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HIGHLIGHTS

• This review systematically summarizes materials system, development history, device structure, stress simulation and applications 
of flexible memristors.

• This review highlights the critical influence of mechanical properties on flexible memristors, with particular emphasis on deformation 
parameters and finite element simulation.

• The applications of future memristors in neuromorphic computing are deeply discussed for next-generation wearable electronics

ABSTRACT The advancement of flexible memristors has signifi-
cantly promoted the development of wearable electronic for emerg-
ing neuromorphic computing applications. Inspired by in-memory 
computing architecture of human brain, flexible memristors exhibit 
great application potential in emulating artificial synapses for high-
efficiency and low power consumption neuromorphic computing. This 
paper provides comprehensive overview of flexible memristors from 
perspectives of development history, material system, device struc-
ture, mechanical deformation method, device performance analysis, 
stress simulation during deformation, and neuromorphic computing applications. The recent advances in flexible electronics are summa-
rized, including single device, device array and integration. The challenges and future perspectives of flexible memristor for neuromorphic 
computing are discussed deeply, paving the way for constructing wearable smart electronics and applications in large-scale neuromorphic 
computing and high-order intelligent robotics.
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1 Introduction

With the rapid development of the Internet of Things (IoT) 
and Artificial Intelligence (AI) technology, traditional sili-
con-based transistors are gradually facing physical limits in 

terms of flexibility, integration density and energy consump-
tion. As an emerging device integrating flexible electronic 
technology and memory characteristics, flexible memristor 
exhibits great potential in information storage and neuro-
morphic computing (Fig. 1). The memristor provides a novel 
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physical hardware for breaking through the bottleneck of 
traditional von Neumann architecture. With in-memory 
computing architecture [16, 17], non-volatile switching 
characteristics and synaptic behavior [15, 18–23], memris-
tor promotes the development of neuromorphic computing 
[24–33]. The introduction of flexible substrates and stretch-
able structures enables memristor to adapt to bending [24, 
34–39], twisting [40], stretching operations and so on, thus 
showing unique advantages in flexible sensor [27, 41–43], 
flexible memory [44, 45], implantable electronics and tex-
tile electronics [46–49]. Through innovative design of oxide 
materials, organic materials [22, 30, 50–52] and two-dimen-
sional materials [14, 24, 37, 45, 53–58], flexible memris-
tors have made remarkable breakthroughs in key properties. 
However, large-scale manufacturing and implementation of 
neuromorphic computing system still face challenges [59]. 
Recent advances of flexible memristor have shown signifi-
cant potential in neuromorphic computing applications, lev-
eraging non-volatile, high speed and low-power consump-
tion characteristics, as summarized in Table 1. In IoT and 
wearable systems, flexible memristors facilitate personalized 
signal processing with high classification accuracy, biocom-
patibility and adaptability. For edge computing and medical 
diagnostics, flexible memristors offer ultra-low power solu-
tions with real-time processing capabilities. Additionally, 
fault-tolerant architectures enhance reliability in large-scale 
crossbar arrays, paving the way for high-density integration. 
However, key challenges such as material stability, multi-
level storage and fabrication scalability must be addressed 
to constructing energy-efficient flexible intelligent systems.

To improve the performance of flexible memristor, 
materials, structure, bending method and flexible per-
formance should be clarified. As shown in Fig. 2, the 
material system can be divided into four types, including 
3D bulk phase materials (such as HfAlO [47, 79], VO₂ 
[25, 80, 81], TiO₂ [5], organic material [9, 82, 83]), 2D 
layered materials (hBN [55, 84], MoS₂ [38, 43, 85–87], 
MXene [88]), 1D nanowires/tubes (carbon nanotubes 
CNT [3, 89]), and 0D quantum dots (CsPbCl₃ [90], 
core–shell QDs [91]). Among those, low-dimensional 
materials provide unique advantages for uniform film 
formation and stress release on flexible substrates due to 
high specific surface area and mechanical flexibility [20, 
37, 38, 92]. The 0D quantum dots optimize the interface 
charge transport properties through the quantum con-
finement effect [4, 90, 91, 93]. The structure of flexible 

memristor could be divided into three parts, including 
crossbar array, traditional sandwich and lateral structure 
[38, 94, 95]. The sandwich structure enhances the inter-
face stability through the symmetrical design of the elec-
trode/dielectric layer/electrode [96, 97]. It is interesting 
that some textile memristors were proposed with above 
structure for wearable applications [42, 48, 98]. An in-
depth analysis of the performance characteristics of flex-
ible memristors was presented with three primary forms 
of mechanical deformation, including bending, stretch-
ing and twisting states. Key parameters associated with 
mechanical deformation were measured to analyze stress 

Fig. 1  Summary of this review, including materials, structure, 
mechanical deformation method, performance, stress simulation and 
application of flexible memristors. The material type includes 3D 
structure [1], Copyright (2019) Wiley–VCH. 2D structure [2], Copy-
right (2017) Wiley–VCH. 1D structure [3], Copyright (2024) Wiley–
VCH. and 0D structure [4], Copyright (2020) Wiley–VCH. The com-
mon structure of the flexible memristor, including crossbar, sandwich 
and lateral structure [5–7]. Copyright (2024) American Chemical 
Society. Copyright (2023) American Chemical Society. Copyright 
(2022) Wiley–VCH. Mechanical deformation method of flexible 
electronics, including stretching [8], Copyright (2022) The Authors. 
bending [9], Copyright (2018) Wiley–VCH, and twisting [10]. Copy-
right (2024) Wiley–VCH. The key performance of flexible memris-
tor, including switching ratio [11], Copyright (2024) The Authors. 
Published by American Chemical Society, and mechanical flexibility 
[12], Copyright (2025) Wiley–VCH. The simulation of flexible elec-
tronics for force concentration analysis and crack formation process 
[13]. Copyright (2024) The Authors. Flexible applications to neuro-
morphic computing and sensors [14, 15]. Copyright (2022) Wiley–
VCH. Copyright (2024) Wiley–VCH
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distribution and mechanical properties of the device. The 
effects of mechanical deformation behavior on proper-
ties of the device were important for identifying failure 
mechanisms [24, 37, 38, 92, 99–103]. Based on the failure 
mechanisms, various strategies for enhancing the mechan-
ical and electrical properties of flexible memristors were 
explored [55, 95, 104–108]. In addition, mechanical simu-
lations methods were developed to provide guidelines for 
improving the flexible tolerance of memristors, such as 
finite element simulation [13, 43].

This review provides a comprehensive overview of flex-
ible memristor for neuromorphic computing and smart 
wearable electronics. The development history, material 
system, and device structure design are systematically 
summarized for prepare high-performance flexible mem-
ristor. Mechanical deformation method, device perfor-
mance analysis, and stress simulation during deformation 

are discussed for improving reliability of flexible memris-
tor. Finally, the applications of the flexible memristors in 
neuromorphic computing are discussed deeply [22, 27, 31, 
42, 46, 49, 50, 79, 81, 87, 88, 91, 109–115], addressing 
current challenges and proposing potential directions for 
future development [26, 37, 101, 105, 116–121].

2  History of Flexible Memristor Development

The flexible memristors entered explosive development period 
after 2020, which could be traced back to around 2013, as 
shown in Fig. 3. The integration of flexible electronics and 
memory technology promotes the development of flexible 
memristors. From 2013 to 2014, initial efforts focused on 
adapting traditional materials to flexible substrates, such as 
 SiOx [123]. The initial attempt of flexible organic materials is 
also carried out, where the thickness was 70 nm [122]. Lim-
ited by mechanical brittleness and interface failure issues, 

Fig. 2  Materials system, device structure, bend method and performance of devices. Materials are classified into a three dimensions (3D), b two 
dimensions (2D), c one dimension (1D) and d zero dimension (0D) [72–75]. Copyright (2025) American Chemical Society. Copyright (2020) 
Wiley–VCH. Copyright (2015) American Chemical Society. Copyright (2021) The Authors. The typical structure of memristor includes e cross-
bar structure, f sandwich structure and g lateral structure. h Memristor under initial state. The bending methods of flexible memristor, including 
i twisting, j stretching, and k bending operations. The key performance of flexible memristor under different l bending radius, m bending cycles, 
and n stress/strain operations [76–78]. Copyright (2023) Wiley–VCH. Copyright (2024) The Authors. Copyright (2022) American Chemical 
Society



Nano-Micro Lett.            (2026) 18:2  Page 5 of 27     2 

few devices can achieve more than 2000 cycles at a bending 
radius below 5 mm. The rapid growth of the printed electronics 
industry has accelerated the seeking for materials of flexible 
memory with film thinner than 3 nm [126]. In 2015, ultra-
thin  WO3·H2O nanosheets (2–3 nm) were introduced for the 
construction of high-performance flexible RRAM [19]. Dur-
ing 2016 to 2017, the field experienced rapid growth with the 
introduction of two-dimensional materials (e.g., MoS₂) and 
organic–inorganic hybrid perovskites (e.g.,  CH3NH3PbI3). 
These advances demonstrate the implanting of flexible devices 
and the feasibility of operation under prolonged deformation. 
Stable performance under the bending radius of 7.5 mm was 
demonstrated, where switching ratio has no obvious attenua-
tion after 100 bending cycles [43, 124]. Park et al. proposed a 
flexible biological memristor device based on lignin, providing 
a new natural material approach for flexible memristors [127]. 
Various flexible substrates were introduced to fabricate flex-
ible memristor, such as polyethylene terephthalate (PET) and 
polyimide (PI) [128]. In 2018, an artificial synapse based on 
reduced oxidized graphene (RGO) was proposed [49], which 
was one step closer to realizing flexible neuromorphic comput-
ing. In 2019, vertical heterostructure self-selective memory 
based on h-BN with self-selectivity of  101⁰ was introduced 
[84], effectively solving the problem of sneak current in large-
scale arrays. With the development of flexible artificial syn-
aptic memristors, face recognition on damaged images was 
successfully achieved by flexible pV3D3 memristor [129].

Inspired by human visual system, flexible neuromorphic 
image sensor array was proposed for photon-triggered syn-
aptic plasticity and preprocessing noisy images, thereby 
significantly enhancing the efficiency of image recogni-
tion [57]. This innovation paved the way for the develop-
ment of next-generation machine vision applications. In 
2021, stretchable memristor with superior deformability 
was proposed for operation in harsh environments, which 
maintained stable performance even after sustaining extreme 
mechanical injuries such as punctures and severe tears [116]. 
From 2022 to 2024, studies of flexible memristors turned 
to realize multimodal perception and wearable IC appli-
cations [80, 85]. For the first time, Wang et. al proposed 
reconfigurable textile memristors with heterostructure of 
 MoS2 and  HfAlOx for realize functions of artificial synapse 
and neurons, exhibiting great potential in intelligent neuro-
morphic computing system [48]. In 2025, synaptic-motor 
coupler device (SMCD) that integrates neural computing 
and muscle actuation was proposed, effectively bridging 

perception and action within neuromorphic system [125]. 
High-performance flexible materials, advanced manufactur-
ing processes, and reconfigurable memristor networks pave 
the way for designing next-generation flexible neuromor-
phic computing electronics [130]. This development trajec-
tory highlighted the evolution of flexible memristors from 
material substitution to structural innovation and ultimately 
toward system integration, laying the physical foundation for 
flexible intelligent hardware in the post-Moore era.

3  Material of the Flexible Memristor

The 3D materials have made remarkable progress in flex-
ible memristors, especially in neuromorphic computing and 
wearable electronic systems [133, 134]. The 3D materials 
can be categorized into organic materials, inorganic materi-
als, and hybrid materials. Hybrid materials-based flexible 
memristor was fabricated by embedding ZnO nanosheets 
into PMMA, providing a new approach for low-cost flexible 
neuromorphic hardware [20], as shown in Fig. 4a. For inor-
ganic materials, the HfO₂/NiO-based memristor exhibited 
diffusion behavior and reversible switching between volatile 
and non-volatile modes [21], as shown in Fig. 4b. Figure 4c 
shows flexible organic memristor with biological synaptic 
plasticity, including STP and LTP characteristics [22]. The 
mechanical flexibility and solution-process of organic mate-
rials further promote the development of wearable intelligent 
systems [135]. By fabricating memristor on flexible PET 
substrate, low-cost flexible electronics exhibit advantages 
in bending tests [2]. Meanwhile, PI substrate-based flexible 
memristor was proposed [136], where the performance was 
comparable to that of devices on rigid substrates.

With advantages of low power consumption and high 
flexibility, two-dimensional (2D) materials have attracted 
interests of researchers in flexible electronics. 2D materials 
are predominantly inorganic in nature, which could be fab-
ricated via chemical vapor deposition (CVD). As shown in 
Fig. 4d, the memristor of  MoS2 exhibits ultra-low variation 
and reliable memristive switching behaviors [86]. As shown 
in Fig. 4e, asymmetric heterostructure based on  NbS2/NbOx 
was formed by natural oxidation after epitaxial growth on 
 MoS2, resulting in a  MoS2/NbS2/NbOx structure [131]. The 
heterostructure-based memristor shows efficient tunneling 
conductivity and excellent memristive characteristics. Tran-
sition-metal phosphorus trichalcogenides are emerging 2D 
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Fig. 3  Development of flexible memristors from 2013 to 2025. Organic flexible memory [122]. (Copyright (2013) The Authors),  SiOx memory 
[123] (Copyright (2014) American Chemical Society),  WO3·H2O nanosheets [19] (Copyright (2015) American Chemical Society), and perovs-
kite materials are developed for flexible memristor [124]. (Copyright (2016) American Chemical Society).  MoS2-graphene photodetector array 
[43] (Copyright (2017) The Authors), RGO fiber-based device [49] (Copyright (2018) Wiley–VCH), self-selective van der Waals heterostructure 
device [84] (Copyright (2019) The Authors), heterostructure device of  MoS2 and pV3D3 [57] (Copyright (2020) The Authors) are proposed for 
non-volatile memory. Discrete structure [116] (Copyright (2021) Wiley–VCH), reconfigurable textile memristor network [48] (Copyright (2022) 
The Authors), low-power flexible ICs based on  MoS2 [85] (Copyright (2023) The Authors), in-sensor reservoir computing system [80] (Copy-
right (2024) The Authors), and synapse-motor coupler device (SMCD) are developed for emerging in-memory computing applications [125] 
(Copyright (2025) The Authors)
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layered materials with formula of  MPX3. Peng et al. devel-
oped a flexible memristor using  CdPS3 nanosheets as the 
functional layer with the average thickness of 33 nm, dem-
onstrating the application potential of  CdPS3 in memristor 
(Fig. 4f) [14].

With great mechanical properties, electrical conductiv-
ity, high thermal conductivity and thermal stability, CNT is 
considered as typical 1D materials for future flexible mem-
ristors. These materials are generally classified as inor-
ganic materials. As shown in Fig. 4g, single-walled carbon 

nanotubes (SWCNTs) were fabricated on ultra-thin flexible 
substrates [132], which exhibit superior synaptic proper-
ties. For wearable textile electronics, Wang et al. proposed 
a reconfigurable fiber memristor based on structure of Ag/
MoS2/HfAlOx/CNT. The fiber memristor achieves non-
volatile synaptic plasticity and volatile neuronal func-
tion, which could be used for ANN and SNN computing 
(Fig. 4h) [48]. By constructing 3D neural network based 
on 1D fiber memristor, the reconfigurable textile memris-
tors exhibit great potential in future hybrid neuromorphic 

Fig. 4  Material type divides to four parts, including 3D, 2D, 1D, and 0D. a Cross-section SEM image of the flexible film [20]. Copyright (2022) 
Wiley–VCH. b TEM image of the  HfO2/NiO films [21]. Copyright (2024) American Chemical Society. c Flexible diffusive memristor with 
organic functional layer [22]. Copyright (2023) Wiley–VCH. d TEM cross-sectional image of  MoS2 [86]. Copyright (2022) American Chemi-
cal Society. e This diagram of  MoS2 −  NbS2 −  NbOx heterojunction [131]. Copyright (2020) American Chemical Society. f The structure of 
 CdPS3-based memristor [14]. Copyright (2022) Wiley–VCH. g Artificial skin composed of carbon nanotube [132]. Copyright (2020) American 
Chemical Society. h Structure of the fiber-based memristor, consisting of Ag/MoS2/HfAlOx/CNT [48]. Copyright (2022) The Authors. i  CNTB 
-M/CNTT vdW 1D device [89]. Copyright (2022) The Authors. j Cross-sectional STEM image of N-GO QDs [93]. Copyright (2019) Wiley–
VCH. k Schematic illustration of InP/ZnS QD-based memristor [4]. Copyright (2020) Wiley–VCH. l SEM image of  CsPbBr3 QDs-based LEM 
[90]. Copyright (2021) The Authors
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computing hardware. In addition, Van der Waals Integra-
tion technology could be used to construct 1D material-
based memristor (e.g., CNT-Molecule-CNT memristor), 
as shown in Fig. 4i [89]. The length of the azobenzene 
molecule was approximately 2.6 nm, providing potential 
candidate for future size reduction of flexible electronics.

With unique quantum limiting effect and high specific 
surface area, zero-dimensional (0D) quantum dots showed 
great application potential in high-efficiency quantum 
conductive flexible memristors. 0D materials could be 
categorized as inorganic nanomaterials, owing to crystal-
line inorganic cores and dominant covalent/ionic bonding 
characteristics. As shown in Fig. 4j, biocompatible diffu-
sion memristor based on nitrogen-doped graphene oxide 
quantum dots (N-GOQDs) was proposed to mimic bio-
logical synaptic functions [93]. The study demonstrated 
that N-GOQDs could serve as an insulating layer with a 
uniform thickness of ~ 130 nm. Core–shell quantum dots 
with quasi-type II band alignment of core–shell InP/ZnS 
quantum dots were successfully introduced to memristor 
[4], where photoexcited electrons are confined to the InP 
core while photoexcited holes are distributed in the ZnS 
shell (Fig. 4k). This structure, termed InP/ZnS switching 
layer (~ 20 nm thick), enables precise control of conduc-
tive filaments (CF) formation and dissolution under light 
irradiation. In addition, an innovative method for manu-
facturing all-inorganic perovskite quantum dots light-emit-
ting memory (LEM) was proposed for flexible electron-
ics, as shown in Fig. 4l [90]. The study demonstrated that 
 CsPbBr3 quantum dots could act as core functional layer of 
memristor with thickness of approximately 800 nm.

Despite significant progress in the development of flexible 
materials, several key challenges still need to be addressed. 
The compatibility of low-temperature processes with CMOS 
technology, the nonlinearity of synaptic weight updates, and 
the reliability remains critical issues for large-scale flexible 
3D integration. For 2D materials, stability and uniformity 
for large areas integration still need to be resolved. For 1D 
materials, achieving consistent and scalable fabrication pro-
cesses is essential. For 0D quantum dots, the mechanism of 
quantum effect in memristor mechanism should be further 
studied for improving the operating voltage and uniformity 
of memristor.

4  Structure of Flexible Memristor

Sandwich structure-based memristor composed of metal/
insulation layer/metal achieves resistive switching charac-
teristics through design of interlayer interactions [6]. As 
shown in Fig. 5a, a low-power memristor with Excellent 
bipolar resistive switching characteristics was demonstrated 
by introducing BN nanosheets layer between top electrode 
(ITO) and bottom electrode [92]. Similar characteristic was 
demonstrated in inorganic/organic device based on sandwich 
structure of  Cs3Bi2I9/PMMA/DPPDTT (Fig. 5b) [97]. As 
the organic device, organic artificial synaptic device dem-
onstrated a super transparency and flexibility, because of the 
simple sandwich structure [137].

As a typical solution of 3D high-density integration, 
crossbar structure significantly improves the storage den-
sity and parallel computing capability of memristors. 
The primary distinctions between typical and vertical 
crossbar arrays are architecture and performance: typi-
cal arrays utilize 2D metal wiring with limited density, 
while vertical arrays employ 3D stacking with interlayer 
vias to achieve higher density, lower RC delay, and power 
reduction. However, vertical structures require advanced 
fabrication techniques (e.g., high-aspect-ratio via etch-
ing) and complex fabrication process compared to single-
layer planar structure. 3D crossbar architectural evolution 
shows great potential in neuromorphic computing and 
high-density memory applications. As shown in Fig. 5d, 
unipolar memristor based on 2D  HfSe2-xOx was designed 
with switching ratio exceeded  106, achieving logic and 
storage functions [94]. 3D crossbar memristor network 
has shown great potential in high-density integration. For 
example, Wang et al. proposed 3D Pt/HfAlOx/TaN mem-
ristor network through low temperature atomic layer depo-
sition (Fig. 5e) [79]. The 3D flexible memristor network 
exhibits ultra-low power consumption of 4.28 aJ (lower 
than fJ level of biological synapses), high operation speed 
of 50 ns, and great fault-tolerant pattern recognition capa-
bility. As shown in Fig. 5f, single memristor with basic 
crossbar structure was developed using zirconium oxygen 
clusters (Zr₆O₄OH₄(OMc)₁₂) film as resistive switching 
layer, where the cluster network stiffness was regulated 
by thermal polymerization [117]. The random growth of 
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conductive filaments (CFs) was inhibited in the memristor, 
forming a dispersed Ag cluster conductive pathway.

Above memristors are crossbar architecture, exhibiting 
reliable resistive switching characteristics. Another com-
mon configuration of memristor is the lateral structure [143, 

144], characterized by coplanar alignment of electrodes with 
functional layer. With advantages of surface exposure, lateral 
structures are usually used to investigate conduction mech-
anisms to assistance analyzation of vertical structures. As 
shown in Fig. 5g, lateral memristor was specifically designed 

Fig. 5  Common structure of the flexible memristor. Sandwich structure: a Sandwich structure of the ITO/BN/TaN memristor [92]; Copyright 
(2021) The Royal Society of Chemistry. b Schematic diagram of the  Cs3Bi2I9-based optoelectronic synapses device, with a TEM image of 
 Cs3Bi2I9 [97]; Copyright (2022) Wiley–VCH. c Schematic of transparent artificial synaptic device [137]. Copyright (2019) The Royal Society of 
Chemistry. Crossbar structure: d Schematic and optical microscope image of a typical  HfSe2−xOx memristor with crossbar structures [94]; Copy-
right (2020) American Chemical Society. e Schematic diagram of 3D crossbar synapses array [79]; Copyright (2020) American Chemical Soci-
ety. f Schematic of single crossbar electrode configuration [106]. Copyright (2024) The Authors. Lateral structure: g Schematic of a fluoropoly-
mer-based memristor with lateral structure [138]. Copyright (2021) The Authors. h Schematic of lateral-structured perovskite MASnBr3-based 
memristor [139]. Copyright (2019) The Authors. i Schematic of the lateral device structure for analyzing the conduction mechanism in organic 
memristors [22]. Copyright (2019) The Authors. Other structures: j Schematic of the optical synapse with floating gate (scale bar, 25μm) [140]; 
Copyright (2021) American Chemical Society. k Device structure consists of multi-type materials heterostructure, including PEDOT:PSS, poly-
TPD and  CsPbBr3 NCs [141]. Copyright (2022) The Authors. l Schematic of artificial optoelectronic synaptic device with heterostructure of 
 HfOx and BP [142]. Copyright (2023) The Authors. m Illustration of biological synapses and artificial optoelectronic synaptic devices [119]. 
Copyright (2024) The Authors
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to explore growth process of conductive filaments [138]. 
Through field-emission scanning electron microscopy (FE-
SEM), the active surfaces under different resistance states 
(LRS and HRS) were systematically measured, providing 
direct evidence of mechanism of memristors. As shown 
in Fig. 5i, the Ag conductive filaments in organic memris-
tors were revealed by lateral structure [22]. This structural 
also design facilitates the fabrication of lateral lead-free 
perovskite-based memristor (Fig. 5h) [139], which exhibits 
remarkable mechanical robustness after 1000 bending cycles. 
Other common structures were summarized for novel appli-
cations. As shown in Fig. 5j, an optical synapse based on the 
vertical heterostructure with modulating gate was proposed, 
consisting of Pyrenyl-Graphdiyne (Pyr-GDY) /graphene/
PbS quantum dots (PBS-QD) [140]. In addition, reconfigur-
able memristor based on halide perovskite nanocrystals was 
developed for switching between diffusion/volatile and drift/
non-volatile modes (Fig. 5k) [141]. By selecting suitable per-
ovskite nanocrystals and organic ligands, high performance 
switching between the two modes could be realized.

Recent studies have adopted the back-etching silicon 
technology to fabricate flexible memristors from rigid sili-
con. As shown in Fig. 5l, a novel optoelectronic synapse 
was developed by introducing the back-etching silicon 
technique, providing candidates for flexible neuromorphic 
computing [142]. Figure 5m presents another optoelec-
tronic memristor under visible light, which utilizes a sili-
con back-etching process for bending [119]. The flexible 
device exhibits stable synaptic characteristics even when 
bent to a radius of 1 cm. These multifunctional features 
within single memristor make it suitable for applications 
in optoelectronic neuromorphic computing and artificial 
visual perception.

Different architectures exhibit distinct advantages and 
challenges, which were summarized in Table 2. The sand-
wich structure enables tunable properties, simple fabrica-
tion process and low power operation, which faces limi-
tations of interfacial defects and scalability. The vertical 
crossbar offers high density and 3D integration advantages, 
which faces limitations of crosstalk, mechanical fragility 
and complex read–write circuits design. The lateral struc-
ture provides mechanisms and optoelectronic insights, 
which suffers from low integration density and high opera-
tion voltage. Other structures (e.g., back-etched Si) achieve 
CMOS compatibility at the expense of stress concentration. 
To balance performance with scalability and reliability, 
material innovations and advanced fabrication techniques 
should be studied to optimize device architectures. Moreo-
ver, distinct device architectures can be tailored for spe-
cific functionalities. Comprehensive emulation of synaptic 
behaviors was realized in a two-terminal Li-based device, 
presenting a promising solution for bio-inspired neuromor-
phic hardware [145]. In this work, sandwich structure was 
used for characterization and vertical crossbar structure 
was used to construct neuromorphic hardware system. By 
integrating an artificial neural network for image recogni-
tion tasks, unique synaptic properties of Li-ion-mediated 
artificial synapses were implemented successfully.

5  Performance of Flexible Memristor

5.1  Method of Mechanical Deformation

This section mainly introduces the types of mechanical 
deformation, the parameters of mechanical deforma-
tion, the influence of mechanical deformation on device 

Table 2  The advantages and challenges of the different structures

Structure Type Advantages Challenges

Sandwich structure Simple structure
Low-power operation
BEOL-compatible

Interfacial defects due to thermal mismatch
Scalability limited by layer alignment precision

Crossbar structure Ultrahigh density
Energy-efficient parallel computing
3D integration potential

Crosstalk problem in high-density arrays
Mechanical fragility
Additional read–write circuits design

Lateral structure Easy to analyze mechanism
Large illuminated area for optoelectronic memristor

Low integration density
Higher operating voltages

Others structure Multifunction modulation
Excellent CMOS compatibility

Failure caused by stress concentration
High cost
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properties, and the simulation methods of mechanical 
deformation. Mechanical deformation can be categorized 
into three types by force directions applied to the device, 
including bending, stretching, and twisting operations. 
Stretching involves applying two forces of equal mag-
nitude but opposite directions to the ends of the device, 
where forces act outward, as shown in Fig. 6a [37]. The 

resultant effect on device is an extension in the direction of 
the applied force, accompanied by slight contraction in the 
vertical direction (Fig. 6c) [41]. Moreover, stretching may 
lead to structural misalignment of functional layer, and 
cause direct damage when the stretching operation exceeds 
the endurance limit (Fig. 6b) [37] [146]. Conversely, when 
the two forces act inward, reverse stretching effect of 

Fig. 6  (I) Flexible device under stretching operation. a Schematic diagrams of functional layer with/without strain. With a weakly interacting 
Au − graphene interface, the Au electrodes can slide on the graphene surface during straining, releasing the applied strain [37]; Copyright (2022) 
American Chemical Society. b Log-scale I − V curve of device under different stretching operation, including 0%, 3%, and 7% [37]; Copyright 
(2022) American Chemical Society. c PPF index characteristic of device under different stretching strains [41]. Copyright (2024) The Authors. 
(II) The flexible device under bending operation: d Schematic diagram of the textile memristor under bending operation [98]; Copyright (2023) 
Wiley–VCH. e Statistical results of set voltage of 25 memristor units before and after 100 bending cycles [98]. Copyright (2023) Wiley–VCH. 
f I − V curves of memristor after repeated bending cycles [24]. Copyright (2023) Wiley–VCH. (III) Flexible device under twisting operation: 
g Twisting operations under different angle [40]; Copyright (2024) The Authors. h Current response of device under different twisting angles 
[40]; Copyright (2024) The Authors. i Strain-tolerance characteristics of device, which involves stretching first and twisting last [41]. Copyright 
(2024) The Authors
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compression could be induced, and even lead to a certain 
degree of bending for soft materials. Bending operation 
occurs when two forces of equal magnitude and downward 
directions are applied to the ends of the device, along with 
an upward force on the plane perpendicular to the device 
(Fig. 6d). This causes the device to deform into a bent 
shape, with the surface and base experiencing tensile and 
compressive forces, respectively. The surface of the device 
is more prone to damage under bending states, which may 
affect electrical performance of device (Fig. 6e, f) [24, 38, 
98, 147]. Twisting operation occurs when applying forces 
in the same direction diagonally to the device, where two 
diagonal forces act in opposite directions. The force distri-
bution on the surface of a twisted device is more complex, 
involving roughly stretching and certain amount of torque 
(Fig. 6g–i) [40, 41]. This type of deformation generally 
occurs linear devices. Due to different features of differ-
ent mechanical deformation, few reported flexible memris-
tors have conducted all types of mechanical deformation. 
Therefore, different structures and materials need to be 
adopted for various wearable application scenarios.

5.2  Parameters of Mechanical Deformation

Mechanical deformation parameters exhibit variations 
among bending, stretching, and twisting operations. This 
section illustrates common variables in mechanical defor-
mation with bending as an example. The first parameter 
of evaluating flexible electronics is bending cycles, which 
reflects the endurance characteristic of device under bend-
ing operations, as shown in Fig. 7a–e. In bending operation, 
the degree of mechanical deformation is indicated by the 
curvature at the bending point, namely as bending radius 
he bending radius (1–25 mm). Smaller bending radius sig-
nifies greater degree of mechanical deformation and more 
substantial impact on the device (Fig. 7f, g) [102, 148]. The 
performance of the device under a certain bending radius 
can be used to verify the reliability and functionality of the 
flexible memristor [13, 24, 72, 77, 98, 101, 148–150]. The 
smallest bending radius of flexible memristor represents the 
limits of flexible device performance during bending opera-
tions. Additionally, the statistical electrical performance of 
device with the bending radius can be plotted to investigate 
the physical causes resulting from mechanical deformation, 

providing guidelines for performance improvement [151, 
152]. In stretching operations, the degree of mechanical 
deformation is represented by the tensile percentage [37, 
153, 154]. The definition of tensile percentage is difference 
between the stretched length and the original length divided 
by the original length of the device. In twisting operation, 
the degree of mechanical deformation is defined by the angle 
compared to the reference plane of the original device, gen-
erally ranging from 0 to 180 degrees. The dynamic test is 
repeated mechanical deformations refers to the number 
of bending, stretching or twisting at a certain degree of 
mechanical deformation [24, 100, 101, 131, 148]. It is gen-
erally considered that one cycle mechanical deformation is 
completed when the device is bent and then reset, which is 
the basic of dynamic measurement under repeated cycles 
[24, 38, 99–101, 148, 149]. The number of mechanical 
deformations can be utilized to analyze the fatigue process 
of flexible device [11, 155, 156]. The remaining parameters 
are directly plotted with stress or strain percentage (Fig. 7h), 
which could be used in complex mechanical deformation 
scenarios [41, 100].

Figure 7a demonstrates the performance of  NbS2 memris-
tors after thousands of bending cycles with a bending radius 
of 10 mm [131]. The results show that the devices maintain 
excellent I–V characteristics after 2000 bending cycles, indi-
cating superior mechanical durability. Figure 7b presents the 
evolution of ON/OFF current under different numbers of 
bending cycles (10 mm radius), demonstrating the flexible 
reliability of memristor after 1000 bending cycles [148]. 
Figure 7c displays I-V characteristics after thousands of 
bending cycles at fixed strain (1% strain, 2 mm  s−1), fur-
ther verifying the fatigue resistance [100]. The repeatability 
of conductance modulation under different bending cycles 
determines the application potential of device in flexible 
neuromorphic electronics. Figure 7d presents long-term 
potentiation/depression (LTP/LTD) characteristics of flex-
ible optoelectronic artificial heterosynapse with functional 
layer of 14 nm MoSSe [101], proving excellent mechani-
cal fatigue. Similar characteristics of LTP/LTD under 3000 
repeated bending cycles was demonstrated in Fig. 7e [99]. 
Figure 7h employs generalized strain percentage parameter 
(commonly used in simulations), showing classical I-V 
curves to verify whether electrical performance degrades 
under different strain conditions [100].
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5.3  Improvement of the Performance

The methods to improve device performance can be sum-
marized as materials doping and structure design. As an 
effective method to improve the performance of flexible 
memristors, incorporating conductive particles into func-
tional material could improve the electrical characteristics. 
For example,  AgClO4 doping could reduce operation volt-
age, increase switching speed and reduce dispersion of the 
SET voltage (Fig. 8a) [106]. By introducing specific dopants 
into the memristor, the uniformity and stability of the mem-
ristor can be significantly improved. As a common dopant, 
PEAI (phenyl ethyl ammonium iodide) is widely used in 
perovskite-based memristors. Doping of PEAI can improve 
the switching ratio and durability of the device, enabling it 

to achieve efficient resistance switching under low voltage 
(Fig. 8b, c) [104]. In addition to doping materials, structures 
design is also an effective way to improve the performance 
of flexible memristors. By changing the electrode material or 
introducing new structure, the performance of the memris-
tor can be significantly improved. The current–voltage (I-V) 
characteristic curves under different electrode materials (Ag/
Bi and Au) show that the introduction of Ag/Bi electrode 
significantly improves the electrical conductivity and switch-
ing characteristics of the device (Fig. 8d) [108]. By changing 
the distribution of the material, the conduction mode could 
be modulated to improve the performance of device. For 
example, unique interfacial memristor in all-inorganic flex-
ible memristor was proposed with solid electrolyte [157]. To 
overcome the shortcomings of single-layer  WOx, the  HfOx 

Fig. 7  Variable bending parameters. a Bending cycles is used to describe the number of deformations of the device under specified mechanical 
deformation [131]. Copyright (2020) American Chemical Society. b ON/OFF current of device under different bending times [148]. Copyright 
(2024) Wiley–VCH. c Resistive switching curve of device under different bending times [100]. Copyright (2021) Wiley–VCH. d LTP/LTD 
curve of synaptic memristor under different bending cycles [101]. Copyright (2021) Elsevier Ltd. e Conductance change under different pulse 
number and bending cycles [99]. Copyright (2024) Wiley–VCH. f Bending radius is generally used to verify the application environment under 
different degree of mechanical deformation [148]. Copyright (2021) Wiley–VCH. g I-V curves of memristor under different bending radius 
[102]. Copyright (2024) Wiley–VCH. h I-V curves of memristor under different strain [100]. Copyright (2021) Wiley–VCH
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ion diffusion layer was introduced to improve the switching 
characteristics of original device [158]. It is also feasible 
to change the material structure or composition to improve 
device performance. For example, the alkanethiol molecules 
with different chain lengths  (SC6,  SC8,  SC10,  SC12) were 
used to form SAMs (Fig. 8i) [95]. Under different bending 
times, materials with different chain lengths have different 
current densities. As shown in Fig. 8e, f, La doping in func-
tional layer enhances the properties of ferroelectric memris-
tor [105]. Moreover, different substrate can also be used to 
adjust the performance, such as CsI and CsBr. As shown 
in Fig. 8g, voltage response of the memristor is different 
under different substrates [107]. The results of the interface 
temperature of  HfOx and h-BN under ultrafast pulse reveals 

the thermal stability and operation speed could be directly 
modulated by different types of functional layer (Fig. 8h) 
[55]. The device structure design can also improve the 
performance of the memristor. After introducing PMMA 
to GeSbTe, the device shows excellent multi-level storage 
capability [96]. By adding insertion layer of  ZrO2, the fer-
roelectricity of memristor was enhanced [159]. In addition 
to above approaches, back-etching method was used to direct 
fabricate flexible device based on rigid silicon. The flexible 
silicon-based device exhibits similar performance compared 
with that on rigid silicon substrate [160]. By materials dop-
ing, structure design and novel fabrication processes, the 
performance of flexible device could be enhanced.

Fig. 8  Improvement of memristor performance, including materials doping and structure design. a Comparison of the SET voltage for 10 
devices with/without  AgClO4 doping operation [106]. Copyright (2022) American Chemical Society. b EPSC response of perovskite artificial 
synapse with/without PEAI passivation [104]. Copyright (2022) The Authors. c Different current vs pre-synaptic voltage of device with/with-
out PEAI [104]. Copyright (2022) The Authors. d I − V curves of memristors with different electrode, including Ag/Bi and Au [108]. Copy-
right (2025) Wiley–VCH. e Remanent polarization of memristor under different element content and temperature [105]. Copyright (2024) The 
Authors. f Endurance characteristic of memristor affected by element content [105]. Copyright (2024) The Authors. g Set and reset voltage dis-
tributions of devices of CSI and CsBr [107]. Copyright (2022) American Chemical Society. h COMSOL-simulated transient interface tempera-
ture of memristor with functional layer of hBN and  HfOx [55]. Copyright (2024) The Authors. i Current density of devices of  SC6,  SC8,  SC10, 
and  SC12 under different bending cycles. Error bars indicate standard deviation [95]. Copyright (2024) Wiley–VCH
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5.4  Bending Simulation

The simulation technology of flexible memristor plays a cru-
cial role in guidelines of device design. Finite element simu-
lation is a typical simulation method for analyzing stress 
distribution. The steps include drawing the model, allocat-
ing the materials of each part, finite mesh division, output 
parameter setting. Generally, load and boundary conditions 
are applied to determine which mechanical deformation 
method is used. The performance changes of the flexible 
memristor under different mechanical deformation, the asso-
ciated stress distribution and crack growth process could be 
analyzed for performance optimization. As shown in Fig. 9a, 
the stress distribution of continuous and discrete structures 
under 30% strain were analyzed [116]. The simulation 
results show that the continuous structure produced obvi-
ous stress concentration under high strain, while the discrete 
structure effectively dispersed the stress and reduced the risk 
of structure damage. This analyzation of stress distribution 

is important for understanding the mechanical stability of 
flexible memristors. As shown in Fig. 9b, flexible optoelec-
tronic devices exhibited significant advantages in mechani-
cal compatibility, which have minimal interference to the 
eye model by comparing the strain distribution of devices 
attached to the eye model [43]. The flexible optoelectronic 
devices exhibited advantages in reducing mechanical dam-
age and improved biocompatibility compared with tradi-
tional ring device.

As shown in Fig. 9c, the electric field simulation result 
demonstrates that the nanochannel promotes ion migra-
tion under the action of electric field, resulting in the 
formation of ordered conductive filaments and reliable 
resistance switching behavior [98]. The simulation result 
provides effective guideline for improve device perfor-
mance by introducing nanochannel. As shown in Fig. 9d, 
e, the stress distributions of the droplet shape under rigid 
plate and compression of rigid plate were used to analyze 
the maximum stress value [161]. The smaller stress value 

Fig. 9  a Finite element analysis (FEA) simulations of strain distributions in continuous and discrete structures under 30% tensile strain of 30%, 
revealing that the discrete structure exhibits highly reduced strain concentration [116]. Copyright (2021) Wiley–VCH. b Radial and hoop strain 
patterns of films [43]. Copyright (2017) The Authors. c Electric field simulation of memristor with nanochannels, revealing localized field 
enhancement at nanochannels [98]. Copyright (2023) Wiley–VCH. d Stress distribution in square-shaped ceramic composites under rigid plate 
loading [161]. Copyright (2024) The Authors. e Stress distribution in droplet-shaped ceramic composites under rigid plate compression [161]. 
Copyright (2024) The Authors. f FEA simulations of pre-stretched semiconducting aerogel films during release and stretching at 100% strain 
[146]. Copyright (2024) Wiley–VCH
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means better durability, which is important for the relia-
bility of flexible memristors in practical applications. The 
deformation process of semiconductor aerogel film under 
different strain conditions are shown in Fig. 9f [146]. 
These simulation results verify the mechanical stability of 
the discrete structure under high strain, revealing adapt-
ability under different deformation modes. The result has 
important guiding significance for designing stable flex-
ible memristor in complex mechanical environment.

6  Application of Flexible Memristor

With advantages of resistive switching characteristics, 
ultra-low power consumption and low cost, flexible mem-
ristors have emerged as promising electronic components 

for neuromorphic computing. These attributes enabled the 
development of bio-inspired synaptic devices and flexible 
artificial neural networks. Device conductance could be 
modulated under different pulse stimuli, similar as the pro-
cess of weights update in bio-synapse. Inspired by human 
visual system, optoelectronic memristors exhibit great 
advantages in in-sensor computing. As shown in Fig. 10a, 
b, MXene-ZnO heterostructure-based memristor can be 
utilized for multimodal in-sensor computing by modulat-
ing oxygen vacancy filaments via light under different 
humidity, which could realize retinal adaptation functions 
[88]. In this work, Kelvin probe force microscopy (KPFM) 
and electron energy-loss spectroscopy (EELS) confirmed 
photon/proton-coupled switching mechanisms, laying the 
foundation for integrated sensing and computation. As a 

Fig. 10  Application of flexible memristor for synaptic plasticity. a Visual depiction of in-sensor computing using optoelectronic memristor for 
weight adjustment [88]. Copyright (2021) Wiley–VCH. b Output results of memristor under varying humidity conditions [88]. Copyright (2021) 
Wiley–VCH. c Accuracy of memristor-based 3-layer CNN versus GPU processing over 100 training cycles [87]. Copyright (2022) The Authors. 
d CNN architecture for handwritten digit classification [87]. Copyright (2022) The Authors. e Schematic of 6 × 6 crossbar array using three row 
devices as functional units [91]. Copyright (2020) American Chemical Society. f Implement of classical conditioned reflex behavior in Pavlov 
dogs, where different voltage sequences represent different signals, including bell, food, and bell plus food [31]. Copyright (2024) American 
Chemical Society. g Analyzation of sequential resistive state transitions of different memristors by Markov chain modeling [91]. Copyright 
(2020) American Chemical Society



Nano-Micro Lett.            (2026) 18:2  Page 17 of 27     2 

typical neuromorphic computing task, image recognition 
was achieved by wafer-scale MoS₂ memristor arrays, as 
shown in Fig. 10c, d [87]. The memristor array achieved 
high uniformity (< 8% device variation) and reached 98.02% 
accuracy in MNIST recognition tasks. Based on the random 
modulation process of conductive filaments, true random 
number generation and probabilistic computing were real-
ized in memristor array (Fig. 10e, g) [91]. Such stochasticity 
aligns with biological neuronal spiking, offering pathways 
for brain-inspired probabilistic architectures. As a classic 
conditioned reflex experiment, the saliva secretion experi-
ment of Pavlov dogs was validated by memristor. as shown 
in Fig.  10f. Solution-processed MoS₂-based memristor 
(functional layer of 25 nm) exhibit excellent synaptic plas-
ticity, paving the way for high-order learning behaviors [31].

In the aspect of device structure design, three-dimen-
sional integration and multimodal fusion have become 
critical design strategies. Wang et al. developed a flexible 
3D  HfAlOx-based memristor network with ultra-low energy 
consumption (4.28 aJ per synaptic event) and 50 ns response 
speed (Fig. 11a) [79]. The 3D neural network based on flex-
ible memristor exhibits short-term plasticity and LTP/LTD 
for noise-tolerant image recognition. As shown in Fig. 11b, 
engineered cluster-structured metallic filaments in polymer 
matrices were designed for 64 states storage and image 
denoising processing in wearable neuromorphic systems 
[109]. High-order sensory processing nanocircuit based 
on coupled  VO2 (~ 20 nm) oscillators and artificial neuron 
was designed for sensory preprocessing in continuous-time 
dynamic systems (Fig. 11c) [81]. The system encoded infor-
mation in phase differences and included a decision module 

Fig. 11  Application of memristor for neuromorphic computing. a Diagram of biological neural network for information transmission through 
multiple pathways [79]. Copyright (2020) American Chemical Society. b Wearable visual neural networks for image denoising processing [109]. 
Copyright (2023) The Authors. c Neuromorphic sensing system designed for gesture detection, where the signals are processed for classification 
task [81]. Copyright (2024) The Authors. d Inspired by the human eye’s anatomy, where the cornea, iris, and sclera undergo significant defor-
mation under high intraocular pressure, neuromorphic artificial circuit based on neuroprosthetic lens was constructed [46]. Copyright (2024) 
The Authors. e Artificial nerve consisting of memristor and tactile sensor. The output voltage of sensor acts as the input signal of memristor 
[27]. Copyright (2020) The Authors. f Response curve of artificial nerve under different stimuli [27]. Copyright (2020) The Authors. g Smart 
healthcare application scenarios. Memristor-based smart system used for hospital bed alerts and wearable belt for tracking missing children [42]. 
Copyright (2024) The Authors
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for special post-processing, demonstrating advantages in 
tactile and gesture recognition tasks with fewer device and 
lower energy. This research indicated the potential of flexible 
memristors in high-performance sensory systems. Flexible 
memristors also exhibit advantages in smart healthcare. Liu 
et al. proposed a neuroprosthetic contact lens sensor system 
for real-time monitoring and feedback of intraocular pres-
sure (Fig. 11d) [46]. The system integrated a memristor and 
temperature sensor, achieving high sensitivity and accuracy 
through temperature compensation. This study highlighted 
the potential of flexible and biocompatible materials in 
medical monitoring applications. By emulating neuron func-
tions, Mott memristor based on  NbOx (~ 25 nm) could be 
integrated into artificial spiking afferent nerve for neuroro-
botics (Fig. 11e, f) [27]. The system converted analog input 
signals into spike frequencies, mimicking the function of 
biological neurons. By using piezoelectric devices as tactile 
sensors, the system successfully captured pressure signals 
and converted pressure intensity into corresponding spike 
frequency, demonstrating the potential of flexible memris-
tors in neural robotics and tactile sensing applications. In 
addition, flexible memristors could be fabricated as fiber 
shape for smart electronics [162]. 3D PVDF piezoelectric 
nanoyarn fabric strain sensor shows excellent breathability 
and ultrahigh strength, demonstrating the potential of flex-
ible materials in wearable electronics (Fig. 11g) [42]. The 
PVDF nanofibers-based sensor was woven into functional 
yarns with different hygroscopic properties and then into 
a 3D fabric structure, exhibiting high sensitivity and fast 
response speed even under sweaty conditions.

For wearable neuromorphic computing integration, flex-
ible neuromorphic computing system based on universal 
fundamental circuit units and essential peripheral circuitry 
was developed [163]. Flexible memristors can enable real-
time adaptation and advanced responses in unstructured 
environments for future autonomous driving scenarios. 
Additionally, flexible memristors exhibit promise in brain-
computer interfaces (BCIs). Memristor-based neuromorphic 
and adaptive BCI decoder were designed for achieving high 
precision, rapid response, and ultra-low power consumption 
brain signal decoding [164]. Furthermore, flexible memris-
tors facilitate high-precision neuromorphic computing. 
Researchers demonstrated a graphene-based non-volatile 
resistive memory device capable of 16 distinct conductance 
states [165], enabling on-chip k-means clustering. Compared 
to uniform quantization, k-means clustering offers significant 

advantages in quantizing artificial neural networks (ANNs). 
Differential neuromorphic computing was implemented by 
memristor with the intrinsic multistate behavior of extracting 
features from unstructured data [166], thereby improving 
system adaptability in dynamic environments. In addition, 
advanced characterization techniques have been introduced 
to achieve neuromorphic computing functions, such as 
conductive atomic force microscopy (CAFM). Threshold 
response, relaxation, sensitization, and synaptic plasticity 
was realized in memristors based on CAFM [167]. This 
advancement holds significant implications for the develop-
ment of high-precision neuromorphic computing and wear-
able/implantable biosensors in the field of semiconductor 
devices. Advanced fabrication process of low temperature 
promotes the development of flexible neuromorphic com-
puting electronics. Wafer-level array integration based on 
CMOS-compatible process offers a promising solution for 
wearable neuromorphic computing applications [168]. In 
additional, new principle device was introduced to achieve 
neuron function for SNN computing. Antiferroelectric mate-
rials acting as functional layer of memristor could emulate 
neuronal behavior in single device, offering a promising 
approach for developing efficient neuromorphic hardware 
[169]. Spike-feature-driven sensorimotor neural circuit was 
developed for bio-inspired selective communication, thereby 
advancing the development of higher-order robotic systems 
[170].

Beyond the above enhancements in advanced biological 
synaptic systems, memristors play an indispensable role in 
in-memory multimodal computing, aiming to improve the 
processing of diverse sensor data types while reducing data 
transmission bottlenecks inherent in traditional computing 
architectures. Flexible memristor-based cross-modal spiking 
sensory neuron (CSSN) was proposed to process multimodal 
signals and provide tactile feedback for in-sensor computing 
[80]. By utilizing memristors to encode CSSN signals, in-
memory multimodal perception for human–machine interac-
tion was demonstrated. Similarly, a memristor-circuit-based 
multimodal neuromorphic sensory processing system was 
designed with low cost [171]. Furthermore, in-memory 
multimodal sensing technology can be applied to multifunc-
tional image processing. Novel fully hardware-implemented 
vision system with multifunctional image processing capa-
bilities was proposed for image preprocessing [172]. The 
system completely mimics preprocessing and processing 
functions of retinal cells and visual cortex. The emerging 
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multimodal system features operational modes of OORAM 
and EERAM. The former enables in-sensor data optimiza-
tion and convolutional operations, while the latter accom-
plishes in-memory image recognition. The emerging visual 
memristor presents a feasible approach for the development 
of future machine vision systems.

Current research still faces challenges such as material 
interface regulation, device uniformity improvement, and 
multi-scale integration. Future development of flexible 
memristors focus on developing functional materials with 
both mechanical flexibility and environmental stability, and 
developing cross-scale device-circuit co-design method 
[173]. The deep integration of flexible memristors with 
flexible sensors is expected to promote the development of 
adaptive neuromorphic systems to a higher level of intel-
ligence [174, 175]. In the future, the application of flex-
ible memristors in sensors will be biased toward robots and 
wearable electronics [47, 169, 176–179], providing hardware 
support for the development of bionic robots and wearable 
electronic devices.

7  Challenge and Outlook

Although flexible memristors have an irreplaceable role and 
great development prospect in artificial synapse and neu-
romorphic computing, they still facing many challenges. 
On the material side, achieving large-scale fabrication 
and maintaining uniformity remains difficult, especially 
for low-dimensional materials (e.g., 2D, 1D, and 0D). The 
inconsistent synthesis methods and interface defects should 
be addressed for uniform resistive switching layer. For 3D 
bulk materials, compatibility with low temperature CMOS 
processes, easy to break, and synaptic weight nonlinearity 
limit the application potential of bulk materials in flexible 
neuromorphic systems. On the structure side, under repeated 
mechanical deformation (bending, stretching, twisting), 
stress concentration can lead to interface delamination or 
fracture of conductive filaments and damage performance. 
Recent studies indicate that low-dimensional materials 
exhibit exceptional resilience to mechanical deformation 
in flexible memristor applications, owing to unique struc-
tural and mechanical properties. For 2D materials of MoS₂, 
h-BN, and MXenes, atomic-scale thickness and weak van 
der Waals interlayer interactions enable intrinsic flexibility 
and strain redistribution through layer sliding, effectively 

mitigating crack propagation. Similarly, 1D carbon nano-
tubes (CNTs) leverage high tensile strength and axial flex-
ibility, with nanotube networks uniformly distributing strain 
to prevent localized failure. In contrast, 3D bulk materials 
(e.g., HfO₂, TiO₂) suffer from interfacial delamination due 
to rigid lattice structures. 0D quantum dots face challenges 
of nanoparticle aggregation under strain. Therefore, 2D lay-
ered materials and 1D CNTs are prioritized for deformable 
electronics (e.g., wearables), where mechanical compliance 
and defect-tolerant architectures are critical for long-term 
reliability. In addition, achieving a balance between high-
density integration, multifunction and mechanical flexibility 
requires innovative design. On the function side, device vari-
ability, high power consumption, and insufficient environ-
mental stability (such as humidity sensitivity) further hinder 
their reliability in wearable applications.

In the future, research efforts should focus on enhancing 
material properties by exploring diverse material composi-
tions and structural designs to address critical challenges 
such as non-uniform stress distribution and inferior electrical 
performance [37, 105, 116, 117]. Furthermore, advanced 
fabrication techniques must be systematically investigated 
to facilitate the scalable manufacturing of flexible memris-
tors and accelerate industrial adoption [38, 52]. A promising 
direction lies in expanding the applications of flexible mem-
ristors, particularly in neuromorphic computing, intelligent 
robotics, and sensor systems. Owing to inherent operational 
similarity to human brain, memristors have demonstrated 
significant potential in neuromorphic computing. It is imper-
ative to evaluate the performance gap between rigid memris-
tors and flexible counterparts, as well as to explore whether 
flexible memristors can enable unique functionalities unat-
tainable with rigid devices in specific application scenarios.

The development of flexible memristor technology holds 
significant promise for advancing neuromorphic computing, 
which embodies a paradigm shift toward energy-efficient, 
brain-inspired in-memory computing architecture. This 
transformative approach leverages key innovations in mem-
ristor, 3D integration, and spiking neural networks, enabling 
diverse applications from edge computing to brain-machine 
interfaces. As emerging technologies of quantum-inspired 
neuromorphic computing and biohybrid systems expand the 
application potential in artificial intelligence, the synergy 
of novel materials, scalable fabrication methods, and bio-
logically plausible algorithms is poised to bridge artificial 
and biological intelligence. Notably, progress in flexible 
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electronics may soon yield mass-producible, high-perfor-
mance wearable memristors, which would not only acceler-
ate neuromorphic computing advancements but also create 
profound impacts on everyday technologies.
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