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HIGHLIGHTS

e This review focuses on the design principles and basic characteristics of electrolytes, as well as how to construct a stable electrode—

electrolyte interface. Perspectives on how electrolytes influence CO, redox pathways are consolidated and proposed.

® The electrochemical reaction mechanism and interfacial evolution of nonaqueous metal-CO, batteries in different electrolyte systems

are highlighted.

® The electrode/electrolyte interface challenges encountered by nonaqueous metal-CO, batteries are thoroughly discussed, along with

corresponding optimization strategies.

ABSTRACT Metal—carbon dioxide (COZ) batteries hold Nonaqueous metal-CO, battery
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their high theoretical energy density. However, the stabil- il >
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aqueous metal-CO, (lithium (Li)/sodium (Na)/potassium

(K)-CO,) batteries have been troubling its development, and a large number of related research in the field of electrolytes have conducted
in recent years. This review retraces the short but rapid research history of nonaqueous metal-CO, batteries with a detailed electrochemical
mechanism analysis. Then it focuses on the basic characteristics and design principles of electrolytes, summarizes the latest achievements of
various types of electrolytes in a timely manner and deeply analyzes the construction strategies of stable electrode—electrolyte interfaces for
metal-CO, batteries. Finally, the key issues related to electrolytes and interface engineering are fully discussed and several potential directions
for future research are proposed. This review enriches a comprehensive understanding of electrolytes and interface engineering toward the

practical applications of next-generation metal-CO, batteries.
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1 Introduction

The energy dilemma caused by global warming and the
depletion of fossil energy poses a serious challenge to the
sustainable development of humankind [1-3]. The climate
problem is largely attributable to the continued consump-
tion of fossil fuels and the escalation of greenhouse gas
emissions as a result of human activities [4]. Among the
greenhouse gases known to have an impact on climate
warming, carbon dioxide (CO,) poses the greatest threat
[5, 6]. In recent years, researchers around the world have
developed many new technologies to reduce CO, emissions
as well as to capture CO, and convert it into usable energy
and valuable chemical materials [7]. Electrochemical CO,
reduction provides an effective and sustainable method for
capturing and converting CO, [8-11]. However, the ther-
modynamically stable C=0 bonds in the CO, molecule
and the multi-electron/proton transfer control on the cata-
lyst surface make the energy conversion efficiency of some
systems unsatisfactory. Metal-CO, batteries (MCBs) allow
direct electrochemical reduction of CO,, which improves
the energy conversion efficiency [12, 13]. Although research
on MCBs remains in their infancy, they demonstrate unique
advantages in CO, fixation, electrochemical conversion and
integrated energy storage [14—-16]. Upon capture, CO, can
be transformed into value-added chemicals, such as CO,
methanol, formic acid, etc., through specifically designed
catalysts or reaction pathways [17, 18]. The energy storage
characteristics of MCBs enable their integration with renew-
able energy systems (e.g., wind and solar power), achiev-
ing “charge—discharge cycles” within power grids—surplus
electricity drives CO, reduction reactions for energy storage
during charging, while discharging releases electrical energy
while simultaneously fixing CO,, thereby contributing to
carbon cycle balance. Furthermore, in specialized high-CO,
concentration environments (e.g., Martian atmosphere, or
enclosed undersea spaces), MCBs show potential as self-
powered energy solutions for detection equipment [19-21].
Their inherent capability to directly utilize environmental
CO, as active material makes them particularly promising
for such application scenarios. This dual functionality of
energy storage and CO, utilization positions MCB technol-
ogy as a prospective candidate for sustainable energy-carbon
management systems.

© The authors

An MCB uses a metal with negative electrode potential
as the anode and CO, as the cathode active material. The
metal anodes that have been studied so far include lithium
(Li), sodium (Na), potassium (K), zinc (Zn), aluminum (Al)
and magnesium (Mg). Due to the different chemical activ-
ity of the metal anode, the water vapor and oxygen (O,)
resistance of the MCBs is also different. Batteries using
nonaqueous metals (Li/Na/K) can provide high energy den-
sity but are limited by their activity and are usually fitted
with organic liquid solvents or solid-state electrolytes [22].
Zn/Al/Mg—CO, batteries are compatible with water and are
prepared under less stringent conditions. However, their low
operating voltage and energy density also limit their practi-
cal application.

The electrolyte is the “blood” of the battery [23], affecting
the main performance of the battery. Practical electrolytes
should have high ionic conductivity, good thermal stabil-
ity, chemical/electrochemical stability (no chemical reac-
tion with the collector or active substance inside the battery
and a wide electrochemical stability window (ESW)), envi-
ronmentally friendly, low cost, and can be adjusted through
manipulation of the solvation structure [24-27].

Although MCBs are still in the infancy, there is no doubt
regarding their inherent advantages in energy storage and
CO, mitigation. Over the last decade, considerable efforts
have been made to develop nonaqueous MCBs. The elec-
trochemical performance has been progressively enhanced
by developing novel cathodes and efficient catalysts, as
well as designing the anode surface structures and regu-
lating the electrolytes. The timeline of the origins of non-
aqueous MCBs and research progress on the electrolytes
is described in Fig. 1. MCBs were derived from metal—air
batteries, a concept first proposed by Littauer et al. in 1976
[28]. Metal—air batteries utilize atmospheric O, as a reac-
tant, but CO, and water vapor in the air are involved in the
reaction to generate metal carbonates and metal hydroxides,
which seriously damage the battery performance [29]. While
investigating the effect of CO,, it was discovered that CO,
could be used as a reaction gas alone [30-32], resulting in
MCBs were therefore investigated. Li—-CO, batteries were
the first and most widely studied system. However, driven
by the global lithium supply shortage issue, the more abun-
dant elements, Na and K, were seen as alternatives to Li,
and rechargeable beyond-Li(Na/K)—CO, batteries entered
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a renaissance, being developed in 2016 and 2018 [32, 33],
respectively. In early studies, nonaqueous organic electro-
lytes were conventionally employed for battery assembly.
However, such semi-open battery structures inherently
face risks of flammability and high-voltage decomposition.
Solid-state electrolytes have emerged as a viable pathway
to mitigate these challenges. Current research on solid-state
nonaqueous MCBs remains in its nascent stage, with pre-
dominant focus on polymer electrolytes. In 2017, a Li-CO,
battery utilizing a gel polymer electrolyte was reported. By
impregnating the polymer matrix with tetraglyme-based
liquid electrolyte, the crystallization behavior of Li,CO;
discharge products was modulated, yielding substantially
enhanced electrochemical performance compared to prior
studies [34]. Subsequently, the first all-solid-state Na—CO,
battery was developed [35], followed by a variant incorpo-
rating an oxide-based solid state electrolyte [36]. The sys-
tem demonstrated exceptional cyclability, achieving over 50
cycles at a specific capacity of 500 mAh g~!. Nevertheless,
critical barriers persist for practical large-scale deployment
of nonaqueous MCBs, including poor temperature tolerance
(manifested as low ionic conductivity at low temperatures
and electrolyte volatilization/decomposition at high tempera-
tures). Consequently, wide-temperature-range nonaqueous
MCBs have gradually emerged to address these operational
limitations[37, 38]. The development of nonaqueous MCBs
has made a qualitative leap, but there are still many chal-
lenges for nonaqueous MCBs, such as limited cycle life,
low energy efficiency and poor rate performance [39-41].
Many eye-catching ideas have been developed in the areas
of catalytic cathode materials, electrolytes and metal anodes.

Unlike other critical reviews, this paper first reviews
the electrochemical mechanism of nonaqueous MCBs.
Then, the design principles and basic characteristics
of electrolytes are discussed with emphasis, combined
with the determinants of designing high-performance
nonaqueous MCBs. Furthermore, considering that an
unstable interface can seriously degrade the safety and
performance (especially the Coulombic efficiency and
cycle life) of the battery, we also discuss how to con-
struct a stable electrolyte/electrode interface. On this
basis, we put forward several possible directions for
future research. We hope that this review will provide a
reliable understanding for designing high-performance
metal-CO, batteries.
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2 Configuration and Fundamental
Mechanisms of MCBs

MCBs can be roughly divided into two categories: aque-
ous MCBs and nonaqueous MCBs. To understand non-
aqueous MCBs, this section begins with an introduction
to their electrochemical mechanisms and compares them
with aqueous MCBs based on recent research reports. We
discuss the CO, reduction mechanism involving O, partici-
pation, as well as the electrochemistry of MCBs.

2.1 Discharge/Charge Mechanisms of Aqueous MCBs

Aqueous electrolytes are often paired with less reactive
multivalent metals, offering advantages such as safety,
low cost and low environmental pollution [42]. Gener-
ally, Al and Mg metals are not suitable for aqueous elec-
trolytes because their low reduction potentials (— 1.66
and —2.36 V, respectively, vs SHE) exceed the stable volt-
age range of H,O [43-46]. The nonaqueous AlCl;/[EMIm]
Cl ionic liquid (IL) has become the preferred electrolyte
for Al-CO, batteries due to its excellent electrochemi-
cal performance [47, 48]. In rechargeable nonaqueous
Mg—CO, batteries, the introduction of moisture has been
proven to alter the reversibility of reactions and the types
of discharge products, resulting in long cycle life, high
discharge voltage and capacity [49].

Due to the low activity of Zn, there is no need to con-
trol the water and oxygen content in the environment, so
aqueous electrolytes are chosen to assemble the battery.
The working principle of the reversible Zn—CO, battery is
mainly based on the electrochemical reaction of the elec-
trolyte. Zn is more effective in alkaline electrolytes, while
CO, will have side reactions with alkaline solutions, the
Zn-CO, battery device is divided into an anode chamber
and a cathode chamber—one side is the zinc electrode
and an alkaline electrolyte, and the other side is a catalyst
and a neutral or weakly acidic electrolyte [50]. A bipolar
membrane (BM) is used to maintain different pH values of
the electrolytes on both sides (Fig. 2a). However, to meet
the opposite charge-transfer requirements during charg-
ing and discharging, at least one pair of BMs in oppo-
site directions must be set. When protons are sufficient,
CO, can controllably generate various chemicals, such as
CO and HCOOH, based on the proton-coupled electron

@ Springer
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Fig. 1 Schematic diagram and monumental developments of the nonaqueous MCBs and design principles of the battery device. The brief time-
line starts with the metal—air batteries and mainly focuses on the development of electrolytes and interface engineering of nonaqueous MCBs

transfer mechanism [14, 41]. The Zn-CO, battery utilizes 7, + CO, + 2H" + 40H™ — Zn(OH)>™ + CO+ H,0 (1)
this principle, combined with a highly selective catalyst

cathode, to achieve a highly selective generation of CO
[51] (Eq. 1). In aqueous alkali metal-CO, batteries, the discharge

products formed by the reaction involving H,O have good
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solubility and do not clog the cathode pores like those in
organic systems [52]. However, alkali metals can rapidly
undergo side reactions with water, resulting in anode cor-
rosion and having a significant negative impact on battery
performance. Therefore, researchers have designed a hybrid
electrolyte structure [53], which involves using a solid-state
electrolyte as a separator to protect the anode, an organic
liquid electrolyte on the anode side and an aqueous elec-
trolyte on the catalyst cathode side (Fig. 2b). By leveraging
the solubility advantage of the aqueous electrolyte discharge
products and increasing the limited contact area between the
discharge products and the catalyst cathode, the formation
and decomposition of the discharge products are acceler-
ated. However, the application of aqueous electrolytes is
limited by their narrow ESW, as electrolysis occurs at a low
voltage of 1.23 V, leading to hydrogen evolution reaction
(HER) or oxygen evolution reaction (OER). These reac-
tions shorten battery lifespan and inevitably reduce battery
energy density [17, 54, 55], limiting practicality. To improve
the electrochemical stability of aqueous electrolytes, one
strategy is to alter the local chemical environment of water
molecules to increase their inertness [56, 57]. This is pri-
marily achieved by using salts with high solubility in water
to prepare high-concentration electrolytes, such as lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) and zinc chlo-
ride (ZnCl,) [50, 58]. As the salt concentration increases, the
number of free solvent molecules decreases. Anions partici-
pate more in the solvation shell, enhancing the passivation
ability of the electrolyte on the electrode, driving the transfer
of the lowest unoccupied molecular orbital (LUMO) from
the solvent to the anions, thus broadening the ESW [59-61].

However, the underlying mechanisms remain contro-
versial, and high-concentration electrolytes tend to reduce
conductivity and increase viscosity. Another strategy is to
introduce additional anions, cosolvents, etc., to promote the
growth of electrolyte interfaces similar to the solid electro-
lyte interface (SEI) on the electrodes, thereby kinetically
inhibiting the electrolysis of electrolytes [62].

2.2 Electrochemical Mechanisms of Nonaqueous MCBs
Although aqueous electrolytes generally exhibit superior
charge-transfer capability compared to nonaqueous electro-

lytes under identical conditions due to their low viscosity
and high ion dissociation degree [63]. Moreover, aqueous

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

MCBs achieve long cycling stability by leveraging the high
solubility of solid discharge products (e.g., metal carbonates)
in water. Their inherent safety further renders them suitable
for large-scale energy storage applications. However, their
practical application is significantly constrained by inherent
limitations, including the narrow ESW and poor low-temper-
ature performance (the formation of ice crystals in aqueous
electrolytes occurs below 0 °C) [64]. In contrast, nonaqueous
MCBs achieve superior energy density, as organic electro-
lytes or ionic liquids enable a wide ESW [65], and maintain
functionality under subzero temperatures.

Before the advent of nonaqueous MCBs, researchers stud-
ied lithium-air batteries to understand the effect of ambi-
ent air during the reaction. At the cathode side, O, accepts
electrons from an external circuit and undergoes an oxygen
reduction reaction (ORR), and the reduced O, forms the
superoxide anion radical O in the organic liquid electro-
lyte [66]. The combination of O with Li* in the electrolyte
leads to the final discharge products [67, 68]. Inspired by
the fact that O, can be captured by CO, to generate metal
carbonates, 2011 witnessed the emergence of Li-O,/CO,
batteries [69]. Although CO, is less concentrated in the envi-
ronment, it is much more soluble in organic solvents than
O, (about 50 times more soluble) [69, 70]. The Li-O,/CO,
battery shows a higher discharge capacity as compared to
the pure O, as a reaction gas. The excellent electrochemi-
cal performance of the Li-O,/CO, battery originated from
the rapid consumption of Oy by CO, and the slow-filling
characteristics of the final discharge product Li,COj; in the
cathode [69]. But at that time, the reaction mechanism of
Li-O,/CO, batteries was immature, and the source of the
contribution to the discharge capacity was still debatable
[71]. It should be noted that the electrolyte solvation effect
can change the reaction pathway and final discharge prod-
ucts by altering the potential energy surface and controlling
the formation of initial complex formation [72]. Quantum
mechanical simulation verified that the discharge product
tends to be Li,0, in the low dielectric electrolyte, while the
CO, can be effectively electrochemically activated by the
high dielectric electrolyte to promote the generation of more
stable Li,CO; (Fig. 3a).

In the early stages of research, CO, was regarded as
an “assistant” for O, to increase the specific capacity and
energy density of Li/Na-O, batteries. Yet, in the case of
Li-O, batteries, CO,, while increasing the discharge capac-
ity of the batteries, also spontaneously reacts with the main

@ Springer
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discharge product Li,O, to form Li,CO;. Compared to
the production of O, from Li,0, (~3-3.5 V) during bat-
tery charging [73], only at very high potentials (>4 V) can
Li,COj; produce CO,. It does not seriously affect the dis-
charge potential of Li—O, batteries but reduces the efficiency
of the discharge—charge cycles. Removing CO, mixed in the
air to prevent the formation of carbonate deposits is key
to improving the stability of battery operation [74, 75]. In
2018, a Li,CO5-free Li-O,/CO, battery was first realized
[76]. The discharge products were successfully immobilized
at the perovskite stage, which greatly reduced the charge
overvoltage and the occurrence of the corresponding side
reactions.

2.2.1 Li-CO, Batteries

The electrochemical mechanisms of nonaqueous MCBs are
equally complex in the absence of O, involved in the reac-
tion. MCBs were first reported in 2013 by Archer et al. [31]
who developed a high-temperature primary nonaqueous
Li—CO, battery based on an activated carbon cathode. The
hypothesis of electrochemical reactions during discharging
as in Eq. 2 was proposed, based on E = —AG/zF, with AG,
z, and F representing the change in Gibbs free energy, the
number of electrons transferred per mole of product and the
Faraday constant, respectively. However, it was found that
at the high temperature, the actual discharge potential was
higher than the theoretical discharge potential, which vio-
lated Tafel’s theory [12, 31]. The gas phase composition of
the cell was further analyzed by differential electrochemical
mass spectrometry (DEMS), and it was found that carbon
monoxide (CO) as an intermediate product undergoes dis-
proportionation (Eq. 3). Finally, Li,CO5 was deduced to be
the main discharge product. The reaction process is shown
in Eq. 4.

2Li + 2CO, — Li,CO; + CO )
2CO - CO, +C 3)
3CO, +4Li — 2Li,CO; +C 4)

CO, would form the intermediate oxalate ions (Cin_) via
a two-electron reduction reaction upon discharging, which
in turn would be converted to stable oxalate with metal ions
(Egs. 5 and 6). Reversible electrochemistry can be achieved

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

by selecting a suitable electrode/catalyst that converts CO, to
Cin' and oxidizes oxalate to CO, with 100% selectivity [70,
77, 78]. Moreover, the conversion reaction does not involve
toxic carbon CO and peroxides that can cause explosive com-
bustion. Environmentally friendly and stable oxalates are good
choices. However, the unstable Li,C,0, is thermodynamically
easier to decompose than Li,COj, thus realizing the low over-
potential of the battery [78—80], as shown in Egs. 7 and 8:

2CO, +2¢~ - C,05" 5)
2Li* + C,0;” — Li,C,0, ©)

Li,C,0, — 2CO, 4+ 2Li" +2¢~, E* = 3.01 V vs Li/Li*
(N
2Li,CO; — 2CO, 4+ O, +4Li* + 4e~, E® = 3.82 V vs Li/Li*
(®)
The unstable Cin_ was hypothesized to undergo a two-
step disproportionation [81] to form the more stable CO%‘
and C (Egs. 9 and 10), followed by the formation of stable
Li,CO; (Eq. 11). The evolution of the reaction products was
also proved by using in situ techniques [80]. It was also found
that a new discharge plateau occurs at lower levels of potential
drop during discharging, which can be explained by Eq. 12.
The eventual transformation of Li,O to Li,CO; is attributed to
higher polarization potentials and changes in local CO, con-
centration. With ruthenium (Ru) as the cathode catalyst, Ru
particles can catalyze the reversible reaction of Li,CO5 with
C [40] (Eq. 13), whereas, in the absence of Ru particles cata-
lyzing the reaction, Li,COj; tends to self-decompose at a high
potential, resulting in the irreversible deposition of discharge
by-products (Eq. 14):

C,0;” — CO, +CO;~ )
C,0;” +CO;™ - 2C0% +C (10)
CO%™ +2Li* — Li,CO; (11)
CO, +4Li* +4e~ - 2Li,0+C (12)
3CO, +4Li* +4e” — 2Li,CO; + C (13)
Li,CO; — 2Li* + CO, + ¢~ + O (14)

@ Springer
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Catalysts with different electrokinetic characteristics
exhibit different electrochemical reaction routes, influenced
by a variety of factors such as structure, composition and crys-
tallinity [82]. Moreover, the electrocatalytic selection largely
determines the final reduced species, and Li,CO; with high

© The authors

structural stability is generally considered to be the final dis-
charge product in the electrochemical process of Li—-CO,
batteries.

There are three possible pathways for the electrochemi-
cal precipitation mechanisms of CO, during charging [74],

https://doi.org/10.1007/s40820-025-01801-5
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as shown in Fig. 3b. Pathway 1 is a direct decomposition
reaction of Li,CO;. Pathway 2 is a complex process with
multiple steps, and it describes a charging process with gen-
erated superoxide radicals (O;). O; is highly reactive and
easily converts to O,, promoting the formation of a series
of by-products by directly attacking the electrolyte solvent.
Pathways 1 and 2 belong to the self-decomposition reactions
of Li,COs;, and the generated carbon species during the dis-
charge process are not involved in the reaction, so it is not
possible to make the Li—-CO, battery carry out a reversible
cycle [39]. The accumulation of the products will also lead to
the deterioration of electrochemical performance. In pathway
3, Li,CO; reacts with carbon species that may originate from
the discharge reaction or on the cathode, and the design of
suitable electrolytes and catalysts can realize the reversibility
of the battery and reduce the battery charge voltage [82, 83].

2.2.2 Na-CO, Batteries and K-CO, Batteries

The development of Li—CO, batteries has been hampered
by the global scarcity of lithium resources. Yet, the greater
plenty of sodium and potassium in the same main group
in the earth’s crust provides an opportunity for electro-
chemical applications in place of lithium. Chen et al. [32]
reported a rechargeable room-temperature Na—CO, bat-
tery. Its battery structure is similar to a Li-CO, battery.
The reversible electrochemical reaction of Eq. 15 was
demonstrated by various characterizations such as in situ
Raman spectroscopy and CO, evolution tests:

3CO, +4Na < 2Na,CO; +C (15)

Like Li,CO3, Na,COj; exhibits strong structural stability,
which requires a high charge potential to drive its decom-
position, leading to poor cycling stability of the batteries
[84, 85]. To reduce the overpotential for Na,CO; decom-
position and to speed up the charge-transfer kinetics, the
structure and composition of the cathode materials, as well
as the cell configuration, need to be rationally designed
[86]. Selecting the single platinum atom on nitrogen (N)-
doped carbon nanotube (Pt@NCNT) as the cathode, dur-
ing the discharge process, Na,CO; spheres were formed on
the surface of Pt@NCNT and the discharge reaction was
as described in Eq. 16. During charging, Na,COj; spheres
decompose on the surface of CNTs into metallic sodium
and CO, as well as de-embedding of sodium ions in CNTs.

¥ SHANGHAI JIAO TONG UNIVERSITY PRESS

3CO, + 4Na* + 4e” « 2Na,CO; + C (16)

With the low price of potassium salts and the plenty of
potassium in nature, K—CO, batteries are also expected
to be one of the next-generation alternative systems for
energy storage. The lower standard potential of K*/K
(—2.93 V vs SHE) compared to the Na*/Na electric pair
(=2.71 V vs. SHE) suggests that K-CO, batteries have
the potential for higher voltage output [87]. Compared
with Li-CO, and Na—CO, batteries, there have been fewer
reports on K-CO, batteries. Zhang and co-workers [33]
used the aberration-corrected environmental transmission
electron microscope (AC-ETEM) to observe in situ the
discharge/charge process of K—CO, batteries to explore
their electrochemical mechanisms (Fig. 3¢). During the
discharge process, K reacted with CO, to form K,CO; and
CO (Eq. 17), which formed a large number of nanobubbles
in the cathode, and the production of CO caused K,CO; to
expand into hollow structures. During the charging pro-
cess, as the carbon in the electrode was consumed, K,CO;
decomposed into K and CO, (Eq. 18), and the K,CO; hol-
low spheres contracted during the charging process. It was
also observed that the carbon nanotubes (CNTSs) became
thinner, indicating that the CNTs were consumed. This
study provides a basic understanding of K-CO, batteries,
but as shown in Eqgs. 18 and 19, the CO, gas produced
during discharging is not consumed during subsequent
charging, implying that the batteries need to consider gas
release for practical applications. The construction of a
continuous dense SEI membrane on the surface of active
potassium metal can inhibit the side reactions [88, 89]
between the electrolyte and anode.

2C0O, + 2K — K,CO; + CO (17)
2K,CO; + C —» 4K + 3CO, (18)
3C0O, + 4K < 2K,CO; +C (19)

Besides the advantages of cost and high-voltage output,
K™ has a weaker Lewis acidity than Li* and Na* [33], mean-
ing that it migrates faster inside the electrolyte and at the
electrode—electrolyte interface. Yet, the high reducibility
of potassium metal also leads to the quite unstable elec-
trochemical performance of K-CO, batteries. The design
of K-CO, energy storage devices and the dissection of the
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reaction mechanism of K—CO, batteries still need to be fur-
ther investigated.

3 Electrolyte Optimization Strategies
of Nonaqueous MCBs and Interface
Chemistry for Metal Anodes

3.1 Optimization Strategies and Advances
of Electrolytes

The electrolyte in MCBs not only affects the performance
and efficiency of the battery but also determines the reaction
mechanism and stability. Due to the high activity of alkali
metals, nonaqueous electrolytes are employed, including
liquid, quasi-solid-state or solid-state electrolytes.

Liquid electrolytes include organic liquid electrolytes
and ionic liquids (ILs, molten salts) [62]. Liquid electrolyte
solvents in nonaqueous MCBs are mainly organic solvents
with high dielectric constants and low viscosities [90-93],
which are conducive to the dissolution and ion migration.
Compared to water, organic solvents exhibit a wider ESW,
and they can form a stable passivation layer on the elec-
trode surface. However, some side reactions in organic
liquid electrolytes hinder the further improvement of bat-
tery performance. ILs have attracted attention due to their
chemical stability, nonvolatility and relatively wide potential
window. They exhibit excellent performance in CO, capture
and separation due to their unique properties and molecular
structures [94]. In liquid systems, membranes are required
to prevent battery short circuits. The membranes feature a
porous structure. However, these pores are typically large,
allowing electrolytes and ions to pass through while also
facilitating the shuttle of gases [95], which can lead to side
reactions with the anode. In contrast, solid-state electrolytes
possess excellent denseness, which not only restricts the
movement of liquid molecules but also effectively blocks
the shuttle of CO,.

Quasi-solid-state electrolytes (QSEs) are gel-like sub-
stances formed from a polymer matrix with a liquid electro-
lyte or IL, also known as gel polymer electrolytes (GPEs),
which combine the mechanical properties and high ionic
conductivity with leakage resistance. Solid electrolytes
include inorganic solid electrolytes (ISEs) and polymer solid
electrolytes (PSEs). However, due to inherent limitations in
both types, composite solid electrolytes (CSEs)—combining

© The authors

ISEs and PSEs—are favored to leverage the advantages of
each. CSEs have high ionic conductivity, wide ESW, good
mechanical properties and excellent flexibility [96]. Quasi-
solid/solid-state electrolytes provide an opportunity to
address the flammability and volatility of liquid solvents
[79]. However, poor room-temperature ionic conductivity
and high impedance at the electrode—electrolyte interface are
common problems of quasi-solid/solid-state electrolytes at
present [79]. The optimization of electrolytes and interface
engineering needs to be studied in depth.

3.1.1 Discharge and Charge Plateau

Electrolytes can participate in redox reactions of CO, by
releasing soluble catalytically active substances. Redox
mediators (RMs) are soluble molecules with reversible
redox couples that act as intermediate charge carriers in
redox reactions. It helps facilitate charge transfer between
the two reactants and lowers the energy barrier required for
final product formation. Efficient RMs should have some
important characteristics [97-99]. First, the redox potential
of RMs should be slightly higher than the thermodynamic
potential of Li,CO; decomposition, which helps to cut the
overpotential of nonaqueous MCBs. Second, RMs should
have high chemical/electrochemical stability to ensure that
they do not react with other substances involved in the reac-
tion process. Third, the RMs should have enough solubility
in the solvent to ease the complete decomposition of the
discharge products.

RMs can be used to increase discharge plateau by leverag-
ing the unique chemical binding ability between RMs and
CO, [100, 101] (Fig. 4a, b). The strategy of immobilizing
solid RMs, such as quinones (Qs) organic and 2-ethoxyethyl-
amine (EEA)-CO, adduct, on the cathode effectively avoids
the issues of shuttle consumption and sluggish kinetics while
retaining the functionality of soluble RMs [92, 101-105].

Adding a suitable RM to the electrolyte, acting as an inter-
mediate charge carrier (Fig. 4c-e), can also help to reduce
the charge potential [106—-109]. When a small amount of
iodine is added to the 1 M LiTFSI/trimethylphosphate
(TMP) electrolyte, complexation of the iodine molecules
with the solvent alters the oxidizing ability of the iodine
[110]. The I,/I; mediator in the electrolyte promotes the
decomposition of Li,CO; at low charge voltages. Br, can
chemically oxidize the discharge products Li,CO; and C [74,

https://doi.org/10.1007/s40820-025-01801-5
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111], while leaving Br; as a reduction product. The charge
voltage of the battery with added LiBr was reduced from
4.5 to 4.0 V. Amine-based o-phenylenediamine (OPD) can
form OPD : LiCO,, a stable adduct, with CO, intermediates
[112], increasing the solubility of discharge products and
promoting the liquid-phase growth of the discharge prod-
ucts, thereby enhancing the reaction kinetics and lowering
the charge voltage.

RMs do not change the basic redox reactions of nonaque-
ous MCBs, but they can affect the charge potential of the
batteries by altering specific reaction pathways and pro-
moting the decomposition of discharge products. Besides,
RMs can also reduce the charge potential by participating
in the electrochemical reduction process to form discharge

)
* SHANGHAI JIAO TONG UNIVERSITY PRESS
B

intermediate products, Li,C,0, (Fig. 4f, g). When the solu-
ble binuclear copper(I) complex was added as a liquid cata-
lyst in the electrolyte, it first chemically reacted with CO, to
form Cu(II)-oxalate adducts, which then electrochemically
reduced to form metal oxalate products and pristine Cu(I)
RM [19]. This electrochemical process greatly increases
the output voltage of the cell (> 3.0 V) while keeping the
charge plateau relatively low (3.99 V) and also avoids
aggressive intermediates from Li,CO; decomposition. The
Ru(II) centers of the complex tris(2,2’-bipyridyl)-dichloro-
ruthenium(II) (Ru(bpy);Cl,) stabilize the discharge inter-
mediates by interacting with dissolved CO, molecules,
retarding their conversion to carbonates to reduce the charge
voltage [113].

@ Springer
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3.1.2 Ionic Conductivity

The ionic conductivity of an electrolyte is closely related to
the concentration and migration rate of active ions. There-
fore, the concentration of the electrolyte salt and the choice
of the solvent are critical. Excellent intrinsic properties lead
to the widespread use of TEGDME as an electrolyte sol-
vent for nonaqueous MCBs [114-118]. Experiments have
shown that TEGDME exhibits a peak in conductivity with
LiTFSI concentration, which occurs at a Lit concentration
of 1 M (2.72 mS cm™'), as well as a low level of viscosity
(< 10 centipoise, 25 °C) [119]. These properties enhance the
availability of Li* across the threshold required to support
its activation. In 1 M LiTFSI/DMSO electrolyte, only 1 out
of 12 DMSO molecules can dissolve lithium ions, while
the rest corrode the anode and volatilize slowly. When the
concentration of LiTFSI is increased to 4 M, these issues are
fully ameliorated [120].

QSEs have a high advantage in ionic conductivity due to
the filling of liquid electrolytes, even approaching that of
liquid electrolytes [1, 39]. The compact electrolyte structure
mitigates the dissolution of CO, in the electrolyte, while
the liquid electrolyte concentrates the CO, at the cathode
interface. Such a structure reduces the contact of the metal
anode with CO,. Although solid-state electrolytes can avoid
some defects of liquid electrolytes, the ionic conductivity
of solid-state electrolytes, especially PSEs, is usually lower
than that of liquid electrolytes. Adding appropriate additives
to PSEs is a feasible measure to improve ionic conductivity
[100, 121]. On the one hand, ion migration in polymers is
determined by the segmental mobility of the polymer chains,
structural diffusion and ion hopping. The disordered nature
of the polymer enhances the ordered motion of the poly-
mer chains, allowing ions to move faster above the polymer
glass transition temperature (7,) than ordered phases (crys-
talline phases) [122]. Therefore, high ionic conductivity of
the PSEs can be achieved by creating a permeable network
rich in amorphous domains. Decoupling ionic transport
from the polymer chain through additives like plasticizers,
metal oxides and ILs may be an effective strategy [123].
On the other hand, as Lewis bases, many polymer matri-
ces strongly interact with metal ions (Lewis acids), thereby
restricting cation mobility and lowering electrical conduc-
tivity (Fig. 5a) [124—-126]. The addition of Lewis acid-type
nanoparticles competes with metal cations for interaction
with the Lewis base-type polymer matrix, releasing more

© The authors

free metal cations for conduction [131]. In addition, the
Lewis acid—base interaction between the filler and the elec-
trolyte salt promotes the dissociation of the electrolyte salt,
which benefits ion transport and increases the concentration
of moveable ions (Fig. 5b) [128].

The ionic conductivity of ISEs is better than that of
PSEs, but they are criticized for their mechanical proper-
ties. Adding plastic crystalline materials, such as succini-
tronil (SN), can bring amorphism and flexibility. Also,
the CSE is an improvement solution. ISEs usually possess
one or several ion diffusion channels and a suitable ion
concentration/vacancy ratio, which enables ions to move
quickly in the crystal structure framework and achieve
high ionic conductivity [129, 130]. For CSE:s filled with
inorganic fillers, on the one hand, inorganic particles act
as the crosslinking center, which can reduce the crys-
tallinity of the polymer and increase the ionic mobility,
thus obtaining higher ionic conductivity (Fig. 5c). On the
other hand, through the Lewis acid-base interaction, a
uniformly distributed space charge layer is formed, which
enhances the dissociation of the matrix and fixes the ani-
ons [131]. We introduce a series of engineered electrolyte
formulations optimized for nonaqueous MCB systems,
with their intrinsic physicochemical characteristics and
corresponding electrochemical performance metrics sys-
tematically compiled in Table 1.

3.1.3 Desolvation Energy

In an electrolyte, alkali metal ions (Li*, Nat, K¥) aggregate
with solvent molecules through coordination bonds, hydro-
gen bonds and dipole interactions. Upon diffusing from the
cathode to the anode, these ions need to undergo desolva-
tion—the removal of coordinated solvent molecules—before
combining with electrons for deposition. The solvation struc-
ture originates from the competitive coordination of solvents
and anions with cations (Fig. 5d). The solvation of alkali
metal ions affects their diffusion behavior in the electrolyte
and the adsorption—desorption process at the interface and
also changes the formation and structural characteristics of
the SEI. If the desolvation process is difficult, the resulting
polarization will affect the overall polarization of the battery
[153, 154]. If the desolvation process is incomplete, it will
damage the anode structure and even lead to the formation
of metal dendrites, affecting the battery life [155].

https://doi.org/10.1007/s40820-025-01801-5
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The desolvation process of alkali metal ions is influ-
enced by factors such as solvent type, additives and salt
concentration. Changes in the electrolyte solvent mol-
ecules affect ion—solvent interactions, and the energy
barrier of the desolvation process mainly depends on the
strength of the association between ions and solvents.
Reducing the desolvation barrier is expected to enhance

SHANGHAI JIAO TONG UNIVERSITY PRESS

the stability of metal deposition/stripping [156—159].
Through analyzing the interactions between metals and
solvent/solute components, density functional theory
(DFT) calculations can be employed to screen addi-
tives exhibiting stronger binding energies with ions.
For instance, the introduction of LiPF, into 1 M LiTFSI
in TEGDME electrolyte demonstrates performance
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enhancement: The PF¢~ anion displays higher binding
energy with Li* compared to TFSI™, effectively weaken-
ing Li*-TEGDME interactions and promoting the des-
olvation process. Furthermore, LiPF, exhibits superior
adsorption energy (1.21 eV) on the Li (001) surface ver-
sus LiTFSI (0.73 eV) [132]. The competitive decomposi-
tion with TFSI™ modifies interfacial chemistry, ultimately
facilitating the formation of a LiF-rich SEI layer. Addi-
tives can change the solvation structure, thereby deter-
mining the behavior of solvents at the electrode interface.
Adding ethylene sulfate (DTD) as an additive to the elec-
trolyte, DTD can replace a certain proportion of solvents
and participate in building the solvated shell layer of the
central K*, thus changing the solvation structure [160].
Salt concentration can affect the stability of the electro-
lyte by regulating the number of free solvent molecules.
As the proportion of LiTFSI salt and DMSO solvent
gradually increases, the number of free DMSO molecules
gradually decreases, while the amount of Li*—(DMSO),
solvates increases. Solvates have higher activation energy
barriers, effectively reducing solvent decomposition and
improving stability [120, 161, 162].

3.2 Interface Chemistry for Metal Anodes
in Nonaqueous MCBs

Electrolytes and related interphases are at the core of
battery chemistry [163]. These interphases are vital for
preventing irreversible reactions with electrolytes, main-
taining stable battery cycling and assisting in complex
multiphase reactions.

3.2.1 Formation Mechanism of SEI

During battery operation, the electrolyte will react with the
electrodes in a complex multiphase reaction. Macroscopi-
cally, the SEIs are composed of the products formed by the
reactions between the anode and the electrolyte during the
initial charge—discharge cycle [164]. The formation of SEI
is associated with the lowest unoccupied molecular orbital/
highest occupied molecular orbital (LUMO/HOMO) of the
electrolyte (Fig. 6a). When the LUMO of the electrolyte
is lower than the Fermi level of the anode, electrons in the
anode are transferred to the LUMO, leading to electrolyte

https://doi.org/10.1007/s40820-025-01801-5
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reduction. Conversely, when the HOMO is higher than the
Fermi level of the cathode, electrons will be transferred
to the cathode, leading to electrolyte oxidation. During
actual battery cycling, the reduction or oxidation of salts
or solvents yields products that deposit on the electrode
surface, forming a stable interface. This interface effec-
tively widens the electrolyte’s ESW beyond its intrinsic
value while enabling ionic conduction [165, 166].

The generation of SEI in liquid batteries is related to
the behavior of the electric double layer (EDL) [164,
167—-169] and solvated coordination between electrodes
and liquid electrolytes [154, 170]. Free solvent molecules
and anions in the electrolyte are attracted or repelled by
the electrode surface, forming an EDL on the nanoint-
erface together with the charge on the electrode surface
(Fig. 6b). This process precedes the reduction of the elec-
trolyte and has an important influence on the electromo-
tive force (EMF) of the battery and the reaction kinetics

o)
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% 5

of SEI [171]. Due to the spatial effect of nanoscale, some
anions and small neutral molecules adsorb on the inner
Helmbholtz plane (IHP), while large-sized solvated mol-
ecules adsorb on the outer Helmholtz plane (OHP). The
electronic properties and microstructure of the electrode
theoretically determine the specific adsorption of electro-
lyte components in IHP, as well as the initial structure and
composition of SEI formed after the disappearance of such
specific adsorption during the cycling process [172, 173].
The EDL is also closely related to the solvation struc-
ture of cations in the electrolyte. The solvation structure
can be simply described as a sphere with two solvation
shells—the cation located at the center, with an ordered
“first solvation layer” consisting of continuous and uni-
form solvent molecules and a disordered “second solvation
layer” composed of loosely arranged multiple molecules
or ions [25, 174]. Anions distribute in this multi-solvation
shell. Consequently, solvent molecules participating in
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solvation exhibit weakened adsorption on the electrode
surfaces, leading to anion-induced interfacial phases. The
solvation behavior is also influenced by the type and con-
centration of electrolytes [175].

Besides, in solid-state batteries, the physicochemical
and mechanical properties of various solid components
and the nature of solid—solid contacts all affect the for-
mation of interfaces. These interfaces may include loose
physical contacts, grain boundaries, chemical and electro-
chemical reactions, which will all increase the interface
resistance.

3.2.2 Interfacial Issues for Metal Anodes

Alkali metals react significantly with organic liquid electro-
lytes [176]. The energy-level difference between the anode
Fermi level and LUMO of the electrolyte determines the
thermodynamic stability of the electrolyte on the anode
side as well as the driving force for the formation of the
SEI layer. The SEI layer of most nonaqueous metal anodes
forms spontaneously below 1.0 V in organic liquid electro-
lytes [177, 178]. The SEI model was first proposed by Peled
in 1979 [179], who believed that the SEI layer was a pure
cation conductor. With the development of characterization
techniques, the “double-layer model” has been proposed
[180], which suggests that inorganic species have higher
chemical stability toward metal anode than organic species,
thus enriching the anode surface. Subsequently, the mosaic
model inherited the hypothesis of the double-layer model,
assuming that each component forms a pure microphase, and
the SEI is an assembly of different microphases in a mosaic
pattern [181-183]. Furthermore, the crystalline microphases
are not concentrated on the surface of metal anode, which
more accurately describes the complexity and dynamics of
the SEI. The mosaic model has gradually been refined and
widely accepted.

The SEI consists of composite electrolyte decomposition
products. The organic components dominate ion transport,
while the inorganic components confer passivation proper-
ties to the SEI[181, 184]. As mentioned above, the chemical
composition and microstructure of the SEI undergo dynamic
reconstruction during electrochemical cycling. To investi-
gate this evolution, X-ray photoelectron spectroscopy (XPS)
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analysis was performed on lithium metal anodes after 100
cycles in 1 M LiTFSI/TEGDME electrolyte. The prominent
presence of Li,COj; (Fig. 7a) indicates preferential CO,
reduction at the lithium interface. Moreover, the formation
of organic species through nucleophilic reactions between
metallic lithium and the solvent was confirmed. The C-F
bonding signals likely originate from rapid decomposition
of TFSI™ anions into large fragments (e.g., Li,NSO,CF;,
Li,C,F, and CF;SO,Li) in baseline electrolytes [132, 185].
Upon introducing LiPF, additive, the interfacial reaction
kinetics are moderated through competitive adsorption, ena-
bling the larger TFSI™ decomposition fragments to undergo
further breakdown into smaller LiF molecules. This pro-
cess leads to enhanced C-F signals and the emergence of
distinct LiF peaks in XPS profiles (Fig. 7b). Comparative
cycling studies further demonstrate dynamic SEI composi-
tion [186] (Fig. 7c). While Li,CO; dominates the first-cycle
spectrum, the intensity markedly diminishes by the fifth
cycle. In contrast, LiOH maintains prominence throughout
all cycles, emerging as the predominant phase during pro-
longed cycling. Additional spectral features confirm CF; and
LiF as persistent SEI constituents.

Ideally, the SEI layer can prevent the continuous decom-
position of the electrolyte on the metal surface while ena-
bling uniform ion flux distribution [187, 188]. Actually, the
SEI layer is uneven, and during the process of ion plating/
stripping, significant volume changes easily lead to cracks
in the SEI [189, 190]. Due to the low interfacial resistance
of the exposed metal surface, ions tend to deposit preferen-
tially at the cracks, forming dendrites [188, 191]. The newly
deposited metal is highly reactive with the electrolyte and
reacts to form a new SEI. Subsequently, during the stripping
process, the roots of dendrites preferentially receive elec-
trons and dissolve, and the stripped metal is wrapped by SEI
and loses electrochemical activity [192—194]. During long-
term cycling, repeated damage and reconstruction of the SEI
layer lead to continuous consumption of both the electrolyte
and the metal, resulting in increased interface resistance.
The gradual accumulation of stripped metal can also lead to
internal short circuits in the battery. Adjusting the composi-
tion or the additives of electrolytes can help to protect the
anode from side reactions. For example, PF;~ can induce
the in situ construction of a stable mixed SEI layer (Li,CO,/
LiF-rich), inhibiting the continuous side reactions of Li,
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electrolyte and CO,, and extending the long-term durability
of the anode [132, 134, 137]. Br™ can promote the decom-
position of Li,CO; (2Li,CO; + C + 2Br, — 4LiBr + 3CO,)
[111]. Mn phthalocyanine (MnPc) can act as an electrolyte
catalyst, mediating charge transfer during discharging by
binding to electrochemically reduced radical anions, thereby
promoting the formation and reversible release of Li,CO;
and C products [195].

While replacing organic electrolytes with solid-state
electrolytes may help inhibit continuous reactions between
the electrolyte and metal, and solid-state electrolytes are a
promising candidate to suppress uneven electrodeposition
of metals and/or hinder the formation of dendrites [196,
197]. On the one hand, the narrow ESW of most solid-state
electrolytes makes them possible to be decomposed during
battery operation. On the other hand, it is prone to form-
ing voids at the electrode—electrolyte interface due to the
significant volume changes caused by multiple depositions
and extractions of the anode, even under lower current densi-
ties [198, 199]. In addition, the properties of the SEI layer
are related to its electronic and ionic conductivities. When
the SEI exhibits high ionic conductivity and low electronic
conductivity, the formed SEI is the most stable, avoiding the
continuous consumption of solid-state electrolytes.

3.2.3 Advances of SEI Chemistry in Nonaqueous MCBs

An ideal SEI requires several essential characteristics, such
as intrinsic stability, dense morphology, high ionic conduc-
tivity, and good mechanical integrity [200-203]. However,
the formation of SEI is a spontaneous chemical reaction that
is hard to precisely control. Currently, the modulation of
interfacial chemistry is achieved through the structure and
morphology of the electrode as well as the composition of
the electrolyte [174]. Anode failure, dissolved CO, [204],
diffused RM molecules [205] or by-products from electro-
lyte decomposition, can be limiting factors in the cycling
performance of MCBs. They lead to dendrites and surface
passivation, which cause metal pulverization and lead to cell
failure [204, 206, 207].

Earlier studies have suggested that the main discharge prod-
uct of MCBs is carbonate, and the presence of CO, can lead
to the formation of stable carbonate/C protective coatings on
nonaqueous metal surfaces [31, 208]. The charge-transfer
resistance of the passivated anode continues to increase with
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cycling, which implies that the anode polarization accounts
for an increasing share of the overall cell polarization during
the operation of MCBs. By adding an appropriate mediator to
the electrolyte, a SEI film can be constructed at the electrode
surface to maintain the stability of the electrode structure. For
example, charge—discharge passivation of K metal in a TEG-
DME-based electrolyte containing 2.7 M KFSI results in the
formation of an artificial SEI film on its surface enriched with
KF and carboxylate/carbonyl species [91]. This well-designed
KF protective layer is a fast conductor of K+ and homogenizes
the nucleation sites, which inhibits to some extent the forma-
tion of irreversible K during the plating process. It helps to
stabilize the K anode and reduce polarization. Although some
studies have attributed the failure of metal anodes in part to
CO,, CO, has also been recognized as a gaseous additive for
the protection of nonaqueous metals [204].

Constructing an artificial SEI for metal anode is an effective
strategy to improve the interfacial compatibility. A compatible
Na/SN-based electrolyte interface can be formed by introduc-
ing a NaF-rich compact phase on the surface of Na through the
chemical reaction between fluoroethylene carbonate (FEC)-
Na* and Na metal [151]. Compared with common organics,
fluorinated organics have unique physicochemical properties,
hydrophobicity and high oxidative stability [209, 210]. The
in situ formed NaF-rich intermediate phase not only prevents
side reactions between the SN-based electrolyte and the anode
but also regulates the uniform deposition of dendrite-free
Na. There is effective improvement of electrolyte—electrode
interfacial contact during the construction of PSEs via in situ
polymerization [211, 212]. Thanks to the in situ reaction,
the GPE can form tight interfaces with both the cathode and
anode, respectively. For example, GPEs were constructed by
in situ polymerization in the framework of a mixture of the
fluoropolymers trifluoroethyl methacrylate (TFMA) and poly-
ethylene glycol diacrylate (PEGDA) [137]. TFMA is prefer-
entially reduced on the lithium anode and participate in the
formation of SEI. The active — CF; groups were introduced to
promote the formation of a fish scale-like LiF-rich SEI layer
on the anode. LiF has high surface energy, low Li* diffusion
resistance and excellent electronic insulating properties, which
induce uniform and dense deposition of lithium and inhibit
the deep lithium layer from being further etched [213-216].
Also, the participation of organic components is conducive to
optimizing the SEI and withstanding the volume change of
the anode during repeated cycling, effectively suppressing the
chalking of electrodes [217, 218].
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4 Summary and Outlook

Nonaqueous MCBs are a relatively new and developing
research system to date; there is limited understanding of
their electrochemical mechanisms. This review discussed
the research progress of MCBs, and the chemical and
electrochemical mechanisms of batteries and electrolytes
were explored to better understand how these relate to the

SHANGHAI JIAO TONG UNIVERSITY PRESS

optimization of electrolytes and interface engineering.
Although great progress has been made in recent years in
electrolytes of nonaqueous MCBs and interface engineer-
ing, there are still many challenges that need to be further
explored. Here, we propose several potential research direc-
tions (Fig. 8):
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(1) Designing a dual-electrolyte system. PSEs have a nar-
row ESW, and constructing bilayer PSEs is expected
to solve this problem. However, the bilayer structure
leads to additional electrolyte/electrolyte interfacial
resistance and discontinuous ion migration paths [219,
220]. It is necessary to find a suitable substrate as well
as to design a rational structure.

(2) Selecting the matched electrolyte additives. Machine
learning and calculation methods enable efficient
screening of effective additives, providing mechanistic
insights into battery electrochemical reactions [221]
through advanced techniques, thereby facilitating a
high-performance nonaqueous MCB [222].

(3) Regulating surface chemistry and dynamics. Ion conver-
sion in the electrolyte and the transfer process through
the electrolyte/electrode interface can affect the cycle life
of the cell. Continuing to improve the compatibility of
electrodes and electrolytes, especially solid-state elec-
trolytes, is an important interface engineering strategy.

(4) Enhancing the performance of nonaqueous MCBs
over wide-temperature ranges, variations in ambient
temperature critically influence the performance of
nonaqueous MCBs and nonaqueous MCBs. As a core
component, electrolytes govern the batteries’ behavior
under extreme thermal conditions [223]. At low tem-
peratures, the reduced ionic conductivity of electrolytes
severely restricts the transport kinetics of Li*/Nat/K*
ions and CO,, while the increased desolvation energy
barrier at the electrode/electrolyte interface leads to ele-
vated charge-transfer impedance and overpotential [20].
Novel electrolyte formulations and structural designs are
imperative to improve the discharge voltage and enhance
the mass transfer rate, to enable reliable operation under
harsh thermal conditions [224]. For liquid electrolytes, at
low temperatures, systems with low desolvation energy
[225, 226], low melting points and superior low-tem-
perature ionic conductivity are essential. The electrolyte
concentration also significantly impacts the low-tem-
perature performance. Low-concentration electrolytes
permit free ion mobility but suffer from insufficient
transference number. In high-concentration electrolytes,
anions inevitably appear in the primary solvation sheath
layer of Li*/Na*/K* ions, which predominantly govern
the formation of SEI, thereby stabilizing the electrode—
electrolyte interfaces [225, 227, 228]. However, the high
viscosity impedes practical low-temperature operation
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[229]. Introducing low-viscosity co-solvents can miti-
gate the concentration polarization of the electrolyte and
improves ionic conductivity, thereby boosting discharge
capacity. Local high-concentration electrolytes further
address this challenge by incorporating low-polarity
diluents, which preserve the benefits of the high salt
concentration while reducing viscosity and maintaining
high ion mobility [121, 130]. The failure of batteries at
high temperatures primarily stems from compromised
electrochemical stability, interfacial degradation and
thermal instability of electrolytes [230]. Although high
temperatures enhance ionic conductivity, they acceler-
ate electrolyte decomposition and parasitic side reac-
tions. Enhancing flame retardancy is crucial to mitigate
volatility risks in liquid electrolytes, strategies such as
electrode surface modification or additives that form sta-
ble SEI layers can reinforce interfacial stability. Further-
more, solid-state electrolytes, with their high Young’s
modulus (effectively suppressing dendrite growth) and
temperature-insensitive ionic conductivity (minimizing
solvent decomposition risks at high temperatures), offer
a promising pathway for developing wide-temperature-
tolerant nonaqueous MCBs.

Overall, although MCBs have shown great advantages,
challenges remain before their practical applications. In
the future, novel material design and advanced charac-
terization should be combined, and if excellent cycling
performance and large-scale production can be widely
achieved, MCBs will be promising for energy transition
and greenhouse gas emission reduction.
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