single-ion conducting polymers 
with de novo design were screened out from over 15,000 

Fig. 5  a Schematic diagram of screening solid lithium-ion conductors by unsupervised learning methods [67].  Copyright 2019 Springer 
Nature. b Method flow chart of building ionic conductivity model and structure screening [69]. Copyright 2017 The Royal Society of Chem-
istry. c Predicted ionic conductivity of 72 components in  Li8−cAaBbO4 system at 373  K [71]. Copyright 2013 WILEY–VCH Verlag GmbH 
& Co. KGaA, Weinheim. d Machine learning-based performance prediction of solid polymer electrolytes and Comparison diagram between 
experimental and predicted conductivity [75]. Copyright 2019 Chemical Society of Japan. e Schematic diagram of coarse-grained molecular 
dynamics-Bayesian optimization (CGMD-BO) framework [77]. Copyright 2020 American Chemical Society. f Method diagram of SSE thin film 
evaluation with machine learning technology [78]. Copyright 2021 American Chemical Society
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candidates (Fig. 5d). Machine learning-guided screening 
of dual-doped LLZO fillers yields Zn-Ti-based PVDF-HFP 
composite electrolytes, which exhibit an ionic conductivity 
of 8.7 × 10⁻4 S cm⁻1 and a 4.8 V electrochemical stability 
window, significantly enhancing ASSB performance [76]. 
Wang et al. [77] constructed a continuous high-dimensional 
design space through the coarse-graining of chemical sub-
stances and employed the Bayesian optimization algorithm 
to explore this space. As a result, a comprehensive descrip-
tion of the relationship between lithium conductivity and 
molecular properties was obtained, providing guidance 
for improving the composition of electrolytes (Fig. 5e). 
Meng et al. [78] leveraged ML techniques to evaluate SSE 
films (Fig. 5f). Eventually, with the assistance of ML, a 
 LiNi0.8Co0.1Mn0.1O2||Li6PS5Cl||LiIn battery constructed 
using a 40-μm-thick high-quality SSE film successfully 
completed 100 cycles. This achievement not only high-
lights the importance of considering both uniformity and 
ionic conductivity during the fabrication of SSE films but 
also fully demonstrates the remarkable advantage of ML in 
guiding experiments to determine the optimal manufactur-
ing parameters.

2.2.3  Ion Transport Mechanisms

The development of solid-state batteries necessitates over-
coming critical challenges in defect structure and transport 
mechanisms. Addressing metallic anode penetration, recent 
research reveals that mixed ionic-electronic conduction in 
solid electrolytes induces lithium deposition within microm-
eter-scale voids, proposing dendrite suppression strategies 
through optimized control of cell voltage and applied cur-
rent density [79]. In the optimization of oxide-based electro-
lytes, defect chemistry studies on garnet-type  Li7La3Zr2O12 
elucidate the influence of temperature and oxygen partial 
pressure  (PO2) on ionic conductivity via AC impedance and 
DC polarization techniques. The construction of defect equi-
librium diagrams provides theoretical guidance for design-
ing high-conductivity materials (2 mS  cm−1 at room tem-
perature) [80]. Additionally, oxygen vacancy regulation in 
lithium zirconate demonstrates that Fe(II) doping enhances 
Li⁺ conductivity to 3.3 mS  cm−1 at 300 °C-an order of mag-
nitude higher than undoped materials-revealing a direct 
correlation between oxygen vacancy concentration and ion 
transport efficiency [81]. These advancements systematically 

advance solid electrolyte systems through failure mechanism 
analysis, defect engineering, and ion transport optimization. 
Meanwhile, these provide experimental data support for 
future artificial intelligence-based analyses.

DL interatomic potential simulations have elucidated 
the “soft” lithium-hopping behavior induced by structural 
disorder in  Li3PS4, establishing a machine learning-derived 
structural fingerprint (“softness”) to quantify ion migration 
dynamics [82]. This complements Chen et al.’s [83] spati-
otemporal analysis of Li⁺ diffusion in LLZO using density-
based trajectory clustering, which uncovered uncorrelated 
Poisson-like migration in cubic phases (Fig. 6a). Further-
more, inspired by the fact that the tavorite structure can 
provide a fast lithium-ion insertion rate, Jalem et al. [84] 
constructed a prediction model for the lithium migration 
energy (ME) based on the crystal structure. With the help 
of this model, the researchers identified a series of candi-
date components with low lithium migration energy, such 
as  LiGaPO4F and  LiGdPO4F (Fig. 6b).

2.2.4  Interface Engineering

The development of high-performance solid-state sodium-
metal batteries (SSSMBs) hinges on resolving interfacial 
instability and dendrite propagation challenges. A biphasic 
 Na3Zr2Si2PO12/Na3PO4 electrolyte demonstrates enhanced 
ionic conductivity (6.2 × 10⁻4 S cm⁻1) and self-forming 
 Na3P/Na2O interphases, enabling 550-cycle stability (93% 
capacity retention) in full cells through uniform Na⁺ flux dis-
tribution and suppressed interfacial reaction [85]. Similarly, 
a plastic monolithic mixed-conducting interlayer (PMMCI) 
of Li-Naph(s) achieves dual ionic (4.38 × 10⁻3 S cm⁻1) and 
electronic (1.01 × 10⁻3 S cm⁻1) conduction, reducing Li/gar-
net interfacial resistance and enabling 500-h dendrite-free 
cycling at 1 mA cm⁻2 [86]. For NASICON-based systems, 
a comprehensive review identifies interfacial challenges 
(e.g., high resistance, dendrites) and categorizes mitigation 
strategies, emphasizing mechanical/chemical stabilization 
mechanisms to guide future ASSSMB designs [87]. Innova-
tive interface engineering via Fe-valence-graded fluorinated 
interphases in  Na3Zr2Si2PO₁2-based cells reduces interfacial 
resistance by 20 × and achieves 1.9 mA cm⁻2 critical current 
density, enabling 96% capacity retention over 120 cycles 
[88]. Finally, a Pb/C interlayer strategy achieves perfect Na 
wetting (0° contact angle) at 120 °C and ultralow interfacial 
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resistance (1.5 Ω  cm2), facilitating 1800-h stable cycling in 
symmetrical cells and optimized N/P ratio-dependent full-
cell performance [89]. These studies collectively advance 
interfacial design paradigms through phase modulation, 
interlayer engineering, and dynamic interphase formation, 
addressing critical barriers in SSSMB commercialization. 
Meanwhile, these provide experimental data support for 
future artificial intelligence-based analyses.

When shifting to the lithium-metal system, the problem of 
dendrite growth remains equally severe. However, the solu-
tions are more reliant on the collaboration between multi-
scale simulations and ML. At the Li/SSE interfaces, parallel 
progress in electrode-electrolyte interface optimization has 

been facilitated by atomic-scale simulations. ML potentials 
reveal cobalt segregation at grain boundaries in LLZO/LCO 
interfaces, clarifying its inhibitory effects on lithium-ion 
transport and providing atomic-level insights for interface 
modification [90]. For lithium-metal anodes, Liu et al. [91] 
employed SVM/KRR models to identify dopants (e.g.,  Sc3⁺, 
 Ca2⁺) that stabilize interfaces via SEI formation, Through 
ML analysis, it was discovered that the strength of the M–O 
bond plays a decisive role in the interface stability of cation-
doped LLZOM. This research achievement provides valu-
able theoretical basis and practical guidance for experimen-
tal researchers to screen appropriate dopants in LLZO, thus 
stabilizing the lithium-metal anode in solid-state batteries 

Fig. 6  a 400 K simulation of the cubic LLZO as shown in the clustering scheme [83].  Copyright 2017 Springer Nature Limited. b According 
to Pearson’s product moment correlation coefficient R, a graph theory-based network constructed by variable interaction effects [84]. Copyright 
2015 American Chemical Society. c Overall schematic of selecting the right dopant in LLZO [91]. Copyright 2019 The Royal Society of Chem-
istry. d A strategy for assisting microstructure analysis by semantic segmentation in all-solid-state batteries [93]. Copyright 2025 John Wiley & 
Sons
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(Fig. 6c). Similarly, Wang et al. [92] constructed a stable and 
highly ion-conductive molten salt interface (MSI). Through 
this MSI, the interfacial contact was improved, and inter-
facial reactions and thermal runaway were inhibited. The 
construction of the MSI provides a direct and effective tradi-
tional experimental approach to address the interface issues 
between the lithium anode and the solid-state electrolyte. 
In addition, advances in microstructure characterization are 
exemplified by semantic segmentation of electron micro-
graphs, enabling automated quantification of porosity and 
phase distribution in composite cathodes, thereby correlat-
ing microstructural parameters with battery performance and 
providing data support and research directions for interface 
engineering (Fig. 6d) [93].

2.3  Key Mechanisms for Screening Materials

In solid-state battery research, material exploration and 
discovery are crucial and can be achieved through three 
interconnected phases. The first phase is constructing tar-
geted material databases. Clearly, define research objectives. 
For solid-state electrolytes, focus on parameters like ionic 
conductivity, electrochemical stability, electrode interfacial 
compatibility, mechanical robustness against dendrite for-
mation, and wide-temperature adaptability. Generate high-
quality data through experimental characterization (e.g., 
XRD for crystal structure and EIS for interfacial resistance) 
and literature mining on platforms such as Web of Science 
and Scopus. This creates a database that maps structure-
property-processing correlations, supporting novel material 
design.

The second phase is using ML and DL for material screen-
ing. First, extract relevant features from raw data, such as lat-
tice parameters and bond lengths for crystalline materials, 
which affect properties like ionic conductivity. Then, choose 
appropriate models according to task complexity. ML mod-
els like decision trees and random forests are good for simple 
tasks (e.g., classifying materials by conductivity), while DL 
models like CNNs are better for complex relationships (e.g., 
predicting interfacial stability from HRTEM images).

The third phase involves key mechanisms that accelerate 
material discovery. ML and DL models pre-screen a large 
number of materials in databases, reducing the number of 
experimental tests, saving time, and cutting costs. They also 
accelerate design cycles by accurately predicting material 

properties, allowing for efficient and iterative material design. 
Additionally, data mining with these models can uncover 
hidden patterns in databases, leading to the discovery of 
new materials and design principles for solid-state batteries. 
Table 1 shows a comparison highlighting the accuracy, model 
complexity, computational cost, practical feasibility, advan-
tages and limitations of various AI techniques for different 
battery components.

3  Application of Artificial Intelligence 
in Performance Evaluation

The complex nonlinear interdependencies in BMS pose sig-
nificant challenges for performance assessment, particularly 
in emerging solid-state batteries. By comparison, solid-state 
batteries face challenges such as the formation of interfa-
cial resistance between the solid electrolyte and electrodes, 
as well as dendrite growth within the solid matrix. While 
machine learning has demonstrated transformative potential 
in traditional lithium-ion BMS through SOC/SOH estima-
tion, its application to solid-state systems remains nascent. 
The achievements of ML and DL in the application of tradi-
tional lithium batteries have laid a foundation for solid-state 
battery research [94, 95]. Therefore, the development of accu-
rate performance prediction models specifically for solid-state 
batteries is of greater importance for their successful com-
mercialization. This endeavor could enable the construction 
of high-precision solid-state battery performance assessment 
models, enhance intelligent management levels, and ultimately 
guide the future development direction of battery technology.

3.1  State‑of‑Charge Estimation

Leveraging real-time monitoring and in-depth analysis of 
battery operation data, AI constructs precise prediction mod-
els to achieve accurate SOC tracking. As potent data analysis 
tools, ML and DL have yielded extensive research outcomes 
in the SOC estimation of lithium-ion batteries [96]. The 
backpropagation neural network (BPNN), a type of mul-
tilayer feedforward neural network, composed of an input 
layer, hidden layers, and an output layer. It is trained based 
on the error backpropagation algorithm. Through forward 
propagation, it calculates the output, compares the output 
with the true value to obtain the error, and then backpropa-
gates the error to adjust the connection weights of each layer, 
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thus continuously optimizing the network performance. The 
model structure is shown in Fig. 7a. It is widely used in the 
estimation of the SOC of lithium-ion batteries. Huang et al. 
[97] developed a BPNN for estimating the SOC of batteries. 
Taking the battery voltage and current as inputs, the real-
time capacity was calculated to estimate the SOC. However, 
the BPNN has some problems, such as slow convergence 
speed and being prone to falling into local minima. To fur-
ther enhance the accuracy of BPNN-based SOC estimation 
and leverage real-time correction capabilities, Zhang et al. 
[98] combined a backpropagation neural network with an 
extended Kalman filter, where the EKF algorithm can cor-
rect the SOC with voltage error information. At the same 
time, they trained a single-hidden-layer BPNN model with 
28, 36, and 48 nodes, respectively, compare the simulation 
errors generated by the test set and training time under dif-
ferent node numbers, and obtain an optimal number of hid-
den layer nodes (Fig. 7b). The RMSE was reduced to 3.98% 
at −20 °C NEDC, 3.62% at 10 °C NEDC, and 1.68% at 
35 °C HSW (Fig. 7c).

Given BPNN’s vulnerability to local minima during 
training, Aini et al. [99] employed the backtracking search 
algorithm (BSA), a depth-first search-based technique, to 
enhance the performance of BPNN (Fig. 7d, e). BSA com-
mences from an initial state, incrementally constructing 
solutions while systematically verifying constraint condi-
tions at each iteration. When a partial solution violates con-
straints or reaches a dead end, the algorithm backtracks to 
the previous state to explore alternative paths. This iterative 
process exhaustively searches the problem space until a valid 
solution is found or all possibilities are exhausted, enhancing 
the accuracy and robustness of the BPNN model. To address 
the challenges of data complexity and improve model gener-
alization. Hossain et al. [100] adopted the principal compo-
nent analysis (PCA) and particle swarm optimization (PSO) 
to improve the BPNN and obtained better robustness. The 
range SOC error of this model for the Federal Urban Driving 
Schedule (FUDS) was between 3.7% and 4.7% (Fig. 7f, g). 
PCA, a statistical technique for data analysis and dimen-
sionality reduction, transforms correlated variables into 
uncorrelated principal components. By maximizing variance 
projection, PCA condenses data while preserving key infor-
mation, aiding visualization and analysis. Complementarily, 
PSO draws inspiration from bird flocking and fish schooling 
behaviors and optimizes solutions through a group of parti-
cles adjusting positions based on personal and global bests. Ta
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Together, PCA and PSO synergistically refine the BPNN’s 
performance for battery SOC prediction. Aiming to exploit 
deeper network architectures for capturing intricate pat-
terns in battery data, Zheng et al. [101] proposed a multi-
hidden-layer BP neural network (LMMBP) trained based 
on the Levenberg-Marquardt (L-M) algorithm. Its structure 
is shown in Fig. 7h, and the error is shown in Fig. 7i. The 
output results of the BPNN were optimized by increasing the 
number of hidden layers. The RMSE was reduced to 0.5%.

In addition, the time delay neural network (TDNN) 
(Fig. 8a) is a supervised ML algorithm with a special neu-
ron connection, which can handle the delay information in 
time series data. Given the sensitivity of TDNN to hyper-
parameters for time series processing, Hossain et al. [102] 
optimized the TDNN algorithm through the improved firefly 
algorithm (iFA) to determine the optimal input time delay 
(UTD) and the number of hidden neurons (HNs). The results 
showed that the iFA-based TDNN obtained accurate SOC 

estimation results (Fig. 8b, c), and the RMSE was lower 
than 1%.

Furthermore, the wavelet neural network (WNN) integrates 
wavelet analysis with traditional neural networks. Using 
wavelet functions as activation or basis functions instead of 
sigmoid-like ones, WNN has enhanced local approximation 
and multi-resolution analysis capabilities. Wavelet basis func-
tions capture fine and transient data features, helping WNN 
outperform traditional networks in handling non-stationary 
and complex datasets (Fig. 8d). Cui et al. [103] combined 
the DWT with an L-M trained adaptive WNN to create a 
DWTLMBPNN for lithium-ion battery SOC estimation, 
achieving an MAE of 0.59% and a maximum error of 3.13% 
(Fig. 8e, f). Liu et al. [104] combined the DBN (Fig. 8g) and 
KF to create a hybrid model for dynamic lithium-ion battery 
SOC estimation. The DBN extracts parameter–SOC relation-
ships, and the KF reduces measurement noise. The estimation 
results of DBN-KF are shown in Fig. 8h, and the maximum 

Fig. 7  a Model structure of backpropagation neural network (BPNN) [84]. b Model training time and test set voltage RMSE under different 
hidden layer node numbers [98]. c SOC estimation results under ideal and different error conditions [98]. Copyright (2023) MDPI. d, e SOC 
estimation results and SOC error for FUDS cycle 0 °C [99]. Copyright (2018) IEEE. f, g SOC estimation results and SOC errors based on PSO 
under FUDS cycle [100]. Copyright (2017) AIP Publishing LLC. h Topology structure of multiple-hidden-layer BPNN [101]. i SOC estimation 
results and errors under the NEDC of BPNN, LMBP, LMMBP and EK [101]. Copyright (2021) Elsevier
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average estimation error is less than 2.2%. Advancing from 
traditional CNN designs, fully convolutional architectures 
offer improved efficiency for sequential data tasks. Hannan 
et al. [105] proposed a fully convolutional network (FCN) 
for SOC estimation. Based on traditional CNN designs, the 
FCN (Fig. 8i) has four temporal convolutions and converts 
end-layer fully connected layers to convolutional ones for bet-
ter sequential data processing. From the comparison of the 
prediction results of this model with those of other common 
models (Fig. 8j, k), it can be seen that this model has a better 
effect, with a RMSE of 0.85% at room temperature. Table 2 
shows a comparison of the different SOC estimation method.

3.2  State‑of‑Health Estimation

SOH estimation, a critical parameter in BMS, plays a pivotal 
role in optimizing performance, ensuring safety, and extend-
ing battery lifespan. By leveraging deep learning to analyze 
a battery’s full life cycle data, this approach enables insights 
into the evolution of its internal health and facilitates early 
warning mechanisms [106, 107]. In recent years, ML meth-
ods have achieved remarkable progress in the field of bat-
tery SOH estimation. Many studies have been dedicated to 
developing efficient and accurate SOH estimation algorithms 
to cope with various challenges in practical applications.

Fig. 8  a Model structure of TDNN [102]. b, c SOC estimation results and SOC errors under SDT [102]. Copyright (2020) MDPI. d Structure 
of a three-layer WNN [103]. e, f SOC estimation and SOC estimation error histogram using DWTLMBPNN, EKF, and DWTLMWNN [103]. 
Copyright (2018) MDPI. g DBN model structure [104]. h Comparison results under DST test [104]. Copyright (2019) Elsevier. i FCN model 
structure [105]. j, k SOC estimation under US06 at 0 °C and RMSE error values of each comparison model [105]. Copyright (2020) IEEE
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Liu et al. [108] successfully applied ELM to SOH pre-
diction. By mapping the implicit dependence between volt-
age variance and health state in time intervals, it shows 
higher prediction accuracy and faster computation speed 
with RMSE less than 0.5% compared to traditional artifi-
cial neural networks. Li et al. [109] extracted four impor-
tant features by analyzing the partial incremental capacity 
and combined Gaussian process regression with nonlin-
ear regression to predict the battery’s SOH. The results 
showed that this method can accurately predict the health 
status of the battery. Zheng et al. [110] combined the GRU 
with the CNN and proposed a GRU-based SOH estimation 
method (CNN-GRU). The structure of this model is shown 
in Fig. 9a. Compared with other traditional methods, this 
method can achieve high-precision SOC estimation (Fig. 9b) 
without the need to manually construct feature information, 
and the MAE and mean absolute percentage error (MAPE) 
can reach 0.901% and 1.359%, respectively. The CNN-
LSTM architecture combines CNN’s spatial feature extrac-
tion and LSTM’s time series analysis capabilities. LSTMs, 
a specialized RNN variant, can handle sequential data and 
avoid the vanishing gradient problem, with memory cells 
and gating mechanisms for capturing long-term dependen-
cies. Building upon CNN-LSTM, Zhang et al. [111] intro-
duced an advanced hybrid model, the attention-augmented 
CNN-LSTM (AACNN-LSTM), for battery SOH estimation. 
Rigorous comparative experiments across diverse training 

cycles demonstrated that the AACNN-LSTM architecture 
outperforms baseline methods, showcasing robust SOH pre-
diction accuracy under varied operational conditions.

Despite the success of CNN-GRU, attention mechanisms 
further enhance model focus on critical battery health indi-
cators. Chang et al. [112] proposed a GA-WNN-based SOH 
estimation method using incremental capacity features 
(Fig. 9c). They extracted important features related to bat-
tery health through the IC curve and then used the WNN 
model optimized by the genetic algorithm to estimate the 
SOH. Comparative experiments with traditional algorithms 
(Fig. 9d, e) showed that this method could keep SOH esti-
mation error within 3%. Previous studies mainly focused on 
single-battery health evaluation. Multi-battery prediction, 
however, needs specialized strategies to handle heteroge-
neity. Yamacli [113] proposed a data-driven and DL-based 
hybrid method for predicting the health of series-connected 
lithium-ion batteries (Fig. 9f). The results demonstrated that 
the average accuracy rate of this method is 98.3%, and it can 
be implemented not only in online systems but also in offline 
systems. Facing the challenge of feature relevance variability 
in time and space, Zou et al. [114] used bidirectional long 
short-term memory (Bi-LSTM) as the core and used differ-
ential thermal voltammetry analysis for feature extraction. 
More importantly, the attention mechanism is incorporated 
into the temporal and spatial dimensions to make the model 
focus on the key information in the features, thus effectively 

Table 2  Comparison of the different SOC estimation method

Method Import Prediction results References

BPNN V, I Error = 0.10%—0.50% [97]
BPNN-EKF V, I, T RMSE = 3.98%, -20 °C (NEDC)

RMSE = 3.62%, 10 °C (NEDC)
RMSE = 1.68%, 35 °C (HSW)

[98]

BPNN-BSA V, I, T RMSE = 0.91%, 25 °C (FUDS)
RMSE = 0.57%, 45 °C (FUDS)

[99]

BPNN (PCA + PSO) V, I, T, dv,  d2v, di,  d2i ∫ v,∫ i RMSE = 0.58% (BJDST)
RMSE = 0.72% (FUDS)
RMSE = 0.47% (US06)

[100]

LMMBP V, I, T MAE = 3.5% (UKBC) [101]
TDNN V, I, T RMSE = 0.5844% (SDT)

RMSE = 0.8512% (HPPC)
[102]

DWTLMWNN V, I, T MAE = 0.59% (NEDC)
Maximum Error = 3.13%(NEDC)

[103]

DBN-KF V, I, T MAE < 2.2% [104]
FCN V, I, T RMSE = 0.85% 25 °C

MAE = 0.70% 25 °C
[105]



Nano-Micro Lett.          (2025) 17:287  Page 17 of 31   287 

improving the model performance. The results showed that 
RMSE and MAE were about 0.4% and 0.3%, respectively 
(Fig. 9g). Table 3 shows a comparison of the different SOH 
estimation method.

3.3  Remaining Using Life Prediction

RUL prediction is crucial for battery management as it opti-
mizes utilization, ensures safety, and enhances performance, 
and accurate RUL prediction has emerged as an essential 
research focus [115]. In recent years, ML and DL algorithms 
have achieved numerous research results in the prediction of 

the RUL of lithium-ion batteries, which are of great refer-
ence value for the RUL prediction of solid-state batteries. 
Andrioaia et al. [116] compared support vector machine for 
regression (SVMR), multiple linear regression (MLR), and 
RF to estimate battery RUL. The SVMR demonstrated rela-
tively superior performance, with a MAE of 1.02% and a 
RMSE of 7.14%.

While traditional ML methods offer baseline perfor-
mance, DL approaches can capture more complex degrada-
tion dynamics. Ren et al. [117] combined autoencoders with 
DNN(ADNN) and proposed an integrated DL method for pre-
dicting the RUL of lithium-ion batteries. Its model structure of 
autoencoders is shown in Fig. 10a. Firstly, multi-dimensional 

Fig. 9  a CNN-GRU model structure [110]. b The first 100 cycles of the battery are used for training, and the last 36 cycles are tested. Predicted 
battery SOH [110]. Copyright (2022) Elsevier. c WNN model structure [112]. d Training effect of GA-WNN model [112]. e SOH estimation 
results based on different methods [112]. Copyright (2021) Elsevier. f Flowchart of hybrid decision method based on DL [113]. Copyright 
(2024) Elsevier. g Estimation result with temporal attention and MAE analysis [106, 114]. Copyright (2023) Frontiers Media
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feature extraction based on the autoencoder characterized bat-
tery health degradation, and then, the trained model predicted 
the remaining cycle life (Fig. 10b, c). The results showed that 
the RUL prediction curve was close to the actual data. The 
RMSE was 11.80%, and the accuracy rate was 88.20%. In 
contrast to the autoencoder-DNN hybrid methodology, graph 
convolutional networks (GCNs) are a type of neural network 
designed for processing graph-structured data and perform 
convolutions directly on graphs by aggregating information 
from a node’s neighbors and its own features [118]. This ena-
bles them to capture the local and global structure of the graph, 
as well as the relationships between nodes. The structure of 
the GCNs model is shown in Fig. 10d, and they have been 
widely applied to the prediction of the RUL [119–121]. Due 
to the limitations of traditional GCNs, such as not considering 
the connection between features and RUL, Wei et al. [122] 
constructed a conditional GCN using two classes of undirected 

Table 3  Comparison of the different SOH estimation method

Method Import Prediction results References

ELM V, I, T RMSE < 0.5% [108]
Gaussian Pro-

cess Regres-
sion

V, I, T RMSE = 0.46%
MAE = 0.31%

[109]

CNN-GRU V, I, T MAE = 0.901%
MAPE = 1.359%

[110]

AACNN-LSTM V, I, T MAE = 0.63%
RMSE = 0.97%

[111]

GA-WNN V, I, T Maximum MAE = 1.81%
Maximum MAPE = 2.98%

[112]

Hybrid method V, I, T Maximum MSE = 0.3833%
Maximum RMSE = 0.6191%
Maximum MAE = 0.2058%
Maximum MAPE = 4.1875%

[113]

Bi-LSTM V, T, R RMSE = 0.4%
MAE = 0.3%

[114]

Fig. 10  a Autoencoders model structure [117]. b Results of battery prediction using Autoencoder and DNN model (ADNN) [117]. c The rela-
tionship between training amount and loss function [117]. Copyright (2021) Elsevier. d GCN model structure [118]. Copyright (2019) American 
Chemical Society. e Box plot of RUL prediction results [122]. Copyright (2024) Elsevier. f Input/output format of RUL prediction based on 
LSTM many-to-one structure model [123]. g, h Compared with RUL prediction results of other models and MAPR evaluation indexes [123]. 
Copyright (2020) IEEE
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graphs, considering feature-feature and feature-RUL cor-
relations. The prediction results are shown in Fig. 10e. This 
method improves the RUL prediction performance, and the 
average RUL prediction RMSE is 3.484%.

Complementary to graph-based models, recurrent neural 
networks offer temporal modeling capabilities. Park et al. 
[123] proposed an LSTM-based RUL prediction technique 
with a multi-to-one structure (Fig. 10f), which adapted to dif-
ferent inputs, reduced parameters, and enhanced generaliza-
tion. The results (Fig. 10g, h) showed that the MAPE of this 
model was controlled within the range of 0.47%-1.88%. Wang 
et al. [124] proposed a Bi-LSTM-AM model for online RUL 
prediction. The relative errors of the online RUL prediction for 
the six Li-ion batteries were 0.57%, 0.54%, 0.56%, 0%, 1.27%, 
and 1.41%, respectively. To provide a high-precision and high-
efficiency basis for deep neural networks in RUL prediction, 
Ma et al. [125] developed a general physics-based model that 
can extract aging-related parameters from battery charging 
data, providing a high-precision and high-efficiency basis for 
DNN to predict the RUL. When only using data from one 
cycle, the mean absolute relative error (MARE) was 3.19%. 
Shifting focus to solid-state batteries, evolutionary algorithms 
offer unique optimization potential. Cao et al. [126] used sym-
bolic regression (SR) on charge/discharge data of 12 solid-
state lithium polymer batteries (cycle lives 71-213 cycles), 
achieving 87.9% test accuracy in predicting cycle life. Table 4 
shows a comparison of the different RUL prediction method.

3.4  Battery Capacity Estimation

Battery capacity estimation can also break through the accu-
racy limitations of traditional methods [127]. Compared 
with traditional neural network methods, extreme learning 
machine (ELM) is a fast-learning algorithm for single-hid-
den-layer feedforward neural networks. It randomly initial-
izes the input weights and biases of the hidden layer and 
analytically determines the output weights by solving a lin-
ear system. This approach significantly reduces the train-
ing time compared to traditional gradient-based learning 
methods, while still achieving good generalization perfor-
mance (Fig. 11a). Ge et al. [128] used bat algorithm (BA) 
to optimize the connection weight and bias in ELM neural 
network and build the BA-ELM model. Then, the experi-
mental data of BA-ELM, ELM, Elman, BP, radial basis 
function (RBF), and generalized regression neural network 

models are compared. The results show that the predicted 
value of BA-ELM model is consistent with the actual value 
(Fig. 11b), and the evaluation function can converge quickly. 
The RMSE of 0.5354% and MAE of 0.4326% are the small-
est of the six models (Fig. 11c). Ma et al. [129] introduced 
the idea of broad learning (BL) (Fig. 11d) and constructed 
the broad learning-extreme learning machine (BL-ELM) 
model, whose structure is shown in Fig. 11e. The results 
indicated that the BL-ELM method can not only ensure the 
accuracy of estimation and prediction (Fig. 11f) but also 
save a significant amount of time. Shen et al. [130] proposed 
a DL-based capacity estimation method that combines the 
concepts of transfer learning and ensemble learning and 
get a DCNN with ensemble learning and transfer learning 
(DCNN-ETL). It can achieve good results even when there 
is less training data.

Beyond the traditional neural network optimization and 
combined learning methods, Vakharia et al. [131] proposed 
an interpretable artificial intelligence (Ex-AI), through train-
ing based on 6 input features. After exploring various sin-
gle and combined models, they developed three DL models 
(Stacked LSTMs, GRU Networks, and Stacked Recurrent 
Neural Networks) to predict battery discharge capacity. The 
results show that the superposed LSTMs model has the best 
prediction effect, with RMSE of 0.04, MAE of 0.60, and 
MAPE of 0.03. Oyucu et al. [132] used AdaBoost, Gradient 
Boosting, XGBoost, LightGBM, CatBoost, and ensemble 
learning models to predict lithium-ion battery discharge 
capacity, aiming to improve energy-storage-system cost-
effectiveness in large-scale applications. The results indi-
cated that the LightGBM model had the lowest predic-
tion MAE (0.103) and mean square error (MSE) (0.019), 

Table 4  Comparison of the different RUL prediction method

Method Import Prediction results References

SVMR V, I, C MAE = 1.02%
RMSE = 7.14%

[116]

ADNN V, I, T RMSE = 11.8% [117]
GCN V, I, T RMSE = 3.484%

MAE = 3.219%
MSE = 15.80%

[122]

LSTM V, I, T MAPE = 0.47%-1.88% [123]
Bi-LSTM-AM / relative errors = 0.54% [124]
DNN V, I, T MARE = 3.19% [125]
SR / test accuracy = 87.9% [126]
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demonstrating the strongest correlation. After exploring var-
ious single and combined models, Crocioni et al. [133] com-
pared different ML algorithms for estimating lithium-ion 
battery maximum releasable capacity. After tenfold training 
and testing, neural networks outperformed random forest 
(RF) and SVM (Fig. 11h, i). In particular, the CNN-GRU 
(Fig. 11g) was better than other neural network architec-
tures, with the maximum values of RMSE and MAE being 
0.0488 and 0.0414, respectively. RVM is a Bayesian-based 
sparse supervised learning algorithm that can address SVM 
deficiencies [134, 135]. Guo et al. [136] utilized the PCA 
method to reduce the feature dimension during the model 
training process and combined PSO and RVM to find the 

optimal hyperparameters. The proposed PSO-based RVM 
framework can limit all relative errors within 2% under the 
working temperature range of 24-43 °C. Table 5 shows a 
comparison of the different capacity estimation method.

3.5  Evaluation Index

In the classification task of interfacial stability for solid-
state batteries, accuracy quantifies the proportion of cor-
rectly predicted samples relative to the total, reflecting the 
model’s overall discriminative capability. This metric is reli-
able under balanced class distributions (e.g., stable/unstable 

Fig. 11  a ELM model structure [128]. b Actual capacity and predicted capacity are represented as scatter plots [128]. c Error radar map of each 
comparison model [128]. Copyright (2022) MDPI. d BL model structure [129]. e BL-ELM model structure [115]. f Capacity estimation results 
[129]. Copyright (2012) IEEE. g CNN-GRU model structure [133]. h Develop model capacity predictions [Ah], which are overlaid with ground-
truth (black) extracted from the NASA dataset [133]. i Residual plot of capacity prediction [133]. Copyright (2020) IEEE



Nano-Micro Lett.          (2025) 17:287  Page 21 of 31   287 

interfaces each at 50%), but requires complementary evalua-
tion with precision and recall for imbalanced datasets (e.g., 
failure samples ≤ 5%).

In the research of material property prediction, the eval-
uation of regression models should be closely centered 
around the physical significance of the target variables and 
engineering requirements. The following indicators quan-
tify the prediction capabilities of the models from multiple 
dimensions.

RMSE measures the average magnitude of the errors in 
a set of predictions. It is a widely used metric in regres-
sion analysis to assess the accuracy of prediction models. 
RMSE gives a sense of how far, on average, the predictions 
are from the true values, with the advantage that it penal-
izes larger errors more severely due to the squaring opera-
tion. For instance, if RMSE = 10, it can be considered that 
the regression results deviate from the true values by an 
average of 10 in magnitude. In addition, MAPE is used to 
evaluate the accuracy of a forecasting method in percentage 
terms. It shows the average percentage difference between 
the predicted and actual values. A MAPE of 0% indicates 
a perfect prediction model, while values above 100% sug-
gest a poor-performing model. However, it is important to 
note that when the true value yi = 0, the MAPE formula 
cannot be applied due to division by zero. Moreover, MAE 
calculates the average of the absolute differences between 

the predicted and actual values. MAE is straightforward to 
interpret as it has the same unit as the original data, directly 
representing the average gap between predictions and true 
values. Compared to MSE or RMSE, MAE is more robust to 
outliers because it does not square the errors. Furthermore, 
MSE computes the average of the squares of the errors. MSE 
amplifies larger errors due to the squaring operation. RMSE 
is simply the square root of MSE, which makes RMSE more 
interpretable in terms of the scale of the original data.

4  Conclusion and Perspective

Reviewing the development history of key materials and 
technologies of ASSBs (Fig. 12a) [137], traditional research 
and development methods have led to extremely slow pro-
gress. Each new material requires extensive experimental 
tests and theoretical analyses. From the optimization of the 
material synthesis process to the research on its compat-
ibility with electrode materials, each step consumes a great 
deal of time and resources. Currently, ASSBs face numerous 
intractable issues across multiple key aspects. Figure 12b 
[160] reveals four major challenges: the anode interface, 
the cathode interface, the synthesis and discovery of elec-
trolytes, and battery manufacturing. Additionally, solid-
state battery (SSB) electrode manufacturing has significant 
problems. In SSB electrodes, ion transport mainly relies on 
solid–solid contact (Fig. 12c) [161], which severely restricts 
ion transport efficiency. As electrode thickness increases, 
ion transport resistance rises, leading to a sharp decline in 
material performance.

With the rapid development of artificial intelligence tech-
nology, it not only provides new ideas for addressing the 
above-mentioned challenges and accelerates the material 
screening process, but also enables more accurate evalua-
tion of battery performance parameters. For example, Xiao 
et al. [162] applied AI to vanadium redox flow batteries, 
establishing an electrochemical model to determine ion con-
centrations. They combined the extreme learning machine 
(ELM) with the improved sand cat swarm optimization algo-
rithm (ISCSO-ELM) for state-of-charge (SOC) estimation. 
Experiments showed this approach outperforms traditional 
methods in predicting battery SOC, facilitating precise bat-
tery management (Fig. 12d). If breakthroughs are achieved 
in engineering battery components, new electrode materials 
and SSEs are developed, the interface compatibility issues 

Table 5  Comparison f the different battery capacity estimation 
method

Method Import Prediction results References

BA-ELM TI,  TV, ∆V charge,
T total, discharge, ∆V 

discharge, ∆Temp 
discharge

RMSE = 0.5354%
MAE = 0.4326

[128]

BL-ELM V, I RMSE = 2.88% [129]
DCNN-ETL V, I RMSE = 1.503%

Max 
Error = 9.505%

[130]

Stacked LSTMs RMSE = 0.04
MAE = 0.60
MAPE = 0.03

[131]

LightGBM V, I, T
Cycle Index
Discharge Capac-

ity

MAE = 0.103
MSE = 0.019

[132]

CNN-GRU RMSE = 0.0488
MAE = 0.0411

[133]

RVM V, I, T Error < 2% [136]
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are resolved, and no additional pressure is required to main-
tain the integrity of the interface during manufacturing, the 
cost and difficulty of use can be reduced. With their excellent 
performance, ASSBs will play a huge role in multiple fields 
(Fig. 12e) [163]. Particularly in the new energy vehicle field, 
ASSBs could significantly increase driving range and charg-
ing speed and reduce weight and cost. In aviation, their high 
energy density and safety can improve the flight range and 
flight performance, reduce maintenance costs, and contrib-
ute to the innovation of the aviation industry. In the fields 
of smart grids, portable electronics, and wearable devices, 
ASSBs can serve as energy storage devices and long-lasting 
power sources. Therefore, it is of great importance to fully 
utilize AI to empower solid-state batteries and accelerate 
this process.

In this review, we explore how ML and DL have made 
significant progress in solid-state batteries, highlighting 
that these technologies enable more accurate prediction and 
efficient management, optimize battery performance and 
extend battery life, and are already widely used in traditional 

lithium batteries. While these algorithms have shown great 
potential in the material exploration of solid-state batter-
ies, mining potential associations in massive material data 
to identify potential electrolyte materials and expand the 
selection of materials, there is still much room for further 
integration between them in the comprehensive evaluation 
of their performance. At the same time, there are still many 
challenges that prevent their wider application in solid-state 
batteries:

(1) Exhibit Poor Portability: Different electrolyte systems 
or performance prediction tasks have different require-
ments for the architecture and parameters of ML mod-
els. Current models exhibit limited reusability and 
suboptimal portability. When new problems arise, it 
is necessary to rebuild the model and process the data 
again, resulting in a waste of resources. Future research 
should focus on designing universal algorithms and 
standardized model frameworks and building a data 
sharing platform. Through cross-disciplinary coop-
eration, develop adaptable model structures to achieve 

Fig. 12  a Timeline of ASSBs key material and technology development [137]. Copyright 2019 American Chemical Society. The content in the 
figure is based on the reference [138–159]. b Schematic of the potential scientific challenges impeding the development of solid-state batteries 
[160]. Copyright 2020 The Author. c Solid-state battery electrode manufacturing challenges [161]. Copyright 2022 Elsevier. d SOC estimation 
process by ISSO-ELM method [162]. Copyright 2023 American Chemical Society. e Application prospect of solid-state battery [163]. Copy-
right 2023 American Association for the Advancement of Science
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rapid adjustment and reuse of models in different solid-
state battery systems and improve research and devel-
opment efficiency.

(2) High-Dimensions Small Sample Data: The internal 
environment of the battery is complex [164], result-
ing in a large number of dimensions in the battery’s 
internal data. For ML algorithms, whether regression 
or classification, a large number of dimensions and a 
small number of samples will cause the model to be 
easily affected by noise interference and the generali-
zation ability to deteriorate. To address this problem, 
dimensionality reduction techniques such as PCA 
[165, 166], linear discriminant analysis (LDA) [167, 
168], and feature selection [169, 170] can be used to 
extract key features. At the same time, the dataset can 
be expanded through generative adversarial networks 
(GAN) [171–173].

(3) Issues Regarding Data Quality and Quantity: When 
using ML and DL for prediction, it is necessary to 
ensure the quality and quantity of data. Currently, there 
are deficiencies in reflecting the real structure of mate-
rials, mining feature relationships, and retaining physi-
cal and chemical details. Advanced material characteri-
zation techniques can be combined to obtain accurate 
data, a neural network based on physical knowledge can 
be constructed, and transfer learning can be applied to 
adapt to different material systems, so that the gener-
alization ability and prediction accuracy of the model 
can achieve good results on different materials.

(4) The Comparison of Different Models Encounters For-
midable Obstacles: In the article of different authors, 
due to differences in data, parameters, algorithms, and 
hardware conditions, it is difficult to cross-compare 
different models. The complexity of composite algo-
rithm models is high, and the controllability is weak. 
Their actual effects and robustness need further veri-
fication. In future research, a unified evaluation stand-
ard and dataset can be established, data records can be 
standardized, and the reproducibility of papers can be 
improved. At the same time, modular design and sta-
bility analysis of composite algorithm models can be 
carried out, the interaction mechanism between mod-
ules can be optimized, and the overall controllability 
and robustness of the model can be improved. Methods 
such as cross-validation and ensemble learning can be 
adopted to integrate the advantages of multiple models 
and improve the adaptability and stability of the model 
in different datasets and application scenarios.

(5) The code is not publicly available: Since the inputs and 
parameters of the ML models developed by different 
researchers are different, the differences in the data pro-

cessing stage also affect the performance of the model. 
The non-public code makes it difficult to reproduce and 
fairly compare the research, hindering the improvement 
of the methods proposed by different researchers. We 
advocate that researchers disclose the source code and 
related data of their models, establish an open-source 
battery research code library and platform, standard-
ize code writing and data management, optimize the 
code through community collaboration, improve the 
transparency and reproducibility of the research, and 
promote the technological progress of the entire field.

(6) The non-interpretability of the black-box model: ML 
is often regarded as a “black box” operation because 
the mapping relationship from input data to output 
results is complex and difficult to explain intuitively 
[174, 175]. The internal mechanism is complex and 
lacks a clear association with physical and chemical 
principles. To address this problem, multiple meas-
ures can be taken: Firstly, apply explainable artificial 
intelligence (XAI) technique [176, 177], such as deter-
mining the importance of input features to the output 
through feature importance analysis and using model 
visualization techniques to display the decision-mak-
ing process of the model; secondly, combine domain 
knowledge, integrate physical and chemical principles 
into the model construction as constraints, and promote 
the knowledge interaction between domain experts and 
ML researchers; thirdly, add validation data during 
the model learning process to evaluate performance, 
and after the output, judge the rationality of the result 
through rules and additional calculations, adjust or re-
evaluate the model for unreasonable outputs, thereby 
improving the reliability and interpretability of ML in 
battery research and other fields.

Building on the advancements in AI-driven material 
screening and performance evaluation discussed in this 
review, the next frontier for solid-state battery innova-
tion lies in harnessing emerging AI paradigms to address 
unresolved challenges and unlock new design possibilities. 
Future research should prioritize the following directions 
to accelerate commercialization:

(1) Generative Adversarial Networks for Novel Material 
Design: Generative AI models such as GAN or vari-
ational autoencoders can generate entirely new material 
structures, providing innovative ideas for the design of 
solid-state battery materials. These models can gener-
ate unique material structures with distinct properties 
based on learning the distribution of existing mate-
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rial data, thus expanding the possibilities for material 
research and development.

(2) Reinforcement Learning for Multi-Parameter Battery 
Optimization: Reinforcement learning algorithms can 
be used to optimize multiple parameters of solid-state 
batteries, such as electrode composition, electrolyte 
thickness, and battery operating temperature. Rein-
forcement learning can explore within a complex 
parameter space to find the optimal combination of 
parameters, thereby enhancing the energy density, 
power density, and cycle life of the batteries.

(3) Convolutional Neural Networks for Electrode-Electro-
lyte Interface Analysis: AI image recognition and anal-
ysis techniques (such as convolutional neural networks) 
can be used to conduct microscopic structural analysis 
of the electrode/electrolyte interfaces in solid-state bat-
teries, identifying interface defects, phase boundaries, 
and chemical reaction products. Through learning from 
a large amount of interface image data, AI can quickly 
and accurately evaluate the interface state, providing 
guidance for interface engineering.

(4) AI-Enabled Adaptive Battery Management Systems: An 
AI-based battery management system can adaptively 
adjust the charging and discharging strategies accord-
ing to the real-time state of the battery and the working 
environment, optimizing the battery’s usage efficiency 
and lifespan. Through reinforcement learning and real-
time data feedback, the system can continuously learn 
and adjust the control strategies to adapt to different 
working conditions.

(5) Multi-scale modeling with AI integration and explain-
able AI: As for emerging research frontiers, one area 
that holds great promise is the integration of multi-
scale modeling with AI. Combining atomistic, meso-
scopic, and macroscopic models with ML algorithms 
can provide a more comprehensive understanding of 
solid-state electrolyte behavior across different length 
and time scales. Another frontier is the development 
of XAI for solid-state electrolyte research. XAI algo-
rithms can help researchers understand the underlying 
reasons behind model predictions, facilitating the trans-
lation of AI-generated insights into practical material 
design strategies.

(6) Integration of novel solid-state electrolytes with AI: 
The integration of novel solid-state electrolytes with 
AI methodologies indeed has the potential to drive fur-
ther advancements. For example, AI could be used to 
fine-tune the composition and structure of the h-PAN@
MOF network, predicting how changes in the MOF 
crystal structure or the PAN fiber network would affect 

ion conductivity, mechanical strength, and interfacial 
stability [178].
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