Supporting Information for

Cobalt Sulfide Confined in N-doped Porous Branched Carbon Nanotube for Lithium-Ion Batteries

Yongsheng Zhou^{1, 2, *}, Yingchun Zhu², Bingshe Xu³, Xueji Zhang^{4, *}, Khalid A. Al-Ghanim⁵, Shahid Mahboob^{5, 6}

¹College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233030, People's Republic of China

²Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China

³Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China

⁴Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science & Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China

⁵Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia

⁶Department of Zoology, GC University, Faisalabad, Pakista

*Corresponding authors. E-mail: yszhou1981@gmail.com (Yongsheng Zhou); zhangxueji@ustb.edu.cn (Xueji Zhang)

Supplementary Figures and Table

Fig. S1 High-magnification SEM image of Co₉S₈@NBNT

Fig. S2 N₂ sorption isotherms of Co₉S₈@NBNT

Fig. S3 Raman spectra of the Co_9S_8 @NBNT. Besides the D, and G bonds, corresponding to the NBNT, there are new peaks corresponding to the Co_9S_8

Fig. S4 High-resolution XPS N 1s spectrum of Co₉S₈@NBNT

Fig. S5 TGA curve of Co₉S₈@NBNT

Fig. S6 Charge-discharge voltage profiles at 0.1 A g^{-1} of Co₉S₈@NBNT

Fig. S7 Comparison of cycle stability at 500 mA g^{-1} of the obtained samples

Fig. S8 Nyquist plots of $Co_9S_8@NBNT$, $Co_9S_8@CNT$, and CNT samples **a** before and **b** after cycling test

Fig. S9 a High-magnification SEM and b HRTEM images of Co₉S₈@NBNT after 200th cycles

Table S1 Different c	carbon materials	employed in	cathodes for	LIBS
----------------------	------------------	-------------	--------------	------

Materials	Initial capacity	Reversible specific capacity	References
	$(\mathbf{mAh} \mathbf{g}^{-1})$		
N-C-800	3487	2132 mAh g^{-1} at 100 mA g^{-1}	[S1]
		after 500 cycles	
CNT-on-OCNT-Fe	985	784 mAh g^{-1} at 100 mA g^{-1} after	[S2]
		200 cycles	
HN-CNT	730	397 mAh g^{-1} at 100 mA g^{-1} after	[S3]
		100 cycles	
Sn/Sn ₄ P ₃ @C	1332	589 mAh g^{-1} at 1000 mA g^{-1}	[S4]
		after 700 cycles	
CuO/Cu ₂ O/C	381	260 mAh g^{-1} at 200 mA g^{-1} after	[S5]
		600 cycles	
Si@C@MoS ₂	2079.3	1365.7 mAh g^{-1} at 500 mA g^{-1}	[S6]
_		after 500 cycles	
CoSe/NC-L	530	424 mAh g^{-1} at 500 mA g^{-1} after	[S 7]
		150 cvcles	[]
WS ₂ @C	730	638 mAh g^{-1} at 500 mA g}{-1} after	[\$8]
		45 cvcles	[]
pSiMS@C	1665	$1027.8 \text{ mAh g}^{-1}$ at 1000 mA g}{-1}	[\$9]
Ferrie C C		after 500 cycles	[~,]
Our work	1310	$1109 \text{ mAh } \text{g}^{-1} \text{ at } 500 \text{ mA } \text{g}^{-1}$	
	1010	after 200 cycles	
		and 200 cycles	

Supplementary References

- [S1] F.C. Zheng, Y. Yang, Q.W. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. commun. 5, 5261 (2014). https://doi.org/10.1038/ncomms6261
- [S2] P. Bhattacharya, D. Suh, P. Nakhanivej, Y. Kang, H. Park, Iron Oxide Nanoparticleencapsulated CNT branches grown on 3D ozonated CNT internetworks for lithium-ion battery anodes. Adv. Funct. Mater. 1801746 (2018). https://doi.org/10.1002/adfm.201801746
- [S3] X.F. Li, J. Liu, Y. Zhang, Y.L. Li, H. Liu et al., High concentration nitrogen doped carbon nanotube anodes with superior li⁺ storage performance for lithium rechargeable battery application. J. Power Sources 197, 238-245 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.024
- [S4] Q. Liu, J. Ye, Z. Chen, Q. Hao, C. Xu, J. Hou, Double conductivity-improved porous Sn/Sn₄P₃@carbon nanocomposite as high-performance anode in Lithium-ion batteries. J. Colloid Inter. Sci. 537, 588-596 (2019). https://doi.org/10.1016/j.jcis.2018.11.060
- [S5] C.X. Xu, K.V. Manukyan, R.A. Adams, V.G. Pol, P.W. Chen, A. Varma, One-step solution combustion synthesis of CuO/Cu₂O/C anode for long cycle life Li-ion batteries. Carbon 142, 51-59 (2019). https://doi.org/10.1016/j.carbon.2018.10.016
- [S6] X.L. Zhang, L.W. Huang, P. Zeng, L. Wu, Q.Q. Shen, Z.X. Gao, Y.G. Chen, Hierarchical MoS₂ anchored on core-shell Si@C with increased active-sites and charge transfer for superior cycling and rate capability in lithium-ion batteries. Chem. Eng. J. 357, 625-632 (2019). https://doi.org/10.1016/j.cej.2018.09.163
- [S7] X. D. Li, W. D. Zhang, Y. Feng, W. Li, P. Peng et al., Ultrafine CoSe nano-crystallites confined in leaf-like N-doped carbon for long-cyclic and fast sodium ion storage. Electrochim. Acta 294, 173-182 (2019). https://doi.org/10.1016/j.electacta.2018.10.012
- [S8] J.Q. Zhang, H. Sade, Y.F. Zhao, A.T. Murdock, A. Bendavid, J.P. Lellouche, G.X. Wang, Z.J. Han, Conformal carbon coating on WS₂ nanotubes for excellent electrochemical performance of lithium-ion batteries. Nanotechnology **30**, 035401(2019). https://doi.org/10.1088/1361-6528/aaec4d
- [S9] K. Wang, S.E. Pei, Z.S. He, L.A. Huang, S.S. Zhu, J.F. Guo, H.B. Shao, J.M. Wang, Synthesis of a novel porous silicon microsphere@carbon core-shell composite via in situ MOF coating for lithium ion battery anodes. Chem. Eng. J. 356, 272-281 (2019). https://doi.org/10.1016/j.cej.2018.09.027