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 HIGHLIGHTS

• A framework combining the citation analysis with topic modeling is designed to construct the knowledge graph of a research field.

• An extensible tokenizer is designed to improve the universality of the framework, and the performance of topic recognition is superior 
to that of the traditional method.

• The detailed evolutionary paths of Raman spectroscopy technology are demonstrated, and the significant publications in the Raman 
spectroscopy are identified.

ABSTRACT Text mining has emerged as a 
powerful strategy for extracting domain knowl-
edge structure from large amounts of text data. 
To date, most text mining methods are restricted 
to specific literature information, resulting in 
incomplete knowledge graphs. Here, we report 
a method that combines citation analysis with 
topic modeling to describe the hidden develop-
ment patterns in the history of science. Lever-
aging this method, we construct a knowledge 
graph in the field of Raman spectroscopy. The 
traditional Latent DirichletAllocation model is 
chosen as the baseline model for comparison to 
validate the performance of our model. Our method improves the topic coherence with a minimum growth rate of 100% compared to 
the traditional text mining method. It outperforms the traditional text mining method on the diversity, and its growth rate ranges from 0 
to 126%. The results show the effectiveness of rule-based tokenizer we designed in solving the word tokenizer problem caused by entity 
naming rules in the field of chemistry. It is versatile in revealing the distribution of topics, establishing the similarity and inheritance 
relationships, and identifying the important moments in the history of Raman spectroscopy. Our work provides a comprehensive tool for 
the science of science research and promises to offer new insights into the historical survey and development forecast of a research field.
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1 Introduction

Data-driven methods have attracted much interest in litera-
ture survey and fundamental research. They help research-
ers forecast the hotspots in the near future, and administra-
tors facilitate the formulation of funding policies [1]. As 
a distributed repository of scientific knowledge, scientific 
literature represents the fundamental data unit for studying 
the structure and evolution of science [2]. Traditionally, 
researchers summarized the patterns and trends of scien-
tific development by reading a large amount of literature 
one by one. Unfortunately, this paradigm is confronted 
with unprecedented challenges in the field of nanoscience 
and nanotechnology. As a field that has attracted much 
interests from scientists, it usually contains millions of sci-
entific literature, leaving a big challenge to extract research 
trends and potential research hotspots in nanoscience and 
nanotechnology manually. To address this issue, in recent 
years researchers started to utilize quantitative research 
methods to analyze the evolution of scientific structure 
and research hotspots, such as literature metrology [3] and 
science mapping analysis [4]. Nevertheless, most methods 
rely on particular data formats and literature indicators, 
resulting in failures to comprehend substantive content and 
academic ideas.

Text mining methods provide an opportunity for auto-
matically reading literature and extracting the viewpoints 
therein and are beneficial to reducing time costs and 
avoiding human errors [5]. The topic models, as generally 
divided into structural [6], dynamic [7], and neural [8] 
topic models, had been proven efficient in deducing poten-
tial topic distributions and obtaining a birds-eye view of 
topic evolution [9–11]. The reference section was widely 
recognized as a significant component of a piece of pub-
lished literature because it is a complex combination of 
considerations and it informs the substantial knowledge 
transfer of important arguments, experimental methods, 
and discoveries [12]. To date, most of the works were 
concentrated on the textual information of the literature, 
paying less attention to considering the inter-reference 
information. The lack of reference information prevents 
researchers from delving into the potential connections 
among literature and results in an incomplete knowl-
edge graph. However, there is a limited method that can 

incorporate citation information into the topic information 
in the state-of-art text mining.

Recently, the Bidirectional Encoder Representations 
from Transformers Topic (BERTopic) model was proposed 
to generate coherent topic representations [13]. It was a 
scalable framework that allowed researchers to integrate 
external information and to construct a complete domain 
knowledge graph. Herein, we developed a novel method 
that integrated the BERTopic model and citation analysis 
to demonstrate the entire evolution of domain knowledge. 
To get a corpus, the web crawling technique was applied 
to gather literature from the Web of Science database and 
the BERTopic model was utilized to extract topics. The 
traditional approaches like the Latent Dirichlet Alloca-
tion (LDA) method were selected as baseline models to 
demonstrate the performance of our model. A citation net-
work was built using citation information and the com-
munity detection algorithm was utilized to determine the 
correlation between evolution of topic and community 
structure. Finally, a comprehensive knowledge graph was 
constructed. As a proof of principle, we employed the field 
of Raman spectroscopy, a typical characterization method 
in nanoscience and nanotechnology, to verify the feasibil-
ity of our method and demonstrated that our method can 
identify the important progress of a scientific field hidden 
in a huge number of literature.

2  Materials and Methods

2.1  Model Architecture

The workflow of our method consists of three independent 
steps: data collection (Fig. 1a), topic model construction 
(Fig. 1b-d), and citation analysis (Fig. 1e, f). Firstly, the 
search expression was determined by looking up litera-
ture and seeking advice from experts in the field. A large 
amount of literature was retrieved and collected from the 
Web of Science through the search expression. Their tex-
tual and citation information was stored in our database 
as a corpus (Fig. 1a).

Secondly, the BERTopic model was constructed to 
extract topic information from the corpus. As shown in 
Fig. 1b, the BERTopic model was composed of five mod-
ules: embeddings, dimensionality reduction, clustering, 
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tokenizer, and representation. The all-MiniLM-L6-v2 
model was chosen to convert a piece of published liter-
ature into a 384-dimensional vector in the embeddings 
module, which could capture the word order and semantic 
information of input text. The 384-dimensional vector was 
converted into a five-dimensional vector using the Uni-
form Manifold Approximation and Projection (UMAP) 
algorithm in the dimensionality reduction module, which 
could retain the global data structure as much as possible 

(Section S1.1). Considering the successful cases of clus-
tering algorithms applied in processing of mass data [14, 
15], we integrated a clustering algorithm into BERTopic 
to improve the computational efficiency (Section S1.2). 
The reduced vectors were used as the input of the Hierar-
chical Density-Based Spatial Clustering of Applications 
with Noise (HDBSCAN) algorithm to discover topic clus-
ters in the clustering module (Table S5). All literature in 
a topic cluster was merged into a long document in the 

Fig. 1  Illustration of model architecture with essential steps and outcomes. a Research literature is collected from the Web of Science database 
as the input of the model. b Architecture of our topic model consists of five independent modules. c To obtain the distribution of topics in each 
stage, the topic model is used to extract topics from textual information. d Cosine similarity algorithm is applied to get the topic evolution results 
displayed in a Sankey diagram. e Citation network is constructed from the collected research literature and hidden communities are detected 
by the community detection algorithm. f Milestone literature is found through the main path analysis. a and c represent the input and output of 
BERTopic model, respectively
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tokenizer module. The document was then divided into 
phrase sequences by a tokenizer and the frequency of each 
phrase was counted. Here, we designed a tokenizer based 
on the Punkt algorithm [16] and implemented it to make 
sure that the topic representations fit with domain naming 
conventions (Section S1.3). Topic terms were identified 
from phrase sequences using the c-TF-IDF algorithm in 
the representation module. After extracting topic informa-
tion (Fig. 1c), the cosine similarity algorithm was applied 
to establish the evolutionary relationship (Fig. 1d).

Finally, citation information was utilized to construct a 
citation network. In Fig. 1e, the community detection algo-
rithm was applied to detect the communities hidden in the 
citation network, which represented specific research areas 
and academic viewpoints (Section S1.4). Then, as shown 
in Fig. 1f, the main path analysis algorithm was used to 
simplify the citation network as it could identify the critical 
nodes that bridge different research communities.

2.2  Data Collection

We collected literature on Raman spectroscopy from the 
Web of Science Core Collection. The expressions employed 
for searching literature on the field of Raman spectroscopy is 
TS = (Raman *or Raman spectroscopy) AND DT = (Article 
or Letter or Early Access or Note) AND PY = (1980–2020). 
The Playwright was employed to crawl the title, keyword, 
abstract and citation information, and finally 176,008 pieces 
of literature were obtained. The literature collected was sta-
tistically analyzed, and the results are shown in Figs. S13-
S16. The dataset covered 122 research areas, demonstrating 
good disciplinary completeness. About 99% of the literature 
received 0–50 citations, with 47% cited fewer than 10 times, 
aligning with typical scientific citation patterns.

2.3  Word Embedding Representation of Literature

The text is converted into numerical vectors in the embed-
ding module of the BERTopic model. Considering the 
importance of the semantic information among words, the 
attention mechanism is utilized to preserve the semantic 
information. However, it takes up a considerable amount 
of computational resources when the sequence is somehow 
long. To address this concern, the scaled dot product of pairs 

of attention head is introduced into our model and its for-
mula is as follows:

where A1,a,A2,a,A3,a are the query, key and value of a mul-
tiple relation head, respectively, dt is the relation head size 
of the teacher, ds is the relation head size of the student, Rt

i,j,a
 

is the self-attention relation between the relation head of 
teachers, Rs

i,j,a
 is the self-attention relation between the rela-

tion head of student, Ar is the number of relation heads, |x| 
is the length of the input sequence and DKL is the Kull-
back–Leibler Divergence, Li,j is the loss between self-atten-
tion relations of the teacher and student, L is the total loss 
and �i,j is the weight assigned to each self-attention relation 
loss.

3  Results and Discussion

3.1  Division of Development Stages Based 
on the Lifecycle Theory

The lifecycle theory states that the development of one thing, 
including the scientific field herein, requires going through 
stages of emerging, growth, maturity, and decline [17]. In 
the bibliometrics field, researchers generally employed the 
growth pattern of published literature to represent the life 
cycle of the scientific fields. The number of published litera-
ture per year in the field of Raman spectroscopy and its first-
order derivative curve were displayed in the form of a bar 
chart and line chart, respectively (Fig. S12). It is noticed that 
the number of literature was less than 500 per year during 
the period from 1980 to 1989 and the first-order derivatives 
of the number of literature were all greater than 0 during the 
period from 2001 to 2020. The whole period was divided 
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into three stages according to the growth pattern of literature 
in the field of Raman spectroscopy:  Tn stage (emerging stage 
from 1980 to 1989),  Tn+1 stage (growth stage from 1990 to 
2000) and  Tn+2 stage (maturity stage from 2001 to 2020).

3.2  Validation of the Topic Extraction Capability 
of our Model

The LDA model had made significant progress in topic 
extraction [18]. It was chosen as the baseline model to dem-
onstrate the performance of our method. The Coherence and 
Diversity metrics were used to measure the quality of the 
extracted topics. Normalized Pointwise Mutual Information 
(NPMI) is a coherence indicator that measures the degree of 
semantic consistency among words, which has been proven 
to be close to human judgment [19]. Its value ranges from -1 
to 1, and the interpretability of the topics is higher when the 
value is closer to 1. Diversity is applied to estimate the pro-
portion of unique words in a topic, ranging from 0 to 1. The 
difference among topics is greater when the value is closer 
to 1. We calculated the NPMI and Diversity in different data-
base sizes and topic numbers to verify the performance and 
stability of our model. The result is shown in Table 1.

When the number of topics (TN) is 10 and the database 
size is 3,126 and 150,561, our model has the NPMI value of 
0.08 and 0.12, which is 367% and 100% higher than that of 
the LDA model, respectively. When the TN is 100 and the 
database size is 3,126 and 150,561, the diversity value of 
our model is 0.88 and 0.85, which is identical to and 126% 
higher than that of the LDA model, respectively. In totality, 
our model improves the topic coherence and diversity with 
a growth rate of 100% to 367% and 0 to 126%, respectively. 
These indicate our model can extract higher-quality topics 
than that of the LDA model irrespective of the database size.

To verify the capability of the tokenizer we designed, we 
analyze the NPMI value in different topic numbers and data-
base sizes. When the database size is 22,321 and the number 
of topics is 10, 50, and 100, the NPMI values of the BERTopic 
model are 0.12, 0.10, and 0.10, while the NPMI values of the 
BERTopic model with our developed tokenizer are 0.10, 0.15, 
and 0.16, respectively. These results indicate that our tokenizer 
is effective in improving the interpretability of the topics and 
is capable of handling domain-specific naming conventions.

Table 1  Performance of LDA and BERTopic models as increased number of topics

[a]  TN, [b] NPMI, [c] LDA, and [d] BERTopic are the abbreviations for the number of topics, the Normalized Pointwise Mutual Information, the 
latent Dirichlet allocation, and the Bidirectional Encoder Representations from Transformers Topic, respectively

Metrics Database size Model TN[a] = 10 TN = 50 TN = 100

NPMI[b] 3,126 LDA[c] − 0.03 − 0.08 − 0.08
BERTopic[d] − 0.12 0.00 − 0.08
BERTopic_tokenizer 0.08 0.05 0.03

22,321 LDA 0.03 − 0.08 − 0.13
BERTopic 0.12 0.10 0.10
BERTopic_tokenizer 0.10 0.15 0.16

150,561 LDA 0.06 0.00 − 0.10
BERTopic 0.14 0.14 0.16
BERTopic_tokenizer 0.12 0.16 0.19

Diversity 3,126 LDA 0.43 0.38 0.39
BERTopic 0.95 0.83 0.87
BERTopic_tokenizer 0.95 0.83 0.88

22,321 LDA 0.65 0.73 0.73
BERTopic 0.97 0.83 0.82
BERTopic_tokenizer 0.99 0.84 0.82

150,561 LDA 0.79 0.86 0.85
BERTopic 1.00 0.90 0.84
BERTopic_tokenizer 0.99 0.90 0.85
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3.3  Evolution of Topics Between Adjacent Stages

In science, a research topic is the central issue that research-
ers pay close attention to and explore in depth. It is a 
dynamic concept that evolves over time, which is known 
as topic evolution [20]. When there is an evolutionary 

relationship between topics in two different stages, they 
demonstrate significant similarity at the semantic level. 
To trace and clearly depict the evolution of research topics 
in the field of Raman spectroscopy over time, we devised 
a method to calculate the similarity of topics in adjacent 
stages. The results are presented in Fig. 2.

Fig. 2  Distribution of topics in different stages of Raman spectroscopy and the evolutionary relationships among topics. a Evolutionary rela-
tionship among topics with at least two child topics is shown in the form of a Sankey diagram. The label of a topic consists of the stage number 
and the topic number, separated by an underline. The stage numbers 1, 2, and 3 before underline represent the  Tn,  Tn+1, and  Tn+2 stage, respec-
tively. The topic number indicates the serial number of the topic in the stage. The core topics of each stage are additionally labeled with the 
most essential topic term. b Similarity relationship among core topics is displayed in the form of the correlation heatmap. The minimum and 
maximum similarity value are 0.77 and 0.92, respectively. c Complete evolution paths of topics 3_020 and 3_048 labeled in blue within b, and 
the topic terms corresponding to each topic. The blue words are the label of the node, green words represent the topic terms of the  Tn stage, and 
orange words represent the topic terms of the  Tn+1 stage



Nano-Micro Lett.          (2025) 17:295  Page 7 of 14   295 

To demonstrate the core topics in different stages of 
Raman spectroscopy, we utilized the Sankey diagram to 
illustrate the distribution of topics in each stage and their 
evolutionary relationships. In this diagram, if topic a in 
the previous stage evolves into topics b, c, and d, then a is 
regarded as the parent topic, while b, c, and d are regarded as 
child topic accordingly. The occurrence frequency of a topic 
is the key indicator of the importance of that topic. Based 
on the figure that completely demonstrated the evolutionary 
relationship (Fig. S7), we defined core topics as those that 
have three or more child topics or parent topics and obtained 
the core research areas of Raman spectroscopy in three dif-
ferent stages (Fig. 2a). It is shown in Fig. 2a that the core 
topics of the  Tn stage are topics 1_010, 1_018, 1_029, and 
1_036. By analyzing their topic terms (Table S7), we found 
that topics 1_010, 1_029, and 1_036 were all focusing on 
the field of biology. Topics 1_029 and 1_036 were closely 
related to bacteria, which demonstrated the central position 
of bacterial research in the field of Raman spectroscopy in 
the  Tn stage. The core topics of the  Tn+1 stage were topics 
2_007, 2_010, 2_018, and 2_176. By analyzing their topic 
terms, we found that proteins appeared in both topics 2_007 
and 2_018, indicating that proteins were the core object of 
study in this stage. The core topics of the  Tn+2 stage were 
topics 3_020, 3_048, and 3_104, in which topics 3_020 and 
3_048 were related to nanostructured arrays, revealing that 
the core of the stage was the study of enhancing Raman scat-
tering signals by designing nanostructured arrays, whereas 
topic 3_104 continued to focus on proteins. Combined with 
the previous topics, we found that the research on proteins 
has been carried out throughout the development of Raman 
spectroscopy.

To elucidate the correlation and evolutionary trends 
between the core topics in different research stages, we 
presented the correlation heatmap in Fig. 2b, which visual-
ized the similarity that existed among the core topics. It is 
noteworthy that the core topics of stage  Tn+1 and stage  Tn+2 
exhibited a higher similarity in comparison to those of stage 
 Tn and stage  Tn+1. This trend held for all topics in Fig. 2b 
(Figs. S17 and S18). This phenomenon indicated that the 
knowledge gained in previous stages was effectively inte-
grated and absorbed, resulting in a concentration of research 
focus and a relatively smooth development of research direc-
tion. The highest similarity between topics 2_176 and 3_020 
with a value of 0.92 indicated that the knowledge had been 
directly transferred and the research direction had been 

further developed, which was additional supported by their 
topic terms. Topic 2_176 was concerned with the general 
principles of surface-enhanced Raman spectroscopy (SERS), 
and topic 3_020 explored the design of specific nanostruc-
ture (Table S7). The lowest similarity was observed between 
topics 1_010 and 2_007, with a value of 0.77. The compari-
son of the topic terms revealed that although they were both 
concerned with research of Raman spectroscopy and protein, 
the research directions were quite different. Topics 1_010 
and 2_007 were more focused on the basic physicochemical 
study of proteins and development of optical enhancement 
techniques and specific application, respectively.

To demonstrate the connection between evolutionary 
relationships and topic terms, we took the complete evolu-
tionary path of topics 3_020 and 3_048 in the  Tn+2 stage as 
an example. As shown in Fig. 2c, topics 2_003 and 2_029 
in the  Tn+1 stage were formed by combining topics 1_004, 
1_008, and 1_016 in the  Tn stage. They were both related 
to molecular adsorption, and their common topic terms are 
“surface-enhanced Raman” and “SERS” (Table S7). The 
difference was that the topics in the  Tn stage focused on 
the surface-enhanced Raman effect and characteristics of 
traditional metal materials such as silver and gold, whereas 
the topics in the  Tn+1 stage paid attention to the surface-
enhanced Raman scattering properties of new materials 
such as nanoparticles and photocatalytic materials, involv-
ing more advanced spectroscopic techniques such as near-
infrared spectroscopy and resonance Raman scattering. The 
topics in the  Tn+2 stage were formed by the fusion of topics 
2_003, 2_029, and 2_176 in the  Tn+1 stage. Topic 3_020 
inherited topic terms from its parent topics, such as “sub-
strates” and “enhancement”. Based on the research founda-
tion of the parent topics, topics 3_020 and 3_048 further 
investigated the Raman enhancement effect on large-scale 
nanostructured array substrates. All of these indicate the 
emergence of evolutionary relationships is accompanied by 
the inheritance of topic terms.

3.4  Evolution of the Academic Communities Extracted 
by the Louvain Algorithm

To build a complete knowledge graph, we constructed a 
citation network in the field of Raman spectroscopy. In this 
citation network, literature is naturally clustered because all 
of them belong to a research topic, forming an academic 
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community [21]. The community density is an indicator 
that assesses the proximity of node connections within an 
academic community [22]. It provides insight into the effi-
ciency of knowledge transfer within the community [23]. 
To investigate the relationship between the topic evolution 
and community density in the field of Raman spectroscopy, 
we employed the Louvain algorithm to identify hidden aca-
demic communities in the citation network and investigated 
the change in the density of each community in different 
stages.

We reported the distribution of academic communities 
in different stages in the field of Raman spectroscopy. In 
the  Tn stage, four communities were identified within the 

citation network, namely Spectroscopy, Chemistry, Bio-
chemistry and Molecular Biology, and Physics (Fig. 3a). 
The Spectroscopy community exhibited the highest den-
sity value of 5.69, while the Biochemistry and Molecular 
Biology community demonstrated the lowest density value 
of 0.67 (Fig. 3c). In the  Tn+1 stage, several new academic 
communities emerged, including those related to Materi-
als Science and Optics (Fig. 3a). The Optics community 
had the highest density value of 2.29 among the emerged 
academic communities in  Tn+1 stage (Fig. 3c). In the  Tn+2 
stage, the number of nodes increased rapidly, with nearly 
99% of nodes in the citation network belonging to the four 
communities of Chemistry, Materials Science, Physics, 

Fig. 3  Distribution and density evolution of academic communities in different stages in the field of Raman spectroscopy. a Academic com-
munities in the field of Raman spectroscopy were identified by the Louvain algorithm and marked with different colors. The distribution of 
academic communities is shown from 1980 to 1989 (Upper), 1990 to 2000 (Middle), and 2001 to 2020 (Lower), respectively. b Distribution of 
Chemistry communities in the field of Raman spectroscopy is shown from 1980 to 1989 (Upper), from 1990 to 2000 (Middle), and from 2001 
to 2020 (Lower), respectively. The percentage of nodes for Chemistry community in the citation network at each stage are 16.40%, 36.56%, 
57.61%, respectively. c Distribution of community density in different stages is shown in the form of histogram. The color of the histogram is 
consistent with the corresponding academic community color in the citation network
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and Optics (Fig. 3a). This resulted in the overshadowing 
of newly emerged academic communities, such as the Min-
eralogy community, the Toxicology community and the 
Astronomy and Astrophysics community.

To investigate the intrinsic relationship between the evo-
lution of the topic and community density, we analyzed the 
evolution of community density in different stages and the 
Chemistry community was selected as a case study. Fig-
ure 3b illustrates the evolution of Chemistry communities 
from  Tn stage to  Tn+2 stage. The node proportion of Chem-
istry community demonstrated a gradual increase in the 
citation network, reaching a maximum value of 57.61% in 
the  Tn+2 stage. This trend indicated that the Chemistry com-
munity had become a central focus in Raman spectroscopy 
and increasingly demonstrated its significance in applica-
tions. The increase in the proportion of nodes within the 
citation network was accompanied by the dynamic shift 
of the density value of Chemistry community. The lowest 
density value was 2.16 in the  Tn stage, while the highest 
density value was 22.70 in the  Tn+1 stage (Fig. 3c). This 
evolution was indicative of the growing concentration of 
research related to Raman spectroscopy within the field of 
chemistry, as well as the increasing dissemination of knowl-
edge during this stage. It is consistent with the trend of topic 
similarity shown in Fig. 2b. It can also be observed from 
Fig. 2c. For example, the term “adsorption” is a common 
topic term for topics 1_004, 1_008, and 1_016 in  Tn stage, 
whereas “enhancement” is a common topic term for topics 
3_020 and 3_048 in  Tn+2 stage.

3.5  Reasons for the Evolution of Topic and Academic 
Community

The previous analyses have provided some insight into the 
evolution of topic and academic community in the field of 
Raman spectroscopy, leading to a preliminary macro-pic-
ture of the history of Raman spectroscopy. However, the 
key factors driving these evolutions remain to be explored. 
Therefore, we combined these existing understandings 
with the main path analysis method to reveal the historical 
trajectory of Raman spectroscopy more clearly. It is pos-
sible to make evidence-based predictions about the future 
development of the field based on this.

To demonstrate the reason for the evolution, we used the 
main path analysis method and found the inevitable paths 
for the knowledge flow in the field of Raman spectroscopy 
(Sections S1.5 and S1.6). The results were shown in the 
global main path graph (Fig. S10) and node centrality table 
(Tables S3 and S4), where nodes are related to either tech-
nological or application breakthroughs in the field of Raman 
spectroscopy. With these nodes, the history of Raman spec-
troscopy is demonstrated from a technical perspective. The 
Web of Science database only collected research literature 
published after 1980, but the Raman scattering is discovered 
in 1928. To completely demonstrate the technological trajec-
tory of Raman spectroscopy, five nodes were added to Fig. 4, 
which were milestone publications published before 1980. 
These nodes were sorted by publication year and the result 
is shown in Fig. 4.

Taking Fig. 4 and the results of topic evolution at hand, 
we were able to clearly trace the historical development 
process of Raman spectroscopy. In 1928, C.V. Raman et al. 
[24] reported the first experimental observation of Raman 
scattering (Fig. 4a), a phenomenon that laid the founda-
tion for the development of Raman spectroscopy technique. 
Unfortunately, the Raman signal was weak because of 
using mercury arc lamps with poor light intensity as the 
excitation light source between the year of 1928 and 1960. 
The invention of the ruby laser, reported by T.H. Maiman 
[25] in 1960, greatly advanced the application of Raman 
spectroscopy (Fig. 4b). It provided an excitation source 
with excellent coherence, which significantly enhanced 
the intensity of the Raman signal. The first observation of 
enhanced Raman scattering from a roughened metal sur-
face was reported by M. Fleischmann et al. [26] in 1974 
(Fig. 4c), laying the foundation for a new technique known 
as SERS. R P. Van Duyne et al. [27] and J.A. Creighton et al. 
[28] reported the first independent identification of SERS 
effect in 1977 (Fig. 4d). In 1978, M. Moskovits [29] firstly 
introduced localized surface plasmon to explain SERS effect 
(Fig. 4e), which was later called electromagnetic mechanism 
(EM). Fourteen years later, A. Otto et al. [30] revealed that 
the electron-mediated resonance Raman effects in metals 
arose from enhanced electron–photon coupling at the rough 
metal surface and transient charge transfer to the orbitals 
of the adsorbate, a process now recognized as the chemical 
mechanism (CM). This literature was omitted by our method 
because it was a piece of review literature Review litera-
ture is excluded because they mainly synthesize existing 
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Fig. 4  Milestone literature in the field of Raman spectroscopy identified by the citation network and main path analysis. a-n Milestone literature 
are represented in the form of nodes with the publication year, the last corresponding author and highlights of the literature. Nodes are ordered 
by the publication year. The nodes on the dotted line are also extremely significant in the history of Raman spectroscopy, but are not included in 
the web of science because their publication year are before 1980. The abbreviations in this figure: surface-enhanced Raman spectroscopy for 
SERS, localized surface plasmon for LSP, shell-isolated nanoparticle-enhanced Raman spectroscopy for SHINERS, tip-enhanced Raman spec-
troscopy for TERS, electric field for E-field
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knowledge rather than contributing originally experimental 
findings. It is now widely accepted that the enhancement 
mechanism of SERS is the result of a combination effect of 
EM and CM.

According to the content of the nodes identified by our 
algorithm in Fig. 4, they mainly focused on solving three 
major problems in the development of Raman spectroscopy: 
substrate and material universality, sensitivity enhancement, 
and spatial resolution improvement. Before the 1980s, the 
detection of Raman signals was predominantly confined to 
a limited type of materials, such as gold, silver, and copper. 
Consequently, many scholars worldwide initiated investi-
gations into the feasibility of Raman spectroscopy experi-
ments on metals other than those previously mentioned. Our 
algorithm identified two pieces of seminal literature among 
the numerous research literature that emerged. The first lit-
erature, with a weighted centrality of 1.41, was published 
by M.J. Weaver et al. in 1987 [31]. They worked along the 
borrowing strategy and reported the first demonstration of 
the “borrowing” strategy (Fig. 4f). Meanwhile, a series of 
works focused on surface electrochemical roughening had 
been carried out by the group of Zhong-Qun Tian. They 
were able to successfully obtain SERS signals from a few 
metals for which could not be obtained using conventional 
Raman spectroscopy, including Pt [32, 33], Fe [34], Ni [35], 
and others [36, 37]. Combined with topic 1_026 (study of 
copper-based thin film materials) and topic 2_024 (study 
of nickel materials) in Fig. 2a, we believed that the results 
of these researches were parts of the driving forces for the 
evolution of topic 1_026 in the  Tn stage to topic 2_024 in the 
 Tn+1 stage. Although these studies had broadened SERS to 
various transition metals, there were still many other types 
of non-metallic materials that were not applicable for exci-
tation of the Raman effect. Our algorithm also identified 
another key literature with a weighted centrality of 41.80, 
published by Zhong-Qun Tian et al. in 2010 (Fig. 4k), which 
reported the invention of the shell-isolated nanoparticle-
enhanced Raman scattering (SHINERS) technique [38]. It 
fundamentally solved the bottleneck of SERS substrate and 
surface topography versatility and promoted the application 
of Raman spectroscopy in the fields of materials science, 
food safety, and environmental pollutant detection [39].

Achieving single-molecule detection is the goal of 
Raman spectroscopy in sensitivity, and our algorithm 
identified three pieces of significant literature from numer-
ous research findings. The first literature had the highest 

weighted centrality of 400.41 in the citation network of 
Raman spectroscopy, which was published in 1997 by 
Shuming Nie et al. [40] and reported the first observa-
tion of the single-molecule SERS phenomenon (Fig. 4g), 
implying that the sensitivity of SERS reached the single-
molecule level. This result not only caused a great sensa-
tion at that time, but also remained one of the important 
cornerstones of research in this field. The second innova-
tive literature had a weighted centrality of 36.32 and was 
published by M. Käll et al. in 1999 [41], which reported 
that the dimer was minimum unit for single-molecule 
SERS (Fig. 4h) and explained the main mechanism of 
single-molecule SERS experimentally. The third semi-
nal literature with a weighted centrality of 6.56 was pub-
lished by G.C. Schatz et al. in 2004 [42], which reported 
the determination of what affects E-field around dimers 
(Fig. 4j), providing the great potential of the dimer of Ag 
triangular prisms in single-molecule SERS studies. The 
single-molecule SERS provided an excellent tool for life 
science and single-molecule study, increasing the density 
of biochemistry and molecular biology, from 0.67 in the 
 Tn stage to 1.03 in the  Tn+1 stage (Table S6).

The improvement of spatial resolution has constituted a 
significant challenge in the advancement of Raman spec-
troscopy. Our algorithm identified four pieces of important 
literature from many relevant research findings, which were 
presented according to their publication dates. The first lit-
erature had a weighted centrality of 11.16 and was published 
by R. Zenobi et al. in 2000 [43], which reported the pioneer 
demonstration of tip-enhanced Raman spectroscopy (TERS) 
technique (Fig. 4i). TERS is one of the two most important 
variants of SERS, which improved the lateral resolution of 
Raman spectroscopy up to 55 nm. The second literature had 
a weighted centrality of 7.05 and was published by J. G. 
Hou et al. in 2013 [44], which reported Raman imaging with 
spatial resolution below 1 nm (Fig. 4l) at cryogenic environ-
ment, thereby providing a new method for the study of non-
linear optical processes on a single-molecule scale. The third 
literature had a weighted centrality of 0.96 and was pub-
lished by J.J. Baumberg et al. in 2016 [45], which reported 
the first demonstration of picocavity for SERS (Fig. 4m), 
paving the way for atomic-scale optical experiments. The 
last literature had a weighted centrality of 0.91 and was pub-
lished by Jian-Feng Li et al. in 2020 [46], which reported 
a molecular scale with ~ 2 Å spatial resolution (Fig. 4n), 
enriching our understanding of plasma exciton fields. These 
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above studies improved the resolution of Raman spectros-
copy and promoted its application in other fields, such as 
food safety and energy [47, 48].

4  Conclusions

In summary, we developed a generic approach based on 
topic modeling and citation networks to construct a com-
plete domain knowledge graph from numerous literature. 
We conducted a case study in the field of Raman spectros-
copy and collected related literature from Web of Science 
as the dataset to assess the effectiveness of our method. 
Performance comparison results showed that our method 
outperformed the LDA model in terms of topic coherence 
and topic diversity. Notably, the performance improvement 
ranged from 100% to 367% and from 0% to 126% in terms 
of topic coherence and topic diversity, respectively. These 
results showed that our method was capable of capturing 
the intricate semantic structure in text. The topic evolution 
results revealed the topic distribution and evolutionary rela-
tionships of Raman spectroscopy, highlighting that Raman 
spectroscopy research was deepening and expanding, which 
was externally manifested in the inheritance of topic terms. 
The results of the citation analysis not only revealed the 
distribution characteristics of the academic community in 
the field of Raman spectroscopy, but also demonstrated that 
the density fluctuation trend of the academic community 
was highly consistent with the results of the topic evolu-
tion. To study the driving forces behind the evolution trends, 
we introduced the main path analysis algorithm. By analyz-
ing the literature identified by the algorithm, we found that 
they corresponded to literature that was widely considered 
to be milestone literature in the field of Raman spectros-
copy, which revealed the reasons for evolution in research 
trends and were important support for the topic evolution. 
This work provided a convenient and interpretable method 
for extracting hidden patterns of field development across 
scientific fields.
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