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HIGHLIGHTS

• Overview of metal–air batteries architecture, reaction mechanisms, and challenges in developing bifunctional air-breathing electrodes.

• Comprehensive discussion on engineering the microenvironment chemistry of noble metal-free bifunctional oxygen electrocatalysts.

• Insights into future research directions for earth-abundant bifunctional catalysts with enhanced performance and durability, aiming 
to guide the future development of advanced bifunctional catalysts for scalable applications.

ABSTRACT Rechargeable metal–air batteries have gained significant interest due to their high energy density and environmental benig-
nity. However, these batteries face significant challenges, particularly related to the 
air-breathing electrode, resulting in poor cycle life, low efficiency, and catalyst degrada-
tion. Developing a robust bifunctional electrocatalyst remains difficult, as oxygen elec-
trocatalysis involves sluggish kinetics and follows different reaction pathways, often 
requiring distinct active sites. Consequently, the poorly understood mechanisms and 
irreversible surface reconstruction in the catalyst’s microenvironment, such as atomic 
modulation, nano-/microscale, and surface interfaces, lead to accelerated degradation 
during charge and discharge cycles. Overcoming these barriers requires advancements 
in the development and understanding of bifunctional electrocatalysts. In this review, 
the critical components of metal–air batteries, the associated challenges, and the cur-
rent engineering approaches to address these issues are discussed. Additionally, the mechanisms of oxygen electrocatalysis on the air elec-
trodes are examined, along with insights into how chemical characteristics of materials influence these mechanisms. Furthermore, recent 
advances in bifunctional electrocatalysts are highlighted, with an emphasis on the synthesis strategies, microenvironmental modulations, 
and stabilized systems demonstrating efficient performance, particularly zinc– and lithium–air batteries. Finally, perspectives and future 
research directions are provided for designing efficient and durable bifunctional electrocatalysts for metal–air batteries.
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1 Introduction

The increasing global energy demand and the urgency for 
transition to a decarbonized economy have paved new trends 
in electrochemical energy storage and conversion devices, 
including supercapacitors, fuel cells, water electrolyzers, 
and batteries, to play a key role toward a green, clean, and 
sustainable energy economy. These clean electrochemical 
energy technologies can make a bridge between the demand 
and supply of electricity produced from intermittent renew-
able energy sources and thus be used in many economic 
sectors like communication and transportation [1]. The pri-
mary pillar for electrochemical energy storage is the bat-
tery, which allows the storage of chemical energy and can 
be used, when necessary, in stationary stations or portable 
devices, making the battery a very pivotal device in daily 
needs. Although there has been significant progress in bat-
tery development, such as Li–ion batteries (LIBs) power-
ing the electric vehicles (EVs), there is a big challenge to 
address due to the increasing demand for these devices. The 
raw materials resources’ long-term availability and geo-
graphical distribution of crucial metal elements for LIBs, 
which rely on scarce and finite resources such as cobalt and 
lithium, are limiting factors for future utilization of LIBs [2]. 
Additionally, safety concerns such as uncontrollable flam-
mability in the case of using LIBs at a mass scale, recycling 
or disposal of materials after LIBs end-of-life pose a signifi-
cant challenge to satisfy the needs of environmental-friendly 
technologies and ever-increasing energy storage [3]. To get 
a socioeconomic credence for the battery technology, we 
need to showcase high power and energy density coupled 
with cost-effectiveness. For this, rechargeable metal–air bat-
teries (MABs) are used in a wide range of applications due 
to their low cost compared to LIBs. The MABs also offer 
favorable properties and practicability, including relatively 
high energy density and non-flammable electrolytes, which 
ensure high safety [4–7].

The main aspect of MABs that makes them an appealing 
energy storage alternative to LIBs is its reduced weight due 
to the utilization of atmospheric oxygen as the reactant. This 
fuel of MABs is environmentally benign, making MABs a 
clean technology [8–10]. Furthermore, there is a possibility 
of using several metal elements at the anode, such as first 
group metals including lithium, sodium, and potassium, in 
second group metal elements like magnesium and calcium 

can be used as well as from the third group metal like alu-
minum and a few transition metals like iron and zinc. Most 
of these metals, which can be adapted in the MABs, are 
of relatively low cost, earth-crust abundant, eco-friendly, 
non-toxic, and a viable alternative [11]. Due to the use of 
air as a fuel, the electrocatalysts play a pivotal role in oxy-
gen electrocatalysis and thus contribute to the performance, 
making them at the corner of developing high-performing 
and durable MABs [12]. However, catalysts in the operating 
conditions undergo reversible electrode reactions. The con-
tinued redox cycling affects the microenvironment, acceler-
ating catalyst degradation, including active site dissolution, 
irreversible surface reconstruction, and subsequent crystal 
structure collapse, which ultimately leads to a sharp decay 
in battery cycling performance. It makes a great challenge 
to develop redox-tolerant materials capable of operating in 
this diverse microenvironment chemistry.

Despite the high performance of precious metal catalysts 
for oxygen reduction reaction (ORR) and oxygen evolution 
reaction (OER), their bifunctional activities are also hindered 
by the intrinsic inertness in oxidation state modulation. Tran-
sition metals possess a wider space of tunable d-orbital elec-
tronic structures, enabling adaptive valence transition during 
redox processes, resulting in bifunctional adsorption energies 
for multiple oxygen-containing intermediates. Therefore, the 
search for valence-switchable transition metals should be a 
priority in the research and development of materials for 
cathodic applications in long-term, safe MABs. Numerous 
progresses have witnessed the potential of bifunctional tran-
sition-metal catalysts for MABs; however, most focus on the 
activity optimization via doping metastable metals as electron 
buffers, introducing multiple synergistic sites, constructing 
heterostructures, etc. The structure-dependent stability during 
redox reactions is still uncontrollable. The stabilized mecha-
nism of different regulatory strategies on structure still lacks 
systematic research and identification. This review describes 
the operating components and their challenges in terms of 
basic MAB principles. The OER/ORR reaction mechanisms 
of key air-breathing electrodes are further clarified. In addi-
tion, this review emphasizes summarizing the recent progress 
on various bifunctional PGMs-free metal catalysts, focusing 
on the discussion of microenvironment structure-dependent 
stability and the intrinsic regulation mechanisms, which pro-
vides insight into the future development of redox-tolerable 
catalysts for high-performance MABs.
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2  Metal–Air Battery Configurations, 
Operating Principles, and Challenges

As schematically illustrated in Fig. 1a, MABs consist of 
several key components, each serving a specific function 
and contributing to the device’s performance and durability. 
Typically, a MAB cell consists of four main components: a 
metal anode, an air-breathing cathode, a membrane separa-
tor, and an electrolyte [13, 14]. In addition to these major 
components, other components such as current collector and 
fuel access ports to allow the air in the device, work together 
to enable the battery to generate energy via the chemical oxi-
dation of the metal at the anode and the reduction of oxygen 
at the porous cathode, during the discharge, while the elec-
trolyte allows for the flow of ions between them. This section 
mainly introduces critical roles of various components and 
their optimizing strategies to address current challenges.

2.1  Metal Anode

The metal anode is the metal that undergoes oxidation dur-
ing discharge, and the name of a MAB is derived from the 
metal anode [7]. During the discharge, the metal anode 
releases electrons due to the oxidation reaction and flows 
through the external circuit, providing electrical energy. Due 
to the growing interest in MABs, several types of metals 
that can be used as metal anodes, such as zinc, lithium, alu-
minum, magnesium, iron, sodium, and potassium, have been 

explored [13, 15]. Nevertheless, the energy density of MAB 
is likely to be related to the metal used as an anode, and this 
makes metal anode a critical component in MABs. Consid-
ering the pure metal anodes, the magnesium–air battery in 
which the metal anode is magnesium demonstrated a higher 
open-circuit voltage (OCV) (Fig. 1b), while the iron–air bat-
tery delivers a reduced OCV of 1.28 V (298 K), and it is 
the cheapest metal elements among the mostly used metal 
elements as anode [16, 17]. Although the magnesium–air 
batteries exhibit the highest OCV of 3.09 V and high spe-
cific energy density, their high corrosion characteristics, 
unlike other anode metals, where the increase in cathodic 
current unexpectedly accelerates hydrogen evolution, remain 
a major challenge [18]. Additionally, their poor reversibility 
due to the magnesium oxide (MgO) and magnesium perox-
ide  (MgO2) as by-products during discharge passivating the 
electrode demonstrates sluggish charge transport and poor 
conductivity. These impede the battery’s rechargeability and 
performance, which is a crucial parameter for the practical 
commercialization of MABs [19]. Despite iron being the 
cheapest and one of the most abundant metals in Earth’s 
crust among these metal anodes for MABs, it displays the 
lowest theoretical specific energy [17]. Among the other 
challenges, the poor stability of the iron anode in aqueous 
iron–air batteries is critical due to surface passivation by 
iron oxide species and volume changes during cycling, caus-
ing mechanical strain [20]. Due to the low expected capacity 
and the expected working voltage, it shows a low prospect 

Fig. 1  a Schematic representation of MABs. b A diagram comparing Li, Na, K, Mg, Fe, Zn, and Al metal anodes in MABs. The OCV values 
are reported along the metal elements on the x-axis. This comparative diagram also depicts the specific energy density, volumetric energy den-
sity, and price in US dollars per kilogram
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for commercialization compared to zinc– and lithium–air 
batteries (LABs).

For practical application, zinc–air batteries (ZABs), with 
OCV of 1.66 V [14], and a specific energy of 1218 Wh  kg−1, 
and lithium–air batteries (LABs), with a specific energy of 
5928 Wh  kg−1 and a higher OCV of 2.96 V, have received 
great attention [21, 22]. The properties of MABs, such as 
OCV, depend primarily on the intrinsic properties of metal 
anodes [22]. Additionally, the anode is prone to dendritic 
growth, where sharp metallic protrusions can pierce the sepa-
rator, leading to internal short circuits. Parasitic chemical and 
electrochemical corrosion reactions also occur even when the 
battery is idle, causing self-discharge and reducing efficiency 
[23]. These issues necessitate optimizing strategies, such as 
the architecture of the electrode, composition optimization of 
the anode by alloying strategy, coating, and electrolyte engi-
neering, for enhanced intrinsic activity and durability [23, 24].

As the dendrites’ growth is a critical issue, to suppress 
dendrite growth on the Li anode, Ma B. et al., developed 
a hydrophobic  Li+-solvated structure [25]. The functional 
group of hexafluoroisopropyl acrylate, used as an additive, 
enabled the formation of a stable solid–electrolyte interface 
(SEI). As a result, dendrite growth was suppressed, and the 
overall battery performance was improved. Furthermore, 
the introduction of functional inorganic additives in com-
posite solid-state electrolytes has proven to be an effective 
approach to enhancing multiple aspects of flexible LIBs, 
such as boosting ionic conductivity, suppressing dendrite 
formation, and improving both safety and stability [26]. 
Furthermore, the alloying strategy, such as in aluminum–air 
batteries, not only minimizes the corrosion of the anode but 
also improves overall performance [27]. This highlights the 
promise of alloying; however, the mechanism behind this 
corrosion minimization, as well as its effect on activity and 
long-term stability, requires further investigation.

2.2  Electrolyte and Separator

Electrolytes in MABs play a critical role in facilitating the 
electrochemical reactions and the stability of both the metal 
anode and the air cathode. Depending on the type of MABs, 
the electrolyte could be non-aqueous aprotic electrolytes in 
Li–, Na–, and K–O2 batteries, or aqueous liquid electrolytes 
in Zn–, Al–, Mg–, and Fe–air batteries [28]. In non-aqueous 
batteries, non-aqueous aprotic organic ethers are used, but 

they are highly sensitive to external environmental condi-
tions. Therefore, the assembly must be prepared in an inert 
environment, and they are typically tested using pure oxygen 
[29]. Non-aqueous electrolytes, such as organic solvents or 
ionic liquids, offer significant advantages in their broader elec-
trochemical window, which allows operation at higher volt-
ages (3–4 vs. ~ 1.23 V for water), simultaneously minimizing 
parasitic reactions, such as hydrogen evolution, that corrode 
metal anodes in aqueous electrolytes. However, they suffer 
from decomposition during cycling, leading to electrolyte 
depletion and resistive by-products. Aqueous MABs employ 
either aqueous electrolytes (e.g., alkaline aqueous electrolytes) 
or solid-state electrolytes (e.g., alkaline gel polymer electro-
lytes), in flexible aqueous MABs [29]. Although the aqueous 
electrolytes are cost-effective, have high ionic conductivity, 
and do not require an inert environment during fabrication and 
testing, they face evaporation and carbonate formation from 
airborne  CO2. With the rising interest in flexible MABs for 
wearable electronics, their electrolytes should exhibit enhanced 
flexibility, robust mechanical and chemical stability. These are 
prepared by encapsulating aqueous electrolytes, such as highly 
concentrated alkaline solutions, polymeric matrices like poly-
acrylonitrile and polyacrylamide [30]. These hydrogel elec-
trolytes face challenges related to ionic conductivity, cation 
mobility at the anode, and electrochemical stability. However, 
emerging approaches have shown promise in mitigating these 
issues through modified hydrogel electrolytes. For example, 
cationic hydrogels with long cationic branch chains within 
the polymeric matrix create new ion transport pathways. This 
enhancement improves reversibility, increases ionic conductiv-
ity, and enhances electrochemical stability [4].

Electrolytes play a critical role in addressing the challenge 
of dendrite formation and the side reaction of the anode elec-
trode even before the operation [31]. For example, Jiang 
Zhou’s group demonstrated an approach to suppress den-
drites on a zinc anode through the microlevelling effect [32]. 
This effect was induced by the inclusion of metallic cations 
 (Gd3+ ions) in the conventional electrolyte. The presence 
of these cations in the electrolyte triggered their adsorp-
tion on the zinc anode and modulated the microlevelling 
effect, thereby enabling dendrite-free zinc anodes due to the 
enhanced reversibility (plating and stripping) of zinc during 
operation. This shows that additives in the electrolytes are 
an efficient method to boost the performance of MABs and 
suppress the formation of dendrites at the anode [32, 33]. In 
addition, a separator characterized as a microporous polymer 
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membrane is placed in the electrolyte to physically isolate 
the anode and cathode while permitting ionic conduction 
[34]. Its integrity is vital to prevent short circuits, yet den-
drite penetration and chemical degradation by the electrolyte 
pose risks. Enhancing the separator’s mechanical strength 
and chemical inertness is crucial, especially in rechargeable 
systems where repeated cycling exacerbates wear.

2.3  Air Cathode

Oxygen as a fuel for MABs is supplied on the positive 
electrode (air cathode, Fig. 1a), where a catalytically active 
layer performs two key electrochemical reactions: OER and 
ORR. To facilitate the diffusion of  O2 from the air to the 
layer catalysts, the cathodes are usually fabricated as porous 
gas diffusion layer (GDL) or on porous materials like metal 
foams to deliver excellent conductivity, expose a large sur-
face area, and enhance transport [16]. At this oxygen elec-
trode, ORR takes place during the discharge, while OER 
occurs during the charging [13]. Both oxygen reactions are 
multistep reactions and exhibit sluggish kinetics, thus limit-
ing the performance of MABs [11]. Bifunctional catalysts 
must drive both OER during charging and ORR during dis-
charge; however, few materials durably meet the demanding 
requirement. Holistic material innovations are urgent for the 
switchable bifunctional activity and redox stability. Beyond 
catalysts, the continuous operation of the devices also faces 
significant challenges. For instance, the infiltration of envi-
ronmental contaminants such as moisture and  CO2, which 
can form carbonates in the electrolyte, impairs performance. 
Furthermore, during discharge, reaction products may accu-
mulate in the cathode pores, causing clogging and limiting 
oxygen diffusion, thereby reducing capacity over time. All 
these issues should be addressed through systematic mate-
rial design and engineering to synergistically enhance the 
performance of the MABs (Fig. 2).

3  Fundamentals of Chemical Reactions 
and Challenges in MABs

In MABs, the main types of chemical reactions can be 
categorized based on different electrolyte systems as well 
as the metal anode [7]. The electrolyte is an essential 

critical component enabling the design of various types 
of MABs (aqueous, non-aqueous, and solid-state), includ-
ing those requiring mechanical stability, such as flexible 
MABs (Fig. 3). For example, Eqs. 1 and 2 depict the typi-
cal chemical reactions in Li–, K–, and Na–air batteries 
with aprotic electrolytes [34]. At the cathode, the  O2 from 
the air reacts with metal ions, resulting in the discharge 
of metal superoxides or peroxides on the air electrode 
(Eq. 2). In aqueous electrolytes, the  O2 from the air at 
the cathode undergoes a chemical reduction reaction by 
accepting electrons, forming  OH−. Afterward, the formed 
 OH− interacts with metal ions from the anode (Eqs. 3 and 
4) [15, 34]. Nevertheless, tremendous efforts have been 
devoted to developing highly performing MABs in aque-
ous electrolytes due to the high operation safety, great 
ionic conductivity, and low cost [35].

Non‑aqueous electrolyte:

Aqueous electrolyte:

where M represents the metal (Al, Zn, Mg, Fe, etc.) 
and n stands for the charge number of metal ions.

Although there has been promising advancement in 
MABs, numerous challenges remain. The lack of materials 
with accelerated kinetics for the two key chemical reactions 
(ORR and OER) is a significant bottleneck that limits the 
charge and discharge efficiency [36]. It is crucial to identify 
the reverse reaction pathways during switchable OER and 
ORR, which limit the bifunctionality of catalysts without 
causing severe degradation. However, since the chemical 
mechanisms of these two reactions differ, this effort is par-
ticularly challenging. This section systematically summa-
rizes these intrinsic mechanisms for both OER and ORR, 
shedding insight into the design of advanced bifunctional 
catalysts for switchable ORR and OER during the cycles 
in MABs.

The reduction of  O2 at the air electrode is still a major 
issue in MABs. This reaction occurs at the triple-phase inter-
face, where the catalyst (solid state) layer simultaneously 

(1)Metal electrode:M ↔ M
+ + e

−

(2)
Air electrode: xM

+ + O
2
+ xe

− + e
−
↔ M

x
O

2 (x = 1 or 2)

(3)Metal electrode:M ↔ M
n+ + ne

−

(4)Air electrode: O
2
+ 4e

−
↔ 2H

2
O

2
+ 4HO

−
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interacts with the gaseous  O2 and electrolyte [37]. Due to the 
sluggish kinetics of this reaction, the air-breathing electrode 
has become the performance-limiting electrode in MABs. 
The best material for ORR is the PGM-based catalysts, such 
as platinum, and however, the scarcity of PGMs makes them 
unapplicable on a large scale to satisfy the ever-increasing 
demand of MABs. Thus, it is crucial to develop PGM-free 
catalysts that use a limited amount of these scarce metal 
elements. Additionally, ORR and OER occur at the same 
electrode, which makes it a challenge even for PGMs in the 
MABs, as they often lack bifunctional catalytic activity. 
Hence, more intensive effort is required to develop catalysts 
beyond the PGMs for air-breathing electrodes.

The ORR may proceed through either two- or four-elec-
tron reaction pathways in aqueous electrolytes. The four-
electron pathway (Eqs. 5–8) with  E0 =  + 0.401 V produces 
water (Fig. 4a) [38], whereas the two-electron mechanism 
with  E0 =  − 0.076 V results in the formation of hydrogen 

peroxide (Eqs. 10 and 11) [11]. The hydrogen peroxide is 
not a desirable pathway as it may lead to corrosion of some 
materials in the MABs or fuel cells [39].

The symbol * denotes the catalyst’s active site, while 
 OOH *,  O *, and OH  * represent intermediates adsorbed onto 
these active sites, which may appear as deprotonated species 
such as  O2

– and  O–, respectively . Undesirable molecular 
oxygen, which is the fuel of MABs, can be electrochemically 
reduced in a two  2e− routes, forming a solo intermediate of 

(5)M
∗ + O

2
+ H

2
O + e

−
→ OOHM

∗ + OH
−

(6)OOHM
∗ + e

−
→ OM

∗ + OH
−

(7)OM
∗ + H

2
O + e

−
→ OHM

∗ + OH
−

(8)OHM
∗ + e

−
→ OH

− + M
∗

Fig. 2  Scheme depicting the major parts of MABs, associated challenges, and current approaches to address these issues
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 OOH* and leading to the formation of  H2O2 as the product 
species (see Eqs. 9, 10 and Fig. 4b) [40]:

The OER exhibits slow kinetics and involves multiple 
electron transfer processes, resulting in the formation of 
various intermediates [41]. The mechanism of OER under 
alkaline conditions can be summarized in Eqs. 11–14 [42]. 
The well-known OER mechanism is the adsorbate evolution 
mechanism (AEM), in which oxygen-containing adsorbates 
participate in catalytic redox reactions on the metal active 
sites [43]. There are two possible pathways for OER: the first 
proceeds through Eqs. 11–13, while the other involves the 
formation of  M*OOH− as an intermediate and reacts with 
 OH− ions to generate  O2 molecule (Eqs. 14 and 15) [42, 

(9)∗ + O
2
+ H-

2
O + e

−
→ OOH

∗ + OH
−

(10)OOH
∗ + e

−
→

∗ + OH
−

2

44]. The oxygen evolution activity at the metal active sites 
depends on the interaction with oxygen intermediate species 
(see Eqs. 11, 12, 14), during the multistep process [43]:

Although the mechanism involves four-electron process 
which might look like a reversible reaction between ORR 
and OER (Fig. 4c), the Volcano plot of scaling relationship 
in Fig. 4d reveals that these two reactions show mismatch 

(11)M
∗+ + OH

−
→ M

∗
OH + e

−

(12)M
∗
OH + OH

−
→ MO + H

2
O + e

−

(13)2MO → 2M + O
2

(14)MO + OH
−
→ M

∗
OOH + e

−

(15)M
∗
OOH + OH

−
→ M + O

2
+ H

2
O + e

−

Fig. 3  Schema depicting the operation principle of MABs. a Aqueous (Zn‐O2), b non-aqueous (e.g.: Li‐O2, K‐O2, and Na‐O2 batteries), c solid‐
state/aqueous hybrid, and d flexible MABs
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in oxygen adsorption energy and thus making it difficult for 
catalysts to perform well in both two reactions [38]. Thus, 
breaking the linear-scale relationship by rational structural 
design is the key to realizing high-activity bifunctional cata-
lysts that can bridge this mismatch of most optimized inter-
mediate adsorption in different reactions.

The catalyst structural features influence the activity and 
reaction pathways of OER and ORR. For instance, using 
cobalt with different geometric sizes and coordination envi-
ronments was reported to efficiently tune the ORR in both 
2- and 4-electron pathways [45]. The Co nanoclusters in 
cobalt SAC and nanoclusters on nitrogen-doped hierarchical 
porous carbon favored the four-electron pathways, while the 
Co SAC selectively favors two-electron mechanism. This 
difference further underscores the critical influence of active 
site microenvironment on the oxygen electrolysis. By adjust-
ing material structural features such as the electronic struc-
ture, defect density, coordination environment, or crystal 
facet, one can switch or favor a particular pathway (AEM 

vs LOM), leading to distinct reaction energetics and kinet-
ics. For example, the doping of a small amount of Mo (∼0.5 
wt%) modifies the AEM mechanism of  Co3O4 during OER 
to a fast oxide path mechanism (OPM) due to the creation of 
oxygen vacancies by doping Mo, which activates the lattice 
oxygen after leaching from the lattice of the structure [46]. 
While the AEM is limited due to its required theoretical 
overpotential (0.37 V), recently, there has been interest in 
tuning alternative OER mechanisms through microstructural 
modification [47]. For instance, modifying the B-site metals 
in  ABO3, such as LaNiO₃ perovskites, enhances metal–oxy-
gen covalency, leading to the formation of lattice oxygen 
vacancies and consequently shifting the OER mechanism 
from the AEM to the LOM pathway [48]. Although the 
AEM mechanism is dominant in perovskites, it was dem-
onstrated by theoretical studies that the OER mechanism 
and activity have a relationship with the structure of  ABO3 
perovskites, where the modulation of A cation sites enables 

Fig. 4  Oxygen electrocatalysis mechanisms and diagrams; a, b Elementary chemical reactions corresponding to the chemical steps during OER 
and ORR cycles in alkaline conditions are illustrated. c Diagram depicting the potential energy for a catalyst at a potential E = 0 V vs. RHE. d 
Schematic representation of activity volcano plot of the rate-determining steps for ORR and OER. Reproduced with permission [38]. Copyright 
2019, American Chemical Society
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the LOM [49]. As the doping of cations at either A cation or 
B cation sites or even O-site induces structure changes and 
as a consequence transform the oxygen electrolysis mecha-
nisms and activity, engineering approaches of modifying the 
microenvironmental structure such as electronic structure, 
crystallinity, redox chemistry, vacancies, doping, strains, and 
interfaces would influence the OER and ORR activity [47].

4  Synthesis Methods of Electrocatalysts for 
MABs

Recent advancements in the synthesis of functional mate-
rials have opened new pathways for developing diverse 
nanostructured systems with finely tuned microenviron-
ments at the atomic, nano/micro scale, and interfaces, 
thereby enhancing their catalytic properties, including 
bifunctional activity for OER and ORR. For instance, 
in efforts to minimize metal usage, innovations in syn-
thetic strategies have enabled the fabrication of single-
atom catalysts (SACs) with high dispersion on carbon or 
metal supports, ensuring optimal utilization of active sites. 
They are various strategies for synthesizing SACs and 
dual-atom catalysts (DACs), including (1) dry synthesis 
route (atomic layer deposition (ALD) method, pyrolysis 
synthesis, atom trapping method, and two-step doping 
method); and (2) wet synthesis route taking advantageous 
on adsorption of the atoms on the substrate (facile adsorp-
tion method, wetness impregnation method, and strong 
electrostatic adsorption method) or photochemical and 
electrochemical properties of SAC with substrate (e.g.: 
photoreduction method) [50]. Metal–organic frameworks 
(MOFs), due to their well-defined structure and tunable 
porosity, serve as ideal precursors for the synthesis of rela-
tively scalable SACs. Upon pyrolysis, organic precursors 
including MOFs, metal–phenanthroline complexes, and 
metal phthalocyanine–silica colloid composites decom-
pose thermochemically, resulting in metal–nitrogen–car-
bon SACs and DACs [51]. Additionally, MOF pyrolysis 
can be employed to synthesize metal alloys supported on 
nitrogen-doped carbon [52]. Although these techniques are 
promising for SAC catalysts synthesis, the economical and 
high-efficiency synthesis hampers large-scale industriali-
zation [53]. Hence, there is a need to investigate the cost-
effectiveness of these methods for actual MABs and make 
an effort to use a reproducible and scalable approach.

Furthermore, hydrothermal synthesis, whether via a 
one-pot process or coupled with subsequent heat treatment, 
has emerged as a promising route for producing metal 
alloys, metal hydroxides, metal oxides, and metal chalco-
genides. This method enables control over microenviron-
ment chemistry and structural phases through modulation 
of nucleation and growth kinetics. Some of the hydrother-
mal synthesis is practical for large-scale production as the 
conditions can be controlled, while enabling the reproduc-
ibility and scalability of the products. Furthermore, self-
assembly, chemical, and electrochemical approaches, such 
as reproducible chemical reduction and electrodeposition, 
facilitate the formation of supported (self-supported) or 
support-free materials tailored for catalytic applications 
[54, 55]. For example, a chronopotentiostatic superoxida-
tion was employed to fabricate a sulf-supported Ni elec-
trode, and due to its three-electron transfers (Ni ↔  Ni3+), 
the constructed aqueous Ni–Zn batteries demonstrated an 
excellent energy density of 6.88 mWh  cm−2 and flexibility 
with capable of powering a microcell [56]. Although these 
techniques have been established as efficient approaches, 
innovative and novel strategies are paramount for devel-
oping engineered microenvironmental chemistry to create 
durable and efficient bifunctional oxygen electrocatalysts. 
For example, Guowei Yang et al. developed a single-step 
bipolar doping strategy to synthesize Janus DACs based 
on Ni and Fe centers, which enhanced charge separa-
tion and showed superior performance in light-assisted 
rechargeable zinc–air batteries [57]. The tailored atomic 
microenvironmental chemistry of the dual Ni and Fe cent-
ers demonstrated efficient hole and electron enrichment 
sites, photoelectrochemical characteristics, and superior 
performance for both the OER and ORR. Additionally, the 
synthesis of SACs with low metal loading but large sur-
face area is crucial for overall performance. For instance, 
boric acid  (H3BO3) assisted in the one-pot pyrolysis of 
cobalt salt and chitosan, resulting in a hierarchical porous 
structure with a high specific surface area that exposed 
active sites for oxygen electrocatalysis, thereby achieving 
outstanding catalytic activity [58]. Due to the simplicity 
of using one-pot synthesis and the usage of abundant chi-
tosan, this synthesis proved scalable and reproducible. As 
the synthesis strategy plays a crucial role in engineering 
the microenvironment and tuning the physicochemical 
and electrochemical properties, it is crucial to extend the 
search of novel synthesis approach and also combining 
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with the advanced theoretical calculations such as first-
principle calculations enabling the development of mate-
rials with desirable properties in electrochemical energy 
storage and conversion technologies and beyond [59].

5  Bifunctional Oxygen Electrocatalysts

Although the operating principles for MABs are similar, the 
bifunctional electrocatalysts should be tailored to electrolyze 
oxygen, but should also be stable in the reversible reaction 
of oxygen oxidation and reduction. Thus, searching redox-
tolerated materials should tailor the capability of long-term 
charge/discharge switching [37]. Although PGMs are the 
best ORR and OER electrocatalysts, they lack bifunctional 
catalytic activity for oxygen electrocatalysis. Transition 
metals possess a wider space of tunable d-orbital electronic 
structures, enabling adaptive valence transition during redox 
processes, resulting in bifunctional adsorption energies for 
multiple oxygen-containing intermediates. In this review, 
we will summarize recently developed PGM-free bifunc-
tional catalysts for the air-breathing electrode from seven 
aspects: (i) single-atom catalysts, (ii) spinels, (iii) perovs-
kites, (iv) metal-free catalyst, (v) metal–nitrogen–carbon, 
(vi) metal–organic frameworks-derived catalysts, (vii) alloys 
and high-entropy alloys.

5.1  Single‑Atom Catalysts

Recently, single-atom catalysts (SACs) have received great 
interest not only as an engineerable approach to reduce pre-
cious metal elements in electrocatalysis but also to develop 
highly performing materials, especially in electrochemical 
energy conversion and storage systems. As many electro-
chemical reactions in heterogeenous catalysis occur at the 
atoms as the catalytic active sites, the SACs offer a unique 
approach to push boundaries in catalysis, like to tune active 
sites and optimizing the selectivity [60]. Since the interest in 
SACs, there have been significant breakthroughs in terms of 
synthesis and potential application [61, 62]. To address the 
durability of SACs, coupling with nanoclusters was found 
to be a promising approach. For example, the Fe SACs 
with adjacent Fe nanoclusters were synthesized through 
a straightforward pyrolysis of biomass hydrogels, which 
served as Fe precursor and nitrogen-doped carbon (Fig. 5a) 

[63]. The study showed that the presence of Fe nanoclusters 
increased the 3d electron density and reduced the magnetic 
moment of Fe atomic centers (Fig. 5b, c), which improved 
the bifunctional catalytic properties and oxidation resistance 
of the FeN₄ sites compared to samples without nanoclusters 
(Fig. 5d, e). In a flexible ZAB, the NCA/FeSA+NC functioned 
as a bifunctional cathode catalyst at − 40 °C, delivering 
impressive performance with an OCV of 1.47 V, a power 
density of 49 mW cm⁻2 (Fig. 5f, g), and outstanding long-
term performance, sustaining 2,300 continuous recharge/dis-
charge cycles. Additionally, at ambient conditions, the NCA/
FeSA+NC demonstrated enhanced catalytic activity, empha-
sizing the importance of tuning the electronic structure of 
SACs to tailor both performance and longevity.

In addition to enhancing both the performance and stabil-
ity of iron-based SACs by the electron spin-state transfer due 
to the presence of Fe atomic clusters, which enable the filling 
of σ * orbital, thereby promoting OH − desorption and accel-
erating the reaction kinetics of the rate-determining step 
[64]. The synthesis of dual single-atom catalysts (DACs) 
was recently reported as an excellent approach to tailoring 
the advanced catalytic performance of SACs. Either adding 
a non-metal element or another metal element is a successful 
method to develop DACs [65]. For instance, Fe and iodine 
(I) as dual Fe/I SAC on N-doped C nanomaterial (Fe/I-N-
CR) were successfully synthesized using a metal–organic 
framework (MOF) as a precursor through a multiple-step 
synthesis approach (Fig. 6a) [51]. It was observed that the 
inclusion of I adjusts the electronic structure of the Fe-Nₓ 
active sites via long-range electron delocalization effects 
(Fig. 6b-d). Owing to the synergistic effects of dual Fe/I 
atoms and the structural advantages of 1D nanorods, the 
Fe/I-N-CR electrocatalyst demonstrated exceptional ORR 
performance, outperforming both Pt/C and individual Fe or 
I SACs, counterparts. The assembled quasi-solid-state ZABs 
achieved a power density of 197.9 mW  cm−2 and an impres-
sive stability by maintaining the performance at 20 mA  cm−2 
for 280 h, significantly surpassing commercial Pt/C + IrO₂ 
(119.1 mW  cm−2 and 47 h) (Fig. 6e-g). This DAC also 
proved capable of operating across a wide temperature range 
from − 40 to 60 °C, highlighting its potential for applica-
tions in environments with fluctuating temperatures. The 
proper selection of a compatible electrolyte demonstrated 
as a promising strategy to achieve high-stability of Zinc/
electrolyte and hence the overall superior cycling stability of 
the Fe/I-N-CR-based ZAB.
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Furthermore, the triple metal SACs were reported to 
boost the bifunctional catalytic performance for MABs 
compared to SACs and DACs [66–68]. The mechanism of 
oxygen evolution and reduction reactions involves multiple 
electron transfer processes, and the synergistic effects of 
multiple metals are known to advance the performance 
of these oxygen reactions. Hence, in these dual and triple 
SACs, the synergy effect between atomic single sites is 
cited to boost both the ORR and OER catalytic perfor-
mance and the overall performance for MABs. For exam-
ple, DACs of FeN₄ and NiN₄ were atomically dispersed 
in nitrogen-doped graphene, leveraging graphene oxide’s 
ability to anchor metal ions [68]. This study revealed that 

Fe/Ni–N–C species such as  FeN4,  NiN4, and Fe/Ni–N4 
synergistically enhanced the bifunctional catalytic activ-
ity. The catalyst with an iron-to-nickel ratio of 1/3 (Fe/
Ni(1:3)-NG) improved the power density, specific capac-
ity, and durability [68]. This was attributed to DACs and 
triple-atom catalysts having a higher metal loading and 
adaptable active sites that can modulate the d-band center 
through interactions between electron orbitals, thus adjust-
ing the adsorption energy of intermediates [69].

It is very challenging to demonstrate the distinction 
function and at which level the active sites in composite 
materials such as the coexisting active sites of  FeN4,  NiN4, 
and Fe/Ni–N4 in Fe/Ni(1:3)-NG for bifunctional OER and 

Fig. 5  a Scheme summarizing the synthesis procedure of NCA/FeSA+NC electrocatalyst. b, c TEM  image and corresponding HRTEM image 
showing the Fe SACs and Fe clusters. d ORR performance in 0.1 M KOH. e Polarization curves for OER in 1.0 M KOH. The inset in Fig. 5e 
depicts the ΔE of these two electrocatalysts. f Curves of constant-current discharging in zinc quasi-solid batteries. g Diagram comparing the 
optimized NCA/FeSA+NC electrocatalyst with selected ZABs. Reproduced with permission [63]. Copyright 2023, Elsevier
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ORR [68]. Ma T. et al. demonstrated the specific function 
of active sites involved in a Janus DACs embedded in hol-
low graphene nanosphere composites (Ni-N4/GHSs/Fe-N4) 
comprised of Ni-N4 and Fe-N4 sites [70]. As demonstrated 
by both experimental characterization and density functional 
theory (DFT) calculations, the functionality was associated 
with the microenvironments interfaces of the graphene hol-
low nanospheres (GHSs) with the active sites, where the 
outer Fe-N4 clusters primarily contribute to ORR, while the 

inner Ni-N4 clusters were responsible for driving the OER. 
Hence, it is evident that further investigations are needed to 
understand the synergistic effect, particularly whether they 
occur to the same extent for OER and ORR in bifunctional 
catalysts. For such composite materials, it remains unclear 
whether some active sites dominate one reaction over the 
other, or if some are even inactive, yet still contribute to 
an overall enhancement in bifunctional catalytic activity. 
This further highlights a promising research direction: the 

Fig. 6  Microscopic analysis of Fe/I-N-CR: a Schematic illustration of Fe/I-N-CR fabrication process, b, c TEM images, d corresponding aber-
ration-corrected HAADF-STEM images of Fe/I-N-CR with orange circles representing Fe atoms, and the blue circles represent I atoms. Per-
formance evaluation: e Curves of discharge polarization and power density of assembled quasi-solid-state ZABs, f, g corresponding charging/
discharging performance at 20 mA  cm−2 and 50 mA  cm−2. Reproduced with permission [51]. Copyright 2024, John Wiley and Sons
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preparation of composite materials with distinct active sites 
for each specific reaction, which balances the competition 
of both reactions and could minimize active site degrada-
tion caused by differing requirements and the unavoidable 
transformations that occur when both reactions take place 
at the same active site.

Owing to the advantages of the high dispersibility of 
SACs, they offer superior atomic utilization and unsaturated 
coordination at the active center, significantly enhancing cat-
alyst activity. SACs based on earth-crust rich metals such 
as Fe, Cu, and Co have also been explored for LAB [61]. 
Recently, Li et al. designed and constructed  CuN2C2 SACs 
electrocatalyst for potential application as a catalyst layer in 
lithium-oxygen batteries (Fig. 7a) [71]. These  CuN2C2 SACs 
were successfully distributed on the carbon nanotube (CNT) 
matrix via a confined self-initiated dispersing strategy, as 
represented in Fig. 7b. To understand the reaction mecha-
nism of lithium-oxygen battery operation using the as-pre-
pared  CuN2C2 SACs, the structural evolution of  Li2O2 was 
found to correlate with the discharge/charge stages I–IV 
(Fig. 7c-h). It was demonstrated that  Li2−xO2-intermediate 
formed on the cathode surface during discharge through an 
indirect pathway  (O2 →  LiO2 →  Li2O2) and reappeared dur-
ing recharging. This showed the reversible formation and 
decomposition of  Li2O2, facilitated by  CuN2C2 moieties, 
thus providing better long-term performance. It was revealed 
that the  CuN2C2 as active sites played a crucial role in shap-
ing the distribution, structure, and catalytic mechanism of 
 Li2O2, as revealed by DFT calculations. When the  CuN2C2 
electrocatalyst was used as a bifunctional material at the 
cathode, the LOB exhibited superior performance with a dis-
charge specific capacity of 7122 mAh  g−1 at 200 mA  g−1, sig-
nificantly outperforming batteries with CNT (3782 mAh  g−1) 
and NCNT (3109 mAh  g−1) catalysts counterparts (Fig. 7g, 
h). As the SACs field is a new research direction, further 
studies are required for understanding the degradation path-
ways and catalytic mechanisms of SACs bifunctional ECs 
for MABs.

Although there have been tremendous breakthroughs in 
the development of techniques enabling reproducible pro-
duction, such as the self-assembly technique, to the syn-
thesis of a precursor followed by post-treatment, bridging 
the trade-off between activity and stability is critical and 
requires more effort. Additionally, the atomic microenvi-
ronment modulation of the single metal site by introduc-
ing the neighboring metal clusters or by introducing extra 

heteroatoms (B, P, S, I) has proven to be crucial in boosting 
the performance and enhancing the long-term stability [51, 
52]. Another challenge is that these SACs are supported on 
a carbon framework, which might undergo degradation in 
oxidative conduction of oxygen electrocatalysis [72]. This 
degradation severely affects the SACs and results in their 
dissolution or aggregation, leading to a drop in performance. 
Although the techniques developed for stabilizing carbon 
nanomaterials in the conduction can be transferable to the 
SAC for oxygen electrocatalysis, some of them face chal-
lenges, for example, the high graphitization degree, which 
increases the corrosion, and stability is associated with a 
low content of defects, which reduces the intrinsic activity 
of catalysis. Hence, novel approaches to developing stable 
SACs are crucial, such as suppressing harmful defects in 
graphitized carbon or employing alternative supports such as 
inorganic materials or emerging two-dimensional materials 
such as MXene.

5.2  Spinels

Spinel metal oxide materials stand out as promising catalysts 
for oxygen electrocatalysis due to their structural stability 
and flexibility for developing double and triple transition 
metals for advanced activity due to the synergy between 
the metal elements [73, 74]. In MABs, mono-metal spinel 
oxides such as manganese and cobalt have shown promising 
performance stability as promising alternatives to PGM-free 
catalysts, especially for ORR due to their excellent prop-
erties and considerably low cost [75, 76]. It was further 
observed that the introduction of transition metals such as 
Co in manganese oxide catalysts boosts the bifunctional-
ity of manganese-based catalysts and has potential appli-
cations in MABs. For example, manganese cobalt oxide/
manganese oxide  (MnCo2O4/Mn2O3) nanorod (NR) mate-
rials synthesized using a facile, reproducible, and scalable 
one-step hydrothermal technique without calcination showed 
improved OER and ORR (Fig. 8a, b) [77]. This approach 
enabled the synthesis of a hybrid architecture composed of 
nanorods and nanospheres, which are crucial for enhanc-
ing surface area and diffusion pathways for the transport of 
electrons and electrolyte ions during electrocatalytic appli-
cations. The observed improved oxygen electrocatalysis 
bifunctional performance of  MnCo2O4/Mn2O3 NR compared 
to  Mn2O3, as shown in Fig. 8b-d, was due to the inclusion 
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of cobalt oxide in manganese oxide, which resulted in better 
kinetics for both reactions. Although this catalyst exhibited 
better bifunctional activity considering the ΔE, its OER 
and ORR were less performing compared to  IrO2 and Pt/C, 
respectively, requiring further improvement. Despite that, 

the evaluated voltage gaps of ZAB using  MnCo2O4/Mn2O3 
NR and Pt/C//IrO2 electrocatalytic materials at the cathode 
were 1.16 and 1.52 V, respectively (Fig. 8e). The fabricated 
ZAB using this optimized catalyst showed a low potential 
voltage at high current densities and better durability over 

Fig. 7    a Schematic depicting the Cu-NCNT preparation process. b  Spherical aberration-corrected HAAFD-STEM image. c Schematic dia-
gram depicting the stages of  LiO2 intermediate on a curves of discharge/charge at 200 mA  g−1, and d XPS spectrum of Li 1s correlated with the 
stages (I, II, III, and IV) shown in Fig. 7c. e, f Schematic illustration of structures and binding energy of intermediate  LiO2 on the e NCNT and f 
Cu-NCNT. g, h Scheme depicting the pathways for the formation of the  Li2O2 on the g NCNT and h Cu-NCNT electrocatalysts. i Comparative 
galvanostatic discharge/charge curves at 200 mA  g−1 in a voltage range of 2.0 and 4.5 V. j Stability performance of LAB cell. Reproduced with 
permission [71]. Copyright 2022, Elsevier
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68 cycles (∼20.3 h) compared to the ZAB fabricated using 
Pt/C//IrO2 electrocatalysts (Fig. 8e, f). Furthermore, the 
trimetallic spinel-types, such as  Co0.5Ni0.5Mn2O4 showed 

higher bifunctional electrocatalytic activity toward ORR and 
OER and better cathodic performance for MABs than bime-
tallic spinel-type oxides such as  CoMn2O4 and  NiMn2O4 

Fig. 8  a Diagram of the preparation method for  MnCo2O4/Mn2O3  nanorods (NR) catalyst. b High-magnification FE-SEM images of the 
 MnCo2O4/Mn2O3 NR, c ORR curves of the  MnCo2O4/Mn2O3 NR,  Mn2O3,  Co3O4, and Pt/C catalysts at a rotation of 2500 rpm. d Corresponding 
onset and half-wave potentials. e OER curves of materials in Fig. 8c. f OCP of ZAB: (i) single battery and (ii) series-connected two batteries. g 
Comparison of charging and discharging curves of the  MnCo2O4/Mn2O3 NR-based ZAB and Pt/C//IrO2-based ZAB. Reproduced with permis-
sion [77]. Copyright 2024, American Chemical Society
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[78]. As discussed, OER and ORR show different mecha-
nisms, and using in situ X-ray absorption spectroscopy, the 
trimetallic spinel-type revealed that the Co was the driving 
force for ORR process than the magnesium and nickel as 
observed from the oxidation state shift.

Although manganese oxides  (MnOx) are promising ORR 
catalysts, their intrinsic low conductivity limits their bifunc-
tional application as they exhibit poor OER [79]. However, 
through the incorporation of heteroatoms such as carbon 
and nitrogen, improved bifunctional performance for MAB 
was demonstrated. Furthermore, doping metal elements to 
these composite materials of  MnOx and carbon nanomateri-
als further enhances the performance [79]. Recently, it was 
reported that the doping of Co or Ni in a self-supported 
α-MnO2  nanorod arrays on surface hierarchical carbon 
sphere (Func CSCs-2 M/Co0.25 (or  Ni0.25)  MnOx) using a 
reproducible hydrothermal (HT) approach proved by the 
synthesis of a series of Func CSCs-2 M/NiyMnOx (Fig. 9a, 
b) [80]. This catalyst exhibited outstanding trifunctional per-
formance for MAB and for water electrolysis compared to 
the pristine Func CSCs-2 M/MnO2 electrocatalysts (Fig. 9c). 
Two ZABs, connected in series, fabricated using electro-
chemically functionalized cathodes, powered red light-emit-
ting diodes over 200 h (Fig. 9d, e), showing outstanding 
stability. The improved performance compared to the previ-
ously reported Func CSCs-2 M/MnO2 electrocatalysts was 
not only attributed to the incorporated functionalized hybrid 
Func CSCs with impressive conductivity [81], but mainly 
to the synergistic enhancement of the ORR/OER catalytic 
activity due to Co or Ni dopants in α-MnO2. This shows 
a unique strategy to improve the bifunctional performance 
through the synthesis of hybrid composites of α-MnO2 mate-
rials, which can be extended to other materials.

The bifunctional catalytic activity of cobalt-based spi-
nels oxide was found to be improved through combining 
multiple elements with cobalt-spinel. Using this strategy, 
the inclusion of lithium (Li) by chemically delithiation of 
cobalt oxide to form LT-Li1−xCoO2 showed improved ORR 
and OER activities better than  Co3O4, making it a highly 
performing bifunctional material for MABs [82]. Addition-
ally, doping manganese in nanoparticles grown on carbon 
nanotubes (Mn-Co3O4@CNTs) showed improved bifunc-
tional catalytic performance for both OER and ORR and, 
thus, potential catalysts for MABs [75].

Furthermore, the replacement of oxygen in spinel cata-
lysts with other non-metal elements has shown enhanced 

bifunctional catalytic activity toward MABs. The replace-
ment of oxygen by such non-metal elements like sulfur to 
form metal sulfides offers better electrical conductivity 
compared to metal oxides [11]. To boost the OER and 
ORR catalytic activity, the effect of doping transition met-
als such as Ag, Fe, Mn, Cr, V, and Ti in cobalt–nickel 
sulfide spinels using a continuous hydrothermal flow syn-
thesis (CHFS) method was evaluated [83]. The Mn (III) 
cation doping was found to induce a desirable electronic 
structure in the active sites of Mn-doped cobalt–nickel 
sulfides. As a result, a ZAB showed a power density of 
75 mW  cm−2 at a j of 140 mA  cm−2, which was a 12% 
increase in the power density compared to the undoped 
control sample.

5.3  Perovskites

Perovskite oxides, which are characterized by an  ABO3 
structure, where A and B stand for an alkali- or rare-earth 
metal and a transition metal, respectively, are competent 
bifunctional oxygen electrocatalysis catalysts owing to their 
excellent stability and adjustable electrochemical properties 
[47]. Their catalytic performance is governed by the char-
acteristics of surface cations, which are affected by oxygen 
deficiencies and structural mutations from the fundamental 
cubic crystal structure [84]. The catalytic activity in B-octa-
hedral cations in perovskite-type oxide is influenced by the 
metal–oxygen electronic states [85]. Specifically, π-bonding 
and π*-antibonding orbitals form through the hybridization 
of transition metal d orbitals with oxygen’s 2p orbitals, 
where the overlap strength of these orbitals determines the 
interaction with oxygen species. Shao-Horn and colleagues 
proposed that the filling of the  eg orbital on the surface 
B-site cations serves as a key descriptor for the catalytic 
efficiency in perovskite oxides [86].

Deng et al. reported a perovskite/CeO2/carbon heterojunc-
tion  (CeO2-Pr3Sr(Ni0.5Co0.5)3O10−δ  nanofibers  (CeO2-C/
PSNC), which was prepared by a multistep engineering strat-
egy comprising electrospinning, microwave in situ growth, 
and calcination treatment (Fig. 10a) [87]. The microscopical 
analysis reveals the tight inclusion of  CeO2 in the porous of 
PSNC nanofibers, modifying its microenvironment prop-
erties (Fig. 10b, c). Figure 10d shows a homogeneous dis-
tribution of element constituents, which indicates that the 
synthesis approach was successful. The half-wave potential 
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of this Ruddlesden–Popper perovskite composite for ORR 
was 0.78 V, while an η required to afford a current density (j) 
of 10 mA  cm−2 was 370 mV (Fig. 10e, f). The hierarchical 
nanostructure, strong electron interaction, oxygen vacancies, 
and abundant active sites were attributed to be the origin of 
advanced bifunctional ORR/OER performance in alkaline 
solution. When this electrocatalyst was used as a bifunctional 

ORR/OER catalytically active material on the air cathode, the 
assembled ZAB showed excellent performance with a power 
density of 161 mW  cm−2 (Fig. 10g) and a promising cycling 
life of over 219 h (Fig. 10h). Furthermore, this electrocatalyst 
enabled the fabrication of all-solid-state ZAB with an OCV 
of ∼1.44 V, good flexibility, and durability. Although the 20% 
Pt/C +  RuO2 catalysts exhibited roughly similar ΔE of 0.83 V 

Fig. 9  a, b Physical and chemical characterizations of Func CSCs-2  M/Co0.25MnOx  (Panel a) and Func CSCs-2  M/Ni0.25MnOx  (Panel b). c 
GCD cycling curves at 2 mA  cm–2 when the Func CSCs-2 M/Co0.25MnOx cathode is used to construct a ZAB, d OCVs of a single and two 
ZABs connected in series, and e pictogram of voltage over time for two-series-connected ZABs featuring the INRS logo. Reprinted with permis-
sion [80] . Copyright 2024, American Chemical Society
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Fig. 10  a Schematic representation for the synthesis of  CeO2-C/PSNC catalyst. b, c HRTEM images. d TEM-EDS mapping, e LSV curves for 
bifunctional characterization, with an error estimation of ± 2 m V. f Polarization curves of charge and discharge, as well as of power density plots 
of the ZABs constructed with 20% Pt/C-IrO2,  CeO2-C/PSNC, and PSNC as catalyst on cathode. g Bar diagram of voltage gap between  E1/2 for 
ORR and  Ej=10 for OER with selected highly efficient catalysts. h Cycling curves investigating the stability. Reproduced with permission [87]. 
Copyright 2024, Elsevier
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compared to  CeO2-C/PSNC (0.82 V), there is a clear trade-off 
between the activity and the stability when comparing these 
two catalysts. The ZAB constructed using 20% Pt/C +  RuO2 
catalysts only lasted around 65 h, as shown in Fig. 10i, less 
than a third of the  CeO2-C/PSNC. This demonstrates that the 
trade-off between activity and stability should be considered 
as a crucial parameter for practical applications, rather than 
relying on the performance of half-self-chemical reactions.

The substitution of guest metal in the perovskites such 
structure has been reported to the ORR and OER activities. 
For instance, the proper substitution of cobalt by molybdenum 
at a certain ratio in  LaCoO3 (LCO) was reported to improve 
the ORR/OER bifunctional catalytic activity [88]. The opti-
mized Mo-doped  LaCoO3 (LCO) at a Co: Mo ratio of 95: 5 
 (LaCo0.95Mo0.05O3 (LCM-5)) reached a j of − 0.1 mA  cm−2 for 
ORR at 0.861 V, while a reduced η of 405 mV was required 
to reach a j of 10 mA  cm−2 for OER. Furthermore, when the 
optimized LCM-5 was used as a cathode in a ZAB, a power 
density of 136.1 mW  cm−2 and a specific discharge capacity 
of over 800 mAh  g−1 was reported. Additionally, this ZAB 
showed a long-term cycle capability to maintain 10 mA  cm−2 
for 120 h. This excellent catalytic activity was attributed to the 
doped Mo, which regulated the B-site Co valence states and 
increased the surface oxygen vacancies [88].

Furthermore, the synthesis of hybrid complex material of 
perovskite oxide and carbon nanomaterials was found to be a 
successful strategy to tailor the bifunctional electrocatalytic 
activity of perovskite oxide [89]. For example, a hybrid of 
cobalt-doped lanthanum manganese oxide   (LaMnO3) and 
N-doped C nanotube (LMCO/NCNT) was developed by using 
the  LaMnO3 perovskite as a growth substrate for NCNT and 
showed bifunctional performance [89]. This LMCO/NCNT 
hybrid demonstrates significant ORR enhancement with an 
onset of − 0.11 vs. SCE and half-wave potentials of − 0.24 V 
vs. SCE. It further required 0.9 V vs. SCE to reach a j of 
27 mA  cm− 2 for OER. Additionally, both of these strategies, 
metal substitution in perovskites and engineering hybrids with 
carbon, were proved to be effective in tailoring the bifunctional 
activity of perovskites for LABs. Hsu et al. investigated the 
effect and appropriate ratio of La by forming a series of La₁₋
ₓSrₓCoO3-δ (x = 0.1, 0.3, and 0.5). Due to the rise in the number 
of oxygen vacancies and surface area, the La₀.₅Sr₀.₅CoO3-δ/
Super P carbon cathode showed the highest discharge capac-
ity (6,032 mAh  g−1) for LAB [90]. For additional bifunctional 

perovskite catalysts, refer to Tables 1 and 2 for ZABs and 
LABs, respectively. 

5.4  Metal‑Free Carbon‑Based Bifunctional Catalysts

Carbon-based materials have received great attention for 
numerous catalytic applications, both as catalyst support 
or as directly active material, such as in metal-free carbon 
materials. This is mainly due to their superior electrical con-
ductivity, high surface area, and tunable chemical properties 
[118]. Furthermore, the raw materials for the synthesis of 
carbon nanomaterials are abundant, such as biomass, mak-
ing them low cost, and thus a viable-economy materials for 
large-scale applications [119]. In addition to their low cost, 
their chemical stability and ability to be functionalized with 
heteroatoms or metals make them versatile and efficient for 
applications such as water electrolyzers, fuel cells, batteries, 
and supercapacitors. As the search for bifunctional materials 
for MABs is crucial, the heteroatom doping in commercial 
carbon nanomaterials and biomass-derived carbon materials 
can be employed to enhance their catalytic performance by 
modifying the electronic structure and surface chemistry, 
thereby enabling desirable properties for bifunctional OER 
and ORR [120]. Doping with non-metal elements like nitro-
gen, sulfur, or phosphorus introduces active sites, improves 
charge transfer, and alters the adsorption energy of interme-
diates [121], thereby boosting catalytic activity and selec-
tivity for reactions such as the ORR and OER without the 
addition of metal elements.

To address a major concern of carbon corrosion at high 
potentials during oxygen reactions such as OER, a system-
atic corrosion mechanism of carbon study was conducted 
to support the possibility of using carbon-free metal in 
MABs [122]. This was done by investigating the correla-
tion between the structural properties of carbon, graphitiza-
tion, surface, and the electrochemical catalytic activity of 
carbon black, CNTs, and graphene as catalyst carriers. It 
was found that the CNTs characterized by high crystallin-
ity and less edge exposure showed superior performance 
over activated carbon black and graphene for MABs. Hence, 
it is critical to develop bifunctional electrocatalysts based on 
carbon nanomaterials, but also considering this challenge of 
carbon corrosion, especially in highly alkaline conditions of 
practical MABs. Hence, it is critical to develop bifunctional 
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electrocatalysts based on carbon nanomaterials but also 
considering this challenge of carbon corrosion, especially 
in highly alkaline conditions of practical MABs. Zhao 
et al., developed dual-doped and metal-free porous carbon 

materials using the pyrolysis of MOF containing Zn, N, and 
B as a precursor [123]. The doped-heteroatoms (B and N) 
were homogeneously distributed in carbon material, and the 
optimized BNPC-1100 material demonstrated a bifunctional 

Table 1  Recent earth-abundant bifunctional perovskite electrocatalysts for ZABs

Electrocatalysts Load (mg  cm-2) Electrolyte ORR  E1/2 (V vs. RHE) OER  Ej = 10 (V vs. RHE) ΔE  (Ej = 10-E1/2) References

Commercial Pt/C-IrO2 0.1 0.1 M KOH 0.86 1.93 (Pt/C)/1.60 1.07/0.76 [91]
Commercial Pt/C-IrO2 (1:1) 0.226 0.1 M KOH – – 0.83 [87]
CeO2-C/PSNC 0.226 0.1 M KOH 0.78 V 1.6 0.82 [87]
LaCoO3 0.189 0.1 M KOH 0.518 1.812 1.294 [88]
La0.85Ba0.15CoO3 0.189 0.1 M KOH 0.536 1.685 1.149 [92]
LaCo1–xMoxO3 (x = 0.05) 0.189 0.1 M KOH 0.595 1.705 1.11 [88]
La0.95FeO3-δ 0.232 0.1 M KOH 0.56 1.64 1.08 [93]
P doped  LaFeO3 0.255 0.1 M KOH 0.66 1.69 1.03 [94]
La0.8Sr0.2Co0.4Mn0.6O3 0.255 0.1 M KOH 0.686 1.736 1.05 [95]
LaMnO3₋CoO 0.232 0.1 M KOH 0.56 1.78 1.22 [96]
La0.7Sr0.3MnO3/Fe-1.5 1.0 0.1 M KOH 0.777 – 0.942 [97]
Ce0.9Gd0.1O2-δ (GDC) decorated 

 (Pr0.5Ba0.5)CoO3-δ (PBC)
– 0.1 M KOH 0.56 vs. RHE  (EORR (V) 

@-1 mA  cm−2)
1.69 1.13 [98]

Ba0·5Sr0·5Co0·8Fe0·2O3/NCNT 0.510 0.1 M KOH 0.86 1.62 0.76 [99]
La(Fe0.2Co0.3Mn0.1Cr0.2Zn0.2)

O3–δ

– 0.1 M KOH 0.41 1.526 1.042 [100]

La0.75Sr0.25Mn0.5Fe0.5O3 1.0 0.1 M KOH 0.721 1.658 0.94 [101]
nsLaNiO3/NC – 0.1 M KOH 0.64 1.66 1.02 [102]

Table 2  Recent earth-abundant bifunctional perovskite electrocatalysts for LABs

Electrocatalysts Specific capacity (mAh  g − 1 @
mA  g − 1)

Overpotential (V@mAh  g − 1@mA  g − 1) Cycle life (cycles@mAh  g − 1@mA 
 g − 1)

References

Pt-HCNPs 16000 0.41@100 40 [103]
RuO2/CNTs 1000 0.6@200 50 [104]
α-Fe2O3-LaFeO3–x 7183@100 1.0@500@100 108@500@100 [105]
Ag@La0.6Sr0.4Fe0.9M

n0.1O3

12477 1.3@500@400 147@500@400 [106]

Ni-La0.9Mn0.6Ni0.4O3–δ 16,656@400 – 95@500@400 [107]
La0.8Sr0.2Mn0.6Ni0.4O3 5364@50 1.074 (ΔE(V)) 79 cycles@ 500 mAh  gcarbon–1 [108]
Sr-doped  La2NiO4/NiO 131380@200 0.66@500@500 188@500@200 [109]
LaNi-0.5Co0.5O3 7.96 mAh  cm − 2@0.1 mA  cm − 2 0.05@0.5 mA  cm−2@0.1 mA  cm−2 100@0.5 mA  cm−2@0.1 mA  cm−2 [110]
La0.5Sr0.5CoO3–x (HPN-

LSC/KB)
5799 1.14 V@0.025 mA  cm−2 50@500 [111]

La0.8Fe0.9Co0.1O3–δ 7270.1@100 0.7 V@500@200 215@500@500 [112]
Ni3S2/PrBa0.5Sr0.5Co2O5 + δ 12874@100 0.68@1000@100 120@1000@100 [113]
La0.7MnO3–δ 29286@50 0.38@1000@200 375@1000@300 [114]
Fe2O3/LaNiO3 10419@100 0.77 V@50 mA  g−1 90@500 [115]
S-doped  LiNaO3 24067@100 0.37@1000@200 347@1000@100 [116]
LaF3/La0.8Fe0.9Co0.1O3–δ 7373.5@100 1.29@500@200 157@500@200 [117]
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OER and ORR due to B-N dual-doping, high porosity, and 
high pyridinic N content. When used as an air-breathing 
electrode in a ZAB, a discharging voltage was 1.12 V and 
showed excellent stability up to 100 h without severe devia-
tion from the initial voltage.

Furthermore, phosphorus is another heteroatoms that 
boost the bifunctionality activity toward oxygen electro-
chemical reactions and even for the hydrogen evolution reac-
tion [124]. Researchers developed a scalable method to cre-
ate nitrogen and phosphorus-codoped carbon nanospheres 
(NPCs) with cesium chloride assistance, leaving no residual 
metals after acid treatment. This metal-free electrocatalyst 
shows strong bifunctional catalytic activity, with an ORR 
half-wave potential of 0.85 V and a η of 0.34 V to achieve 
10 mA  cm−2 for OER. Fabricated ZAB using this catalyst 
performs comparably or even better than Pt/C or IrO₂ cata-
lysts [125]. The strategy of doping heteroatoms in carbon-
based nanomaterials yields tailored bifunctional catalytic 
activity for OER and ORR and shows practical performance 
in LAB. Elumalai et al. developed a strategy involving the 
carbonization of paper cups followed by chemical activation 
to further dope carbon with Selenium, Nitrogen, and Boron 
[126]. The Se heteroatom-doped carbon (SeC900) excelled 
in the bifunctional OER and ORR performance due to its 
high surface area, which facilitated good  O2 adsorption. The 
LAB coin cell, where the SeC900 was used as an active 
catalyst on the air-breathing electrode, exhibited an OCV 
of 3.14 V and an excellent discharge capacity of 1618 mAh 
 g−1 @50 A  g−1.

5.5  Metal–Nitrogen‑Doped Carbon‑Based Materials

To further boost the bifunctional catalytic activity of car-
bon materials, the synthesis of transition metal interact-
ing with nitrogen-doped carbon (metal–nitrogen–carbon) 
nanomaterials is an effective approach [127]. For example, 
a Fe–N/C material demonstrated superior performance to the 
well-agreed a-MnO2 in the Li–air cell [128]. This advanced 
performance was due to the dissolved iron phthalocyanine 
(FePc) in organic electrolyte, which served as a shuttle of 
 (O2)− species and electrons between the electronic conduc-
tor and the insulator  Li2O2. It also blocked any possibil-
ity of forming  Li2O2 product and decomposed afterward to 
directly interact with carbon, ensuring better stability. As 
biomass-derived materials are abundant, Liu et al., prepared 

defect-abundance carbon sheets derived from biomass with 
N doping (GPNCS) from fruits of glossy privet using a 
hydrothermal-activation-N-doped strategy, and this mate-
rial showed promising ZAB [125]. The advanced activity 
was attributed to synergism between N-doping atoms and 
topological defects. When the GPNCS was used as a cathode 
in a ZAB, a low charge–discharge voltage gap was demon-
strated, and at a j of 10 mA  cm–2, it demonstrated a promis-
ing durability up to 1340 cycles (about 500 h).

Additionally, the synthesis of a hybrid of metal nanoma-
terials with carbon enables excellent catalytic properties. As 
most N-doped carbon nanomaterials show outstanding ORR 
activity but relatively poor OER performance, combining a 
carbon-nanomaterial with a highly OER-performing mate-
rial, such as nickel iron oxides, resulted in outstanding per-
formance [129]. This tailored bifunctional catalytic activity 
was prepared by using a straightforward one-step annealing 
method of cobalt and iron precursors with carbon nano-
horns under an Ar/NH₃ atmosphere (Fig. 11a). The resulting 
cobalt ferrite@N-doped C nanohorns  (CoFe2O4@N-CNHs) 
showed ORR potentials comparable to standard Pt/C cata-
lysts and outperformed  RuO2 catalysts in OER efficiency 
(Fig. 11b). Additionally, ZABs with this nanohybrid cata-
lyst exhibit enhanced cycle stability and energy density 
compared to conventional Pt/C-RuO₂ systems (Fig. 11c, 
d). In addition to the outstanding performance, the hybrid 
 CoFe2O4@N-CNHs-30% catalyst showed better stability 
compared to pristine N-CNHs and  CoFe2O4. Furthermore, 
combining different types of carbon nanomaterials, such as 
nitrogen-doped carbon (NC) and multi-walled carbon nano-
tubes (MWCNTs) embedding Co/Zn nanoparticles (Co/Zn@
NC@MWCNTs), shows an improved ORR and OER bifunc-
tional catalytic activity and ZAB as well [130].

Metal elements in carbon-derived materials play a cru-
cial role in enhancing the bifunctional catalytic activity 
for ORR and OER. For example, different metal elements 
were reported to influence the nanostructure and morphol-
ogy of cobalt-tin sulfide nanopores (CoSnOH/S@C NPs) 
with a carbon layer prepared by using a two-step hydrother-
mal procedure [131]. The optimized CoSnOH/S@C NPs 
exhibit a porous structure with high surface area and high 
interactions between the CoSnOH/S NPs and carbon layer, 
leading to superior catalytic performance for ORR with a 
half-wave potential of − 0.88 V and lower overpotential (η) 
of 429 mV vs. RHE at a j of 50 mA  cm−2 for OER. The 
resulting ZAB shows better cycling stability and enhanced 
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catalytic efficiency compared to the ZAB fabricated using 
Pt/C and  IrO2 electrocatalysts. Earth-abundant materials 
based on complex materials such as metal macrocycles 
like porphyrins have also been investigated for MAB. One 
impressive example is the construction of a pyrolysis-free 

cobalt porphyrins coordination polymer containing Co–N-
C bonding with promising trifunctional activity for HER, 
OER, and ORR [132]. With the oxygen electrocatalysis’s 
bifunctional properties, the ZAB achieved a specific capacity 
of 723 mAh  g−1. The advanced trifunctional performance 

Fig. 11  a Schematic representation simplifying the fabrication of  CoFe2O4@N-CNHs. b LSV curves for ORR and OER. c Plot of specific dis-
charge capacity vs. cycle number, d charge/discharge cyclization curves at the j of 0.55 mA  cm−2 with 3 h per cycle. Reproduced with permis-
sion [129]. Copyright 2024, John Wiley and Sons
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and stability are attributed to the dicobalt face-to-face por-
phyrins, ensuring donor–acceptor characteristics with a band 
gap of 1.87 eV as calculated by the DFT calculation.

Although the metal hydroxides-based materials show 
relatively poor performance for bifunctional oxygen elec-
trocatalysis, synthesizing hybrid nanomaterials with car-
bon–nitrogen was investigated to tailor the bifunctional 
activity. For example, a multiscale construction strategy was 
used for a hybrid catalyst made of cobalt-porphyrin complex 
and NiFe layered double hydroxides [133]. This approach 
aimed to enhance the activity of metal hydroxide in combi-
nation with cobalt porphyrin, which possesses high intrinsic 
molecular-level activity, both serving as the active sites for 
oxygen electrocatalysis. As a result, the multiscale-designed 
electrocatalyst demonstrates a small ΔE for OER/ORR of 
0.68 V. The integration of this catalyst into the air cathode of 
ZAB demonstrated a high power density of 185.0 mW  cm−2. 
Additionally, this fabricated ZAB exhibited a remarkable 
durability of up to 2400 cycles when tested at 5.0 mA  cm−2.

Developing complex composite materials enables the 
synthesis of robust bifunctional catalysts due to the modu-
lation of microenvironment structures that is unachievable 
with simple materials. Particularly, this strategy has emerged 
as a method to prepare materials with various active sites, 
allowing each reaction to take place at a selected site [70]. 
Additionally, the synergistic effects of the constituents in 
these composites cannot be ignored, raising a critical issue of 
understanding how complex reactions occur, considering the 
selectivity of each active site for a particular reaction, while 
also accounting for possible synergistic or even inhibitory 
effects [134]. Jiang’s group conducted a comprehensive study 
using experimental and theoretical characterization to unveil 
the selectivity of active sites involved in specific reactions 
during the OER and ORR of atomically dispersed Fe-N4 sites 
bridged with  MoOx clusters  (FeN4/MoOx) on carbon black. 
They also investigated the effect of the interaction of catalyst 
constituents on the active sites [135]. The  FeN4/MoOx com-
posite showed a ΔE of 0.665 V, which outperformed to com-
mercial Pt/C-IrO2 catalyst (0.798 V). It maintained the RZAB 
performance for around 440 h and exhibited a specific capac-
ity of 819 mAh  g−1, while the commercial catalyst only lasted 
for 150 h. The study demonstrated that the Fe–Ni interactions 
negatively affect the  FeN4 sites accountable for the ORR, 
while synergistically enhancing the OER performance of 
 MoOx clusters in the  FeN4/MoOx composites.

5.6  Transition Metal‑Derived MOF Materials

MOFs, made by metals or clusters connected by organic 
ligands, have gained significant attention as multifunctional 
materials and a versatile platform for synthesizing novel nano-
carbon composites [136]. Transition metal-based MOFs are 
effective O₂ electrode materials, offering uniform pores, high 
surface area, and tunable chemical environments that enhance 
O₂ enrichment and transportation within the electrode [137]. 
Their structural precision, flexibility, and modifiability ena-
ble further optimization of battery performance [138]. Metal 
alloys are promising catalysts for OER and often surpass the 
performance of corresponding metal oxides in alkaline solu-
tion [139]. Anchoring metal alloy-derived catalysts on carbon 
nanomaterials, such as using MOF as a template, was proposed 
for tailoring the bifunctional catalytic activity. In this reported 
strategy, the iron (II) acetate-assisted approach was used to 
prepare iron-cobalt alloy anchored on carbon nitrides (NC) 
matrix  (Co3Fe7-NC-OAc) (Fig. 12a(i)) [52]. The alloying of 
Fe with Co leads to the formation of  Co3Fe7 nanoparticles as 
ORR/OER active. In addition to the improved activity due to 
the enlarged pore size to serve as gas transfer channels from 
the iron (II) acetate incorporation, the synergetic electronic 
coupling between carbon nitrides matrix and  Co3Fe7 nano-
particles was another feature that enabled enhanced OER and 
ORR catalytic activity (Fig. 12a(ii)). Superior peak power den-
sities of 587 mW  cm−2 and 193 mW  cm−2 in solid-state and 
aqueous ZABs (Fig. 12b-f), respectively, were achieved using 
this MOF-derived alloy catalyst as a bifunctional catalyst [52].

The MOF is a promising precursor for synthesizing mate-
rials with highly active sites and free of metal aggregation. 
H. Zheng et al. recently reported a confinement strategy to 
develop a cobalt carbon nitride (Co@N-CNSs) derived from 
cobalt(II) phthalocyanine complexes (Co-Pc) immobilized in 
Zn-MOF followed by the carbonization process [140]. This 
confinement approach enabled the synthesis of small-sized 
Co nanoparticles anchored on carbon nitride nanosheets. 
The ZAB in which the Co@N-CNSs catalyst was used as an 
active layer on the cathode showed a high specific capacity 
and a peak power density of 775 mAh  gZn−1 and 227 mW 
 cm−2, respectively. The pyrolysis strategy enables the syn-
thesis of metal composites with carbon nanomaterials using 
various types of carbon precursors. It was found that pyro-
lyzed iron phthalocyanine (FePc) with cobalt-doped indium-
based MOFs at 800 °C formed FePc@HCoNC with superior 
activity for ZAB of specific capacity of 758.10 mAh  g−1, and 
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stable cycling for 150 h [141]. To further boost the perfor-
mance of metal complex materials, combining with carbon to 
form composites such as CoPc@CNT composites proved to 
show improvement in LAB with a discharge capacity of 3400 

mAh  g−1
catalyst [142]. MOF-derived materials have emerged 

as promising candidates for various electrochemical energy 
technologies. However, while developing robust catalysts, 
especially for harsh oxidative conditions involved in reactions 
such as the OER, remains a key challenge, equal effort must 

Fig. 12  a A diagram depicting the synthesis process of  Co3Fe7-NC-OAc, b HRTEM image, i) SAED pattern, ii, iii) HAADF-STEM image, and 
corresponding element mapping image, c bifunctional characterization, d curves for OCV, e polarization curves for discharge and power density 
plots, f comparative discharge curves for ZAB. g Specific capacity and h galvanostatic cycling tests. The inset depicts the voltage gap and round-
trip efficiencies of ZAB at selected times for the constructed battery using  Co3Fe7-NC-OAc. Reproduced with permission [52]. Copyright 2025, 
Elsevier
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also be devoted to addressing issues such as cost-effectiveness, 
scalability, and environmental sustainability of MOF-derived 
materials [143].

5.7  Metal Alloys and High‑Entropy Alloys

Metal alloy materials, such as those based on earth-abundant 
metal alloys supported on carbon nanomaterials, show prom-
ising bifunctional oxygen electrocatalytic activity [144]. 
Du et al. engineered a hybrid of bimetallic cobalt–nickel 
alloy and N-doped carbon nanotubes (CoNi-NCNT) [54]. 
The synthesis involved a three-step process: the catalyst 
precursor solution was first prepared by self-assembly, fol-
lowed by in situ growth, and finally calcination, which ena-
bled the formation of the hybrid structure (Fig. 13a). The 

catalyst showed homogeneous distribution of bimetallic 
cobalt–nickel in which the interfacial Structural microen-
vironment was modified through interaction with carbon 
nitride, promoting a synergistic effect and enhanced conduc-
tivity (Fig. 13b). The detailed theoretical calculation showed 
that CoNi-NCNT interfaces exhibited enhancement in elec-
tronic conductivity due to the modulation of 3d orbitals of 
the CoNi alloy by the  CoN3 sites. As a consequence of these 
electronic structures’ modulation and large surface area 
(Fig. 13c-f), the CoNi-NCNT showed bifunctional activity 
for OER and ORR with a small voltage gap (ΔE) of 0.63 V 
(Fig. 13g). The ZAB fabricated using this catalyst on the air 
electrode showed an excellent specific capacity of 780 mAh 
 g−1. This ZAB showed a long-term cycling performance of 

Fig. 13   a HRTEM image of CNT; b HAADF-STEM image of CoNi-NCNT and corresponding elemental mappings of Co, Ni, and N. c, e Free 
energy diagrams for ORR at electrode potential U = 0 V and U =  − 1.23 V, respectively; d, f corresponding free energy diagrams for OER. g 
Polarization curves for ORR/OER. h Galvanostatic discharge–charge cycling curves at 5 mA  cm−2. Reproduced with permission [54]. Copyright 
2025, Elsevier
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800 h, while the ZAB fabricated using  RuO2 and Pt/C only 
lasted less than 300 h (Fig. 13h).

Recently, high-entropy alloys (HEAs) have attracted much 
attention for their tunable composition and exceptional abil-
ity to modulate geometric and electronic structures, ena-
bling the development of catalysts with outstanding and 
often unpredictable performance, making them suitable for 
various energy storage and conversion systems, including 
MABs [145]. As anticipated, the materials with multi-metal 
constituents exposing multiple active sites, such as HEA, 
enhance electrochemical redox reactions, such as the ORR 
and OER, and thus can be effectively used as bifunctional 
electrocatalysts in MAB, including Li-O2, Li-CO2, and 
Zn-O2 batteries [64]. For example, when a nanocrystalline 
HEA Cu–Co–Mn–Ni–Fe (CCMNF) was used as an oxygen 
electrocatalyst in ZAB, it showed stable performance for 
approximately 90 h of charging–discharging cycles [146]. 
This advanced performance was ascribed to the modulated 
electronic interaction of metal active sites constituents by 
the synergistic impact.

Furthermore, synthesizing complex multicomponent 
high-entropy nanocomposites of high-entropy alloy@oxide 
(HEA@HEO) was reported to tailor the bifunctional oxygen 
electrocatalysis. Qiu et al. developed a strategy to synthe-
size a HEA@HEO electrocatalyst with fourteen elements 
in which the PtPdAuAgCuIrRu HEA nanoclusters were 
anchored on AlNiCoFeCrMoTi)3O4 HEO spinel nano-
porous to yield highly efficient bifunctional catalysts for 
ZABs [147]. This high-entropy nanocomposite exhibited a 
small ΔE of 0.61 V due to the synergism between the metal 
and support, making it a highly oxygen-bifunctional cata-
lyst. One advantage of high-entropy spinel materials is that 
replacing one metal element does not necessarily change the 
structure and performance significantly. This can be advan-
tageous, for example, when replacing rare or critical metal 
elements with earth-abundant ones. Toparli et al. showed 
that the replacement of earth-abundant divalent cations in 
high-entropy spinel ferrites (HESFs) did not change the 
crystal structure and electronic characteristics of traditional 
transition metal-based HESFs, such as (CoCrFeMnNi)
Fe2O4 (Tm-Fe2O4) [148]. Consequently, the bifunctional 
(MgCoCuNiZn)Fe2O catalysts, in which the Mg, Cu, and Zn 
replaced Cr, Mn, and Fe in Tm-Fe2O4, exhibited comparable 
bifunctional OER/ORR performance. It also exhibited stable 
performance for ZAB over 200 h, depicting the importance 

of using earth-abundant elements yet comparable catalytic 
performance. Nonetheless, due to the complexity and large 
number of metals involved in the HEAs, it remains impor-
tant to explore the active sites and the effects of these various 
constituents, especially for bifunctional catalytic activity.

Although there has been recent progress on HEA materials 
for MABs, most reported materials for LAB contain precious 
metal elements. These precious metal content HEAs, such as 
tPdIrRuAuAg and RuIrFe-CoNi HEAs, showed outstanding 
performance for LABs [149, 150]. In the latter, the outstand-
ing catalytic activity was attributed to the noble metal content, 
while the remaining earth-abundant metals ensured high sta-
bility of this HEA [149]. Though the synthesis of HEAs is an 
approach to reducing the noble metal content, HEA materials 
free of noble metal should be explored further. Additionally, 
the combination of DFT and machine learning methods can 
be used to screen various HEA catalysts, leading to the design 
of highly efficient and stable OER and ORR bifunctional elec-
trocatalysts. Sun et al., used the DFT-ML to screen the adsorp-
tion free energies of adsorbates of 729 dual-metal-site catalysts 
(DMSCs), and this led to the design of 30 and 11 with supe-
rior ORR and OER compared to Pt(111) and  Ru2(110) [151]. 
Additionally, highly performing four bifunctional electrocata-
lysts  (RuCoN6,  RuIrN6,  OsRhN6, and  OsCoN6) for ORR and 
OER were identified.

Understanding the synergistic effect in enhancing cata-
lytic activity is more complex in composite materials involv-
ing multiple metals, such as in high-entropy oxides (HEOs), 
making it difficult to determine which metals selectively influ-
ence the OER or ORR. However, the combination of DFT 
calculations and in situ physicochemical characterization has 
recently been employed to elucidate the synergistic effect and 
the oxygen electrocatalysis mechanism in sulfur-modified 
 La0.8Sr0.2(CrMnFeCoNi)O3 high-entropy perovskite oxides 
(HEPOs) [152]. The introduction of sulfur modulated the 
microenvironmental chemistry and structure, including defects 
and the metal spin state, synergistically enhancing bifunctional 
performance. Although the lattice oxygen-mediated mecha-
nism (LOM) predominantly governs the reaction due to the 
presence of oxygen vacancies, the optimized LS5M-3S sample 
exhibited dual reaction pathways involving both the adsorbate 
evolution mechanism and LOM. Through comprehensive anal-
ysis, it was concluded that Mn, Fe, Co, and Ni act as co-active 
sites for the OER, while Mn, Fe, and Co primarily drive ORR 
activity. These finding highlights that, rather than attributing 
improved bifunctional activity solely to a general synergistic 
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effect, identifying specific active sites that are selectively syn-
ergistic for either OER or ORR could contribute to the design 
of robust bifunctional electrocatalysts.

6  Conclusions and Future Directions

In the effort to develop practical MABs, the pursuit of 
bifunctional ECs for both ORR and OER would enable 
more efficient MAB designs and reduce the reliance on raw 
materials. This review highlights the principles of MABs 
and the recent developments in bifunctional ECs based on 
earth-abundant materials. As discussed, by optimizing both 
oxygen reactions, earth-abundant bifunctional ECs can allow 
MABs to operate with higher efficiency, longer lifespans, 
and better overall performance, even surpassing precious-
metal-based ECs. While these recent advances in bifunc-
tional ECs for MABs are promising, these catalysts must 
overcome challenges related to large-scale production, envi-
ronmental sustainability of raw materials and reagents, and 
economic viability for widespread industrial use. The key to 
utilizing these ECs in future MABs lies in their long-term 
cyclability, compatibility with existing cathode designs, and 
seamless integration into battery manufacturing processes.

(1) More studies are needed to better understand the micro-
environment and underlying mechanisms that contrib-
ute to the bifunctional performance of OER and ORR. 
Since both oxygen reactions involve different mecha-
nisms, it is critical to elucidate the origin of activity-
stability in bifunctional electrocatalysts, as these mate-
rials often undergo microenvironment transformations 
during charging and discharging. The understanding of 
the active sites, degradation, synergistic or even inhib-
iting effect in bifunctional catalysts when active sites 
selectively perform specific reactions, which occurs in 
composites, requires more investigations.

(2) The landscape of rechargeable MABs has undergone 
significant evolution to address the needs of various 
energy applications. It is also worth investigating 
other designs of MABs, as this could help to discover 
a wide range of rechargeable batteries for future sus-
tainable energy storage. For example, a novel design 
for an aqueous ZAB has been proposed, leveraging the 
in situ formation and oxidation of hydrogen peroxide 
 (HO2

−) on the air electrode, termed a Zn–peroxide bat-
tery (ZPB) [153]. During discharge, the process fol-
lows a  2e− pathway involving oxygen reduction and 
 HO2

− generation on the air electrode, while the charge 

cycle converts  HO2
− back to water and oxygen. This 

design demonstrates a minimal potential difference 
(60 mV) between ORR and peroxide oxidation due to 
the fast kinetics of both reactions. This design enables 
a reduced difference in the potential of bifunctional 
oxygen electrocatalysis compared to standard designs 
that have a large difference, making it a challenge to 
develop efficient bifunctional oxygen catalysts.

(3) There have been significant developments in the in situ 
and operando characterization of ECs. However, more 
efforts are needed in situ and operando characterization 
in real-world metal–air batteries to better understand 
the microenvironment, activity trends, determine active 
sites, and assess the durability of bifunctional ECs dur-
ing MAB testing. Additionally, the research in scalabil-
ity, reproductivity, and stability of emerging materials, 
including MOF-derived materials and SACs that most 
involve carbon, should be prioritized to investigate the 
trade-offs in scalability, activity, and stability.

(4) In contrast to the well-established industrial production 
of PGM-based catalysts, such as commercial Pt/C and 
Ir/C, which are already used in many different applica-
tions, the production of earth-abundant catalysts at an 
industrial scale is essential for their broader adoption. 
Currently, most synthesis of materials and physico-
chemical and electrochemical tests are conducted on 
a laboratory scale and follow protocols that are lim-
ited to this scale. This poses a significant challenge, as 
some of the highly efficient catalysts synthesized at the 
laboratory scale involve multiple steps, such as hydro-
thermal techniques, annealing, acid treatment, and dry-
ing in an inert environment, which, when combined, 
consume substantial energy even at a small scale. The 
cost-effectiveness of these methods, along with their 
environmental impact at a larger scale, should also be 
carefully considered. Furthermore, to deploy these ECs 
at a larger scale, relevant protocols for real-world appli-
cations should be established and tested.

(5) Lastly, combining the experimental characterization, 
theoretical calculations, machine learning (ML), and 
artificial intelligence (AI)-guided materials develop-
ment, such as AI-driven multiscale modeling method-
ologies, is crucial for the development of robust and 
highly efficient bifunctional ECs for water electrolyzer, 
fuel cells, and batteries, including MABs [154]. DFT 
combined with emerging ML tools is projected to play 
a crucial role in designing novel, highly efficient, dura-
ble, and scalable electrocatalysts for MABs and other 
electrochemical energy technologies, as it can enable 
the screening of many catalysts that would take more 
effort experimentally.
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