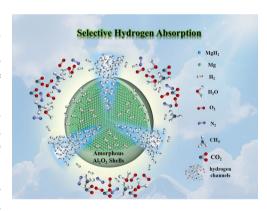
Nano-Micro Letters

ARTICLE

https://doi.org/10.1007/s40820-025-01934-7

Cite as Nano-Micro Lett. (2026) 18:78

Received: 6 June 2025 Accepted: 3 September 2025 © The Author(s) 2025


Solid–State Hydrogen Storage Materials with Excellent Selective Hydrogen Adsorption in the Presence of Alkanes, Oxygen, and Carbon Dioxide by Atomic Layer Amorphous Al₂O₃ Encapsulation

Fanqi Bu¹, Zhenyu Wang^{1 ⋈}, Ali Wajid², Rui Zhai¹, Ting Liu³, Yaohua Li¹, Xin Ji¹, Xin Liu¹, Shujiang Ding², Yonghong Cheng¹, Jinying Zhang^{1 ⋈}

HIGHLIGHTS

- Gas selective amorphous Al₂O₃ encapsulation was constructed on highly reactive MgH₂ using atomic layer deposition.
- Hydrogen selective adsorption was achieved in the impure hydrogen atmosphere containing impurities (O₂, N₂, CH₄, and CO₂).
- Excellent air stability with no MgO or Mg(OH)₂ generated after 3 months of air exposure was achieved.

ABSTRACT Metal hydrides with high hydrogen density provide promising hydrogen storage paths for hydrogen transportation. However, the requirement of highly pure H_2 for re-hydrogenation limits its wide application. Here, amorphous Al_2O_3 shells (10 nm) were deposited on the surface of highly active hydrogen storage material particles (MgH₂–ZrTi) by atomic layer deposition to obtain MgH₂–ZrTi@ Al_2O_3 , which have been demonstrated to be air stable with selective adsorption of H_2 under a hydrogen atmosphere with different impurities (CH₄, O_2 , N_2 , and CO_2). About 4.79 wt% H_2 was adsorbed by MgH₂–ZrTi@10nmAl₂O₃ at 75 °C under 10%CH₄ + 90%H₂ atmosphere within 3 h with no kinetic or density decay after 5 cycles (~100% capacity retention). Furthermore, about 4 wt% of H_2 was absorbed by MgH₂–ZrTi@10nmAl₂O₃ under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ and

 $0.1\%\text{CO}_2 + 0.4\%\text{N}_2 + 99.5\%\text{H}_2$ atmospheres at 100 °C within 0.5 h, respectively, demonstrating the selective hydrogen absorption of MgH₂–ZrTi@10nmAl₂O₃ in both oxygen-containing and carbon dioxide-containing atmospheres hydrogen atmosphere. The absorption and desorption curves of MgH₂–ZrTi@10nmAl₂O₃ with and without absorption in pure hydrogen and then in $21\%\text{O}_2 + 79\%\text{N}_2$ for 1 h were found to overlap, further confirming the successful shielding effect of Al₂O₃ shells against O₂ and N₂. The MgH₂–ZrTi@10nmAl₂O₃ has been demonstrated to be air stable and have excellent selective hydrogen absorption performance under the atmosphere with CH₄, O₂, N₂, and CO₂.

KEYWORDS Hydrogen storage; Magnesium hydrides; Selective hydrogen adsorption; Air stability; Amorphous Al₂O₃ shells

Aviation Engineering School, Air Force Engineering University, Xi'an 710038, People's Republic of China

[☑] Zhenyu Wang, z.wang@mpi-susmat.de; Jinying Zhang, jinying.zhang@mail.xjtu.edu.cn

State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China

² School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China

1 Introduction

78

The H₂ is expected to play an important role in the future energy system as a clean renewable energy carrier with high energy density [1]. However, the storage and transportation of H₂ is still a bottleneck for the application of hydrogen energy. Metal hydrides with high hydrogen density are crucial for hydrogen storage and transportation. However, hydrogenation of metal hydrides with high hydrogen density must be conducted in a pure H2 atmosphere (99.999%) to prevent poisoning [2, 3]. The MgH₂ is a typical metal hydride with high hydrogen storage density, which was demonstrated to provide a high theoretical gravimetric (~7.6 wt% H₂) as well as volumetric $(\sim 110 \text{ kg m}^{-3} \text{ H}_2)$ hydrogen storage density. However, the application of MgH2 is still limited to high dehydrogenation temperature, slow kinetics, and degrading cycling performance, especially the requirement of high pure H₂ for hydrogenation due to its high reactivity. Various modifications including alloying [4, 5], nanosizing [6–9], and catalysts [2, 3, 10, 11] have been tried to enhance the kinetic properties of MgH₂. The catalysts, especially transition metal-based catalysts (Ti, Zr, etc.) with 3d or 4d electronic orbitals, have been demonstrated to significantly enhance the kinetic of MgH₂ [2, 10, 12–14]. Highly efficient reversible hydrogen storage in magnesium-based composites has been achieved through solar radiation under effective catalyst modification [15–17]. However, the stability of MgH₂/ Mg under different atmospheres has only been reported in very few studies in the form of air stability [18-20]. Nevertheless, the selective hydrogen absorption by hydrogen storage materials with high storage density in complex hydrogen atmospheres has not yet been realized and rarely been attempted.

The polymer encapsulation [19] and carbon layer coating [18, 20] were attempted to solve the air sensitivity of hydrogen storage materials. The Magnesium nanoparticles (~5 nm) were synthesized in poly(methyl methacrylate) (PMMA) matrix to enhance their air stability by a liquid-phase reaction method to release 4.64 wt% H₂ [19], where a small amount of MgO and Mg(OH)₂ were still detected after air exposure for 3 days. The Mg nanoparticles were also tried to be coated by carbon shells by a methane plasma metal reaction method to achieve extremely high air stability [18], where no MgO was detected after being

exposed to air for 3 months. However, the dehydrogenation temperature and kinetic were found to be unsatisfactory, with 5 wt% of H₂ released from Mg@C at 350 °C for 20 min. The MgH₂ particles were also encapsulated in graphene nanorods by a wet chemical reduction method to achieve high air-stability [20], while about 5.3 wt% of H₂ was observed to be released at 300 °C for 45 min. Bulk magnesium-nickel-based hydride through water treatment to enhance its air stability [5], while a hydrogen storage density of 3.5 wt% was obtained due to the weight of Ni [5, 21]. The air stability of Mg/MgH₂ has been demonstrated to be enhanced to some extent with sacrifice of dehydrogenation kinetic and density. Various transition metal-based catalysts (such as Zr and Ti) have been demonstrated to effectively improve the dehydrogenation kinetics of hydrogen storage materials [2, 3, 6, 9, 21], which could be adopted to enhance the hydrogen storage performance of MgH₂.

Most importantly, the hydrogenation of magnesium-based composites must be performed under a pure H_2 atmosphere to prevent the poisoning of hydrogen storage materials [2, 3, 7, 8, 22]. The selective storage of hydrogen in a complex atmosphere is extremely important for the wide application of hydrogen storage materials, which could even be directly applied to industrial by-product hydrogen [23]. Alkanes are one of the main impurities in by-product hydrogen, where 24–28% CH_4 is included in coke oven gas [24]. However, the CH_4 was found to react with MgH_2 even under 1.0 bar CH_4 to significantly reduce the hydrogen storage performance of MgH_2 [25]. The other impurities (such as oxygen or water) are more reactive with MgH_2 [19, 20], which was usually avoided for hydrogen storage materials.

Here, we report a method to encapsulate MgH_2 particles with homogeneously distributed hydrogen channels (MgH_2 –ZrTi) by atomic layers of amorphous Al_2O_3 shells through atomic layer deposition (ALD) to obtain MgH_2 – $ZrTi@Al_2O_3$. The amorphous Al_2O_3 shells were found to be inert, effectively shielding against H_2O , O_2 , N_2 , CH_4 , and CO_2 , while allowing H_2 to penetrate easily. The selective hydrogen absorption of MgH_2 – $ZrTi@10nmAl_2O_3$ has been demonstrated under hydrogen atmospheres with 10% CH_4 , 0.1% CO_2 , and varying contents of O_2 and O_2 .

Nano-Micro Lett. (2026) 18:78 Page 3 of 16 78

2 Experimental Details

2.1 Preparation of MgH $_2$ –ZrTi@Al $_2$ O $_3$ and Mg–ZrTi@Al $_2$ O $_3$

The commercial MgH₂ (MG power Corp) was first coated with 10 nm ZrO₂ by ALD, ball milled with few layers Ti₃C₂ (FL-Ti₃C₂) with the weight ratio of 19:1 to obtain MgH₂-ZrTi according to our reported work [26]. The as-produced MgH₂-ZrTi was then coated by amorphous Al₂O₃ by ALD. Specifically, 0.25 g of MgH₂–ZrTi powder was placed in a glass vial containing 10 mL of anhydrous cyclohexane in the glove box and sealed using parafilm. The glass vial containing the mixture was sonicated for 30 min under ice bath, then subsequently added dropwise to a silicon wafer which was heated to 100 °C in the glove box. After the cyclohexane on the wafers was completely evaporated, the wafers with MgH2-ZrTi attached were placed in custom-made steel containers and quickly transferred to the deposition chamber of the ALD system. The ALD process was carried out cyclically, with an average Al₂O₃ deposition thickness of 0.1 nm for a single ALD cycle. The single ALD deposition process for Al₂O₃ was as follows: An trimethylaluminum (TMA) pulse for 30 ms, followed by an N₂ purge for 1.97 s. And an oxygen plasma pulse for 5 s followed by an N_2 purge for 1 s. The resulting samples were named MgH₂–ZrTi@5nmAl₂O₃, MgH₂–ZrTi@10nmAl₂O₃, and MgH₂-ZrTi@20nmAl₂O₃, respectively, based on the deposited thickness of Al₂O₃. The MgH₂–ZrTi after dehydrogenation at 300 °C was coated with 10 nm Al₂O₃ by ALD to prepare Mg–ZrTi@10nmAl₂O₃ in non-hydrogen state.

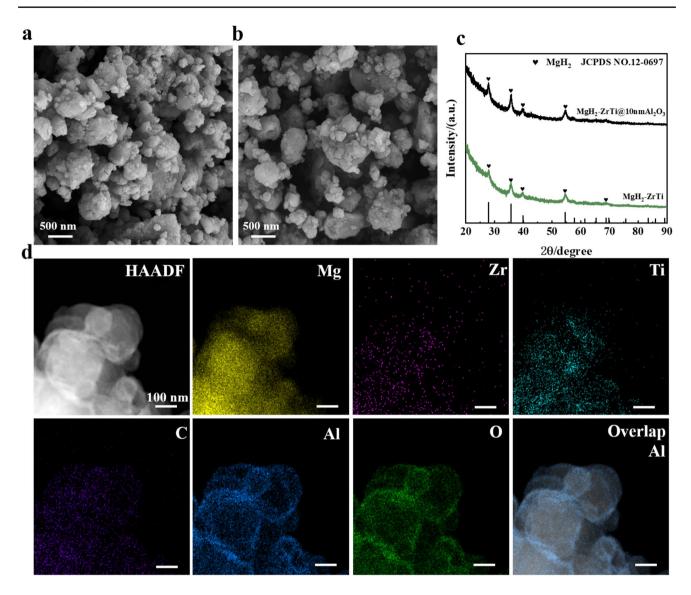
2.2 Air Stability Tests of MgH2-ZrTi@Al2O3

The MgH₂–ZrTi@Al₂O₃ samples obtained from ALD deposition were directly exposed to air, and the exposure times were set to 1 day, 1 week, 1 month, 2 months, and 3 months, respectively. The average temperature was 15 °C and the average humidity was 25% RH.

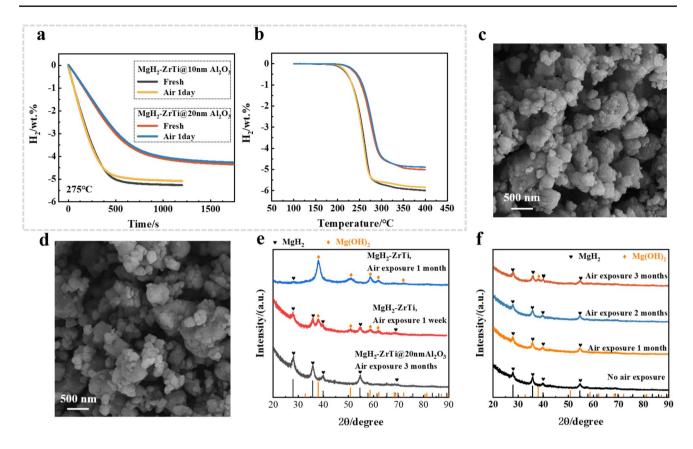
2.3 Hydrogen Selective Adsorption Tests of MgH₂-ZrTi@Al₂O₃

Hydrogen selective adsorption tests were performed in $10\%CH_4 + 90\%H_2$ and $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere at different temperatures. The $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ mixture was obtained by injecting H_2 into a vessel containing 0.1 bar of standard air $(21\%O_2 + 79\%N_2)$ until the pressure in the vessel reached 21 bar. The $0.1\%CO_2 + 0.4\%N_2 + 99.5\%H_2$ mixture was obtained by injecting H_2 into a vessel containing 0.1 bar of $21\%CO_2 + 79\%N_2$ until the pressure in the vessel reached 21 bar. The high concentration of O_2 was performed using a two-step method for hydrogenation, where the sample was first heated under pure hydrogen and followed by $21\%O_2 + 79\%N_2$ at 75 °C for 1 h.

3 Results and Discussion


3.1 Structure Characterization of MgH₂-ZrTi@Al₂O₃

The MgH₂–ZrTi with low reaction temperature, fast kinetics as well as stable cycling properties were prepared by introducing oxygen-rich vacancies of Zr, Ti components to MgH₂ in our previous study [26]. Amorphous Al₂O₃ shells were constructed on MgH₂–ZrTi particles by ALD to achieve selective hydrogen absorption at moderate temperatures (75–100 °C). The as-produced MgH₂–ZrTi particles were observed by SEM to have irregular shapes (Fig. 1a) [26], with about 90% of the particles distributed in the range of 100-500 nm and a very small fraction up to 1 µm (Fig. S1a). No detectable variation was observed in the morphology or size distribution after the deposition of amorphous Al₂O₃ (MgH₂-ZrTi@10nmAl₂O₃, Fig. 1b), indicating no melting or growth of MgH₂ particles during the ALD process. Furthermore, no difference was observed in the X-ray diffraction (XRD) patterns of MgH₂-ZrTi before and after the coating of amorphous Al₂O₃ (Fig. 1c). Only diffraction peaks at 27.9°, 35.7°, 39.9°, 54.6°, and 68.8°, corresponding to the (110), (101), (200), (211), and (112) planes of MgH₂, were detected from the XRD patterns of MgH₂-ZrTi and MgH₂–ZrTi@10nmAl₂O₃ (Fig. 1c, ♥). No dehydrogenation or oxidation product was detected from the XRD of


78 Page 4 of 16 Nano-Micro Lett. (2026) 18:78

MgH₂–ZrTi@10nmAl₂O₃, further confirmed no negative reaction occurred during ALD processing for hydrogen storage materials. No diffraction peak of Al₂O₃ was observed from MgH₂–ZrTi@10nmAl₂O₃, suggesting the amorphous features of Al₂O₃ from the ALD process. This situation is consistent well with reported metal oxides prepared by ALD [27, 28], where no XRD signal of deposited metal oxides was detected. Only interplanar spacings of 0.25 nm corresponding to the (101) planes of MgH₂ (JCPDS No. 12-0697) were observed from the HRTEM

images of MgH₂–ZrTi@10nmAl₂O₃ (Fig. S2), consistent well with XRD results. The successful coating of Al₂O₃ shells was clearly observed by HAADF-STEM with corresponding elemental analyses on MgH₂–ZrTi@10nmAl₂O₃ (Fig. 1d). The Al and O elements were observed to be clearly distributed as thin atomic layers on the surface of MgH₂ particles, where Zr, Ti, and C were detected to be homogeneously distributed inside MgH₂ particles as hydrogen channels [26].

Nano-Micro Lett. (2026) 18:78 Page 5 of 16 78

Fig. 2 a Isothermal dehydrogenation (275 °C) and **b** TPD curves of MgH₂–ZrTi@10nmAl₂O₃ (fresh–black, exposure to air for 1 day–yellow) and MgH₂–ZrTi@20nmAl₂O₃ (fresh–red, exposure to air for 1 day–blue) before and after exposure to air for 1 day. SEM images of MgH₂–ZrTi@10nmAl₂O₃ after exposure to air for **c** 1 month and **d** 2 months. XRD spectra of **e** MgH₂–ZrTi, MgH₂–ZrTi@20nmAl₂O₃, and **f** MgH₂–ZrTi@10nmAl₂O₃ before and after air exposure for different times

3.2 Shied Effect of Amorphous Al₂O₃ Coating on MgH₂–ZrTi

The isothermal (Fig. 2a) and temperature programmed dehydrogenation (TPD, Fig. 2b) properties of MgH₂–ZrTi@10nmAl₂O₃ and MgH₂–ZrTi@20nmAl₂O₃ before and after exposure to air were measured to reveal the shielding effect of amorphous Al₂O₃ shells to H₂O and O₂. The dehydrogenation performance of MgH₂–ZrTi was found to deteriorate significantly after exposure to air for 1 day (Fig. S3). Only 0.036 wt% of H₂ was detected to be released from MgH₂–ZrTi after exposure to air for 1 day at 275 °C in 20 min, while 6.20 wt% H₂ was detected at 275 °C in 6 min from MgH₂–ZrTi before exposure to air (Fig. S3a). The dehydrogenation temperature of MgH₂–ZrTi was found to be significantly increased after exposure to air for 1 day, where only 1.10 wt% of H₂ was released even up to 400 °C compared to 6.40 wt% released up to 300 °C

for fresh MgH₂–ZrTi from TPD measurements (Fig. S3b). However, no significant variation was detected for the dehydrogenation of MgH₂–ZrTi@Al₂O₃ (Fig. 2a, b), where less than 0.2 wt% variation was observed for MgH₂-ZrTi@ Al_2O_3 after exposure to air for 1 day. The dehydrogenation curves of MgH₂-ZrTi@Al₂O₃ before and after air exposure were found to overlap for the isothermal one within 0-400 s (Fig. 2a) as well as TPD one within 100–280 °C (Fig. 2b). About 4.87 wt% of H₂ was released at 275 °C within 500 s from MgH₂-ZrTi@10nmAl₂O₃ after exposure to air for 1 day (Fig. 2a). The hydrogen storage density was found to decrease with increasing Al₂O₃ thickness from 10 to 20 nm (Fig. 2a, b). About 4.23/4.31 wt% H₂ was released at 275 °C within 25 min for MgH₂–ZrTi@20nmAl₂O₃ before/ after air exposure (Fig. 2a). The dehydrogenation temperature of MgH₂-ZrTi@Al₂O₃ was also found to increase with increasing Al₂O₃ thickness (Fig. 2b). The ZrO₂ and Ti₃C₂ components of MgH₂-ZrTi composites were deduced from

the maximum dehydrogenation capacity of fresh MgH_2 –ZrTi (6.77 wt%, TPD in Fig. S3b) to have a mass ratio of about 11 wt%.

78

The XRD features of Mg(OH)₂ (JCPDS NO. 07-0239, Fig. 2e, yellow ♦) was clearly detected in addition to XRD features of MgH₂ (27.9 $^{\circ}$ (110), 35.7 $^{\circ}$ (101), 39.9 $^{\circ}$ (200), 54.6°(211), and 68.8°(112), Fig. 2e, black ♥) for MgH₂–ZrTi after exposure to air, whose intensity was found to increase with increasing exposure time (Fig. 2e from red line to blue line), consistent well with the degradation of its hydrogen storage performance (Fig. S3). In order to estimate Mg(OH)₂ impurity quantitatively, the MgH₂–ZrTi (100 mg) was heated at 200 °C for 48 h in air after exposure to air for 1 week. The mass of the product was measured to be 181.2 mg. Both MgH₂ and Mg(OH)₂ (Fig. 2e, red line) was detected in MgH2-ZrTi before heating treatment, while only Mg(OH)₂ (Fig. S4) was detected after heating treatment. The MgH2 and Mg(OH)2 in the MgH2-ZrTi after exposure to air for 1 week was estimated to be about 66 and 34 mg, respectively, based on the mass variation. The Mg(OH)₂ impurities in MgH₂–ZrTi after exposure to air for 1 week was deduced to be about 34%. No Mg(OH)₂ was detected from the XRD of MgH₂-ZrTi@5nmAl₂O₃ after exposure to air for 1 week (Fig. S5), demonstrating that the 5 nm amorphous Al₂O₃ encapsulation is also effective in protecting MgH₂/Mg particles. However, the Mg(OH)₂ features were detected after exposure to air for 1 month and 6 weeks, with its content increasing continuously (Fig. S5). However, only diffraction features of MgH₂ were detected for MgH₂-ZrTi@10nmAl₂O₃ and MgH₂-ZrTi@20nmAl₂O₃ even after exposure to air for 2 to 3 months (Fig. 2e, f), where no MgO or Mg(OH)₂ was detected. Only tiny diffraction peaks of Mg(OH), were detected from MgH₂–ZrTi@10nmAl₂O₃ after exposure to air for 3 months (Fig. 2f, red line). No morphological changes were observed on the surface of MgH₂–ZrTi@10nmAl₂O₃ particles after exposure to air for 1 month (Fig. 2c) and even 2 months (Fig. 2d). No Mg(OH)₂ was detected from MgH₂–ZrTi@10nmAl₂O₃ after exposure to air for 3 weeks when the air condition was adjusted from 15 °C to 25% RH to 30 °C and 50% RH (Fig. S6), further confirmed the air stability of the MgH₂-ZrTi@10nmAl₂O₃. No diffraction peaks of MgO and Mg(OH)₂ was detected from the Mg–ZrTi@10nmAl₂O₃ in non-hydrogen state after exposure to air for 3 weeks (Fig. S7) either, demonstrating an excellent protection effect of 10 nm amorphous Al₂O₃ shells for the hydrogen storage particles. The MgH_2 – $ZrTi@5nmAl_2O_3$, MgH_2 – $ZrTi@10nmAl_2O_3$ and MgH_2 – $ZrTi@20nmAl_2O_3$ have been demonstrated to maintain intact without obvious oxidation after exposure to air for 1 week, 2 months and 3 months, respectively. The 10 nm Al_2O_3 coating has been demonstrated to be effective enough to prevent the degradation of MgH_2 –ZrTi from exposure to air (H_2O) and O_2).

3.3 Hydrogen Selective Adsorption of MgH₂– ZrTi@10nmAl₂O₃ in the Presence of CH₄, O₂, N₂ and CO₂ Impurities

The selective absorption of MgH₂-ZrTi@10nmAl₂O₃ was first explored under a hydrogen atmosphere in the presence of 10% methane (10 vol% $CH_4 + 90$ vol% H_2). About 4.79 wt% H₂ was detected to be adsorbed by $MgH_2-ZrTi@10nmAl_2O_3$ under $10\%CH_4+90\%H_2$ (30 bar), slightly less than that (5.00 wt%) under pure H₂ (30 bar, 99.999%) at 75 °C in 3 h (Fig. 3a). The absorption densities under two different atmospheres were observed to converge with increasing absorption time (Fig. 3a). The slightly slower hydrogenation kinetic under an impure hydrogen atmosphere than that under a pure hydrogen atmosphere was attributed to lower real-time hydrogen pressure of the impure atmosphere than that of pure one during the hydrogenation process, which is confirmed by the overlap of the hydrogenation curve of MgH₂-ZrTi@10nmAl₂O₃ under 30 bar pure hydrogen and 35 bar 10%CH₄ + 90%H₂ (Fig. S8). Strong MgH₂ feature (Fig. S9, black line, black ♥) with very weak Mg feature (Fig. S9, black line, orange *) were detected from hydrogenated MgH2-ZrTi@10nmAl2O3 under impure hydrogen atmosphere ($10\%CH_4 + 90\%H_2$), consistent well with its hydrogenation results (Fig. 3a, yellow). Only a slight difference, slower hydrogenation kinetics, has been demonstrated for MgH₂–ZrTi@10nmAl₂O₃ under an impure hydrogen atmosphere $(10\%CH_4 + 90\%H_2)$ compared to that under a pure hydrogen atmosphere (99.999%). However, the MgH₂-ZrTi without Al₂O₃ shells was detected to have a much lower absorption density under $10\%CH_4 + 90\%H_2$ than that under a pure hydrogen atmosphere (Fig. S10). About 4.71 wt% H₂ was adsorbed by MgH₂–ZrTi in 1 h under pure H₂ atmosphere (Fig. S10, green line), whereas about 3.91 wt% was absorbed under 10%CH₄+90%H₂ atmosphere (Fig. S10, blue line). The adsorption capacity of MgH₂–ZrTi in 10%CH₄+90%H₂ atmosphere was detected to decay

Nano-Micro Lett. (2026) 18:78 Page 7 of 16 78

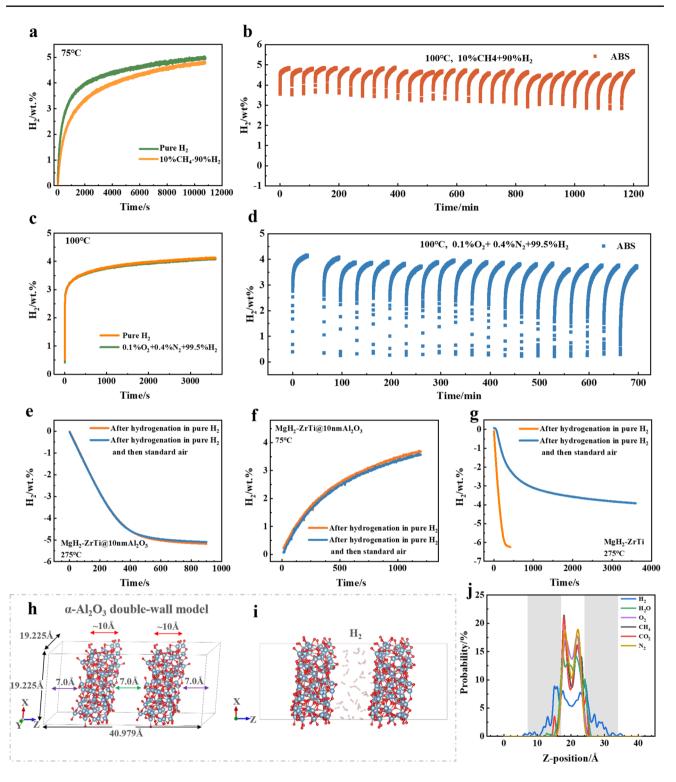


Fig. 3 Isothermal adsorption curves of a MgH₂–ZrTi@10nmAl₂O₃ at 75 °C in pure H₂ and 10%CH₄+90%H₂ atmospheres (30 bar). b Isothermal cyclic adsorption curves of MgH₂–ZrTi@10nmAl₂O₃ at 100 °C under 10%CH₄+90%H₂ atmosphere. c Isothermal adsorption curves of MgH₂–ZrTi@10nmAl₂O₃ in pure H₂ and 0.1%O₂+0.4%N₂+99.5%H₂ atmospheres (16 bar, 100 °C). d Isothermal cyclic adsorption curves of MgH₂–ZrTi@10nmAl₂O₃ at 100 °C under 0.1%O₂+0.4%N₂+99.5%H₂ atmosphere. Isothermal e dehydrogenation and f re-hydrogenation curves of MgH₂–ZrTi@10nmAl₂O₃ after hydrogenation in pure H₂ followed 21%O₂+79%N₂ (blue line) at 75 °C for 1 h compared to that only under pure H₂ followed by 21%O₂+79%N₂ (blue line) at 75 °C for 1 h. h Double-wall α-Al₂O₃ model consisting of two parallel slabs and i the simulation of the penetration of H₂ molecules between the two Al₂O₃ slabs. j Proportional distribution of various gas molecules along the z-direction

78 Page 8 of 16 Nano-Micro Lett. (2026) 18:78

gradually with increasing cycles, with 3.48 wt% as well as 3.18 wt% adsorbed within 1 h for the 2nd and 3rd cycles, respectively (Fig. S10, orange and red lines). Fish scalelike structures (Fig. S11b), amorphous carbon produced from the reaction of CH₄ with MgH₂–ZrTi particles [25], were detected to emerge on the surface of MgH2-ZrTi after hydrogenation under $10\%CH_4 + 90\%H_2$ atmosphere. The emergence of carbon was confirmed by HAADF-STEM and its elemental analysis of MgH2-ZrTi before and after hydrogenation under 10% CH₄ + 90% H₂ atmosphere, where the carbon range was enhanced after hydrogenation (inside the yellow circle of Figs. S12 and S13). Only XRD features of MgH2 and Mg were detected from the hydrogenated MgH₂–ZrTi (10%CH₄ + 90%H₂, Fig. S9), indicating the amorphous nature of carbon which is consistent well with reported data [25].

The isothermal adsorption performance of MgH₂-ZrTi@10nmAl₂O₃ was further measured at different temperatures under 10%CH₄ + 90%H₂ atmosphere (Fig. S14a), where 3.86 wt% H₂, 5.33 wt% H₂, and 5.85 wt% H₂ were absorbed at 75, 100, and 125 °C within 1 h. The MgH₂-ZrTi@10nmAl₂O₃ was observed to reach the inflection point of the adsorption curve at around 4 min at 100 and 125 °C, with 4.33 and 4.84 wt% H₂ absorbed, respectively. No Fish scale-like structures of amorphous carbon were observed on the surface of MgH₂–ZrTi@10nmAl₂O₃ after hydrogenation at 125 °C under 10%CH₄+90%H₂ atmosphere from SEM (Fig. S15). No amorphous carbon produced was further confirmed by HAADF-STEM and corresponding elemental analyses (Fig. S16), where no extra carbon was observed on Al₂O₃ shells. The selective hydrogen absorption of MgH2-ZrTi@10nmAl2O3 was further confirmed by its cycling stability under 10%CH₄+90%H₂ atmosphere (Figs. S14b and S17). The 1st and 5th adsorption curves of MgH₂-ZrTi@10nmAl₂O₃ were observed to be almost completely overlapped. About 3.98 and 3.89 wt% H₂ was absorbed at 75 °C in 1 h for the 1st and 5th cycle, respectively (Fig. S14b). About 4.86, 4.72, and 4.71 wt% H₂ were still absorbed by MgH₂-ZrTi@10nmAl₂O₃ at 100 °C for 10th, 20th and 30th cycle, with 96.9% capacity retention at the 30th cycle (1st hydrogenation capacity was 4.86 wt%, Fig. 3b). The hydrogenation behavior that did not start from zero is attributable to the excessive rate of hydrogenation during the initial 1-3 s at 100 °C under 30 bar $10\%CH_4 + 90\%H_2$ atmosphere. The MgH₂–ZrTi@10nmAl₂O₃ has been demonstrated to have excellent selective hydrogenation under an impure hydrogen atmosphere of $10\%CH_4 + 90\%H_2$.

The s e l e c t i v e absorption MgH₂-ZrTi@10nmAl₂O₃ in the presence of O₂ and N₂ was also explored with different content. The isothermal re-hydrogenation curve of MgH₂-ZrTi@10nmAl₂O₃ under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ (100 °C, 16 bar) was found to overlap with that under pure H₂ (Fig. 3c), about 4.10 wt% of H2 was adsorbed at 100 °C within 1 h. However, the isothermal hydrogenation behavior of blank MgH2-ZrTi was observed to attenuate significantly under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$, only 2.51 wt% H₂ absorbed at 100 °C within 1 h (Fig. S18, blue line). 3.71 wt% H₂ was absorbed by MgH₂–ZrTi at 100 °C in 2 min under pure H₂ at 100 °C (Fig. S18, green line). The MgH₂-ZrTi@10nmAl₂O₃ was observed to have rapid hydrogenation at moderate temperatures (75–125 °C) under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ (Fig. S19a), where 3.15 wt% H₂ was absorbed at 75 °C within 1 h and 3.93 wt% H₂ was absorbed at 125 °C within 3 min. The three hydrogenation cycle curves of MgH₂-ZrTi@10nmAl₂O₃ under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere at 100 °C were detected to be almost overlapped (Fig. S19b). However, the cycling performance of MgH₂-ZrTi under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere at 100 °C was observed to decrease significantly (Fig. S18), with 2.52, 1.93, and 1.33 wt% of H₂ absorbed within 1 h for the 1st, 2nd, and 3rd cycle, respectively. In addition, about 3.94 wt% as well as 3.70 wt% H₂ were still absorbed by MgH₂-ZrTi@10nmAl₂O₃ for the 10th and 20th cycle at 100 °C under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$, with a capacity retention of 89.4% at the 20th cycle (the 1st hydrogenation capacity was 4.14 wt%, Fig. 3d). Small fluctuations in the capacity during the hydrogenation cycles (e.g., 7th and 8th hydrogenation processes, Fig. 3d) were introduced by small sample volume variation during the test [28]. No diffraction peaks of MgO (JCPDS No. 45-0946) were observed in the XRD of MgH₂-ZrTi@10nmAl₂O₃ (Fig. S20, green line) after hydrogenation under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$, where only MgH₂ (JCPDS No. 12-0697, black ♥) and Mg (JCPDS No. 35-0821, orange *) were detected. However, MgH₂ (JCPDS No. 12-0697, black ♥), Mg (JCPDS No. 35-0821, orange *) and MgO (JCPDS No. 45-0946, blue Δ) were observed in the XRD pattern of MgH₂–ZrTi after hydrogenation under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ at 100 °C (Fig. S20, gray line). The Al₂O₃ shells have been

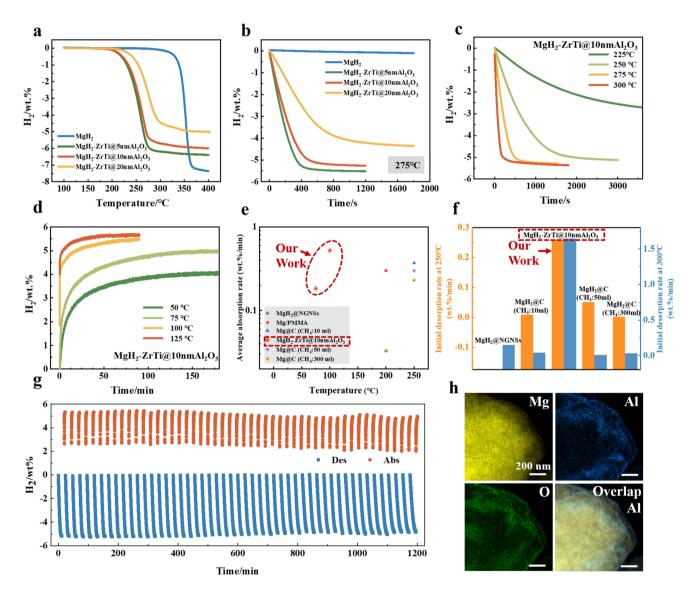
demonstrated to effectively shield the MgH₂/Mg to react with O₂ to yield MgO, resulting in excellent selective hydrogen absorption under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere. The MgH₂–ZrTi@10nmAl₂O₃ has been demonstrated to have excellent hydrogen selective absorption in the presence of O₂ and N₂.

The selective hydrogen absorption MgH₂–ZrTi@10nmAl₂O₃ under high concentration of O₂ and N₂ was also performed. However, too high concentration of O₂ with H₂ will cause an explosion during experiments. So selective hydrogen absorption of MgH₂–ZrTi@10nmAl₂O₃ with a high concentration of O₂ was conducted by a two-step method, where the sample was first heated in pure hydrogen and then in $21\%O_2 + 79\%$ N₂ at 75 °C for 1 h for hydrogenation process. The isothermal re/dehydrogenation curves of MgH₂-ZrTi@10nmAl₂O₃ after hydrogenation in pure H₂ followed by $21\%O_2 + 79\%N_2$ at 75 °C for 1 h were found to overlap with those after hydrogenation in pure H₂ (Fig. 3e, f). However, the dehydrogenation curve of MgH₂–ZrTi after being treated by pure H_2 followed by $21\%O_2 + 79\%N_2$ at 75 °C for 1 h was found to be significantly attenuated than that treated under pure hydrogen (Fig. 3g), only 2.59 wt% of H₂ being released in 10 min at 275 °C.

Hydrogen absorption behavior in the presence of CO₂ $(0.1\%CO_2 + 0.4\%N_2 + 99.5\%H_2)$ was further investigated. Significant attenuation of the hydrogen absorption behavior was observed for the blank MgH2-ZrTi in the presence of CO₂ (Fig. S21a). The hydrogen absorption capacity of MgH2-ZrTi in the H2 atmosphere at 100 °C was measured to be 5.25 wt% within 0.5 h (Fig. S21a, green line), while the hydrogen absorption capacities was found to decrease to 1.66 and 0.75 wt% in the first and second cycles under $0.1\%CO_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere (Fig. S21a, blue and orange lines), respectively. However, the hydrogen absorption curve (Fig. S21b, blue) of MgH₂-ZrTi@10nmAl₂O₃ under $0.1\%CO_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere was found to overlap with that under pure H₂ (Fig. S21b, green). The hydrogen absorption capacities of MgH₂–ZrTi@10nmAl₂O₃ under $0.1\%CO_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere was detected to be 4.05, 4.01, and 3.92 wt% within three cycles (Fig. S21b, blue, orange, and red lines), further confirming the effective protection of amorphous Al₂O₃ shells for MgH_2/Mg from CO_2 .

To investigate the penetration behavior of various gases through amorphous Al_2O_3 shells, a double-wall α - Al_2O_3

model comprising two parallel slabs were constructed (Fig. 3h). The interlayer spacing between the slabs was set to 7 Å, and an additional 14 Å vacuum region was introduced along the z-direction to eliminate image interactions arising from periodic boundary conditions. Amorphous Al₂O₃ layers were generated by cleaving an α-Al₂O₃ (0001) slab and performing molecular dynamics (MD) simulations at 800 K using a Langevin thermostat within the NVT ensemble for 150 ps [29]. The final configuration was extracted after the system reached thermal equilibrium. Based on HRTEM observations indicating an Al-oxide layer thickness of approximately 10 nm (Fig. S2), a comparable thickness for our model was adopted. To accelerate gas penetration, 40 gas molecules were inserted between the two Al₂O₃ slabs for each case (Figs. 3i and S22c-h). The simulations were carried out at 800 K. Due to the elevated gas density, the interlayer spacing tends to expand under pressure. To mitigate this effect, Al and O atoms at the periodic boundaries in the xy-plane were fixed (the gray-shaded region in Fig. S22a). Subsequently, molecular dynamics (MD) simulations were performed for 250 ps using a Langevin thermostat. To monitor gas penetration, we tracked the z-position of representative atoms: H from H₂, C from CO₂ and CH₄, O from H_2O and O_2 , and N from N_2 . The penetration behavior was analyzed by plotting histograms of these atomic z-positions (Fig. 3j). The gray-shaded regions in Figs. S22a and 3j represent the spatial extent of the Al₂O₃ layer. It is important to note that the surface of the amorphous layer is not atomically flat. The gray region corresponded to the z-position of the outermost atoms of the amorphous Al₂O₃ slab. All gases except H₂ was found to exhibit narrow probability distributions confined between the Al₂O₃ layers or shallowly intercalated near the surface, indicating that only H2 molecules are able to permeate through the amorphous Al₂O₃ layer, while other gas species (O₂, H₂O, N₂, CH₄, and CO₂) are either adsorbed onto or weakly intercalated within the surface region. The MD simulations results are well consistent with reported simulation data [30]. The H₂ permeability and selectivity are largely dependent on the size of the nanopore. The H₂ permeability was found to increase with increasing pore size, meanwhile hampering the selectivity [30]. Based on the selective hydrogen adsorption behavior of the MgH₂-ZrTi@10nmAl₂O₃ (Fig. 3a-d) and the results of MD simulations (Fig. 3j), it is inferred that the Al₂O₃ shells have a suitable pore size that facilitates the permeation of H₂ as well as hinders the permeation of other gases, which


78 Page 10 of 16 Nano-Micro Lett. (2026) 18:78

in turn exhibits excellent selective adsorption properties for hydrogen.

3.4 Hydrogen Sorption Properties of MgH₂–ZrTi@ Al₂O₃

The hydrogen sorption properties of MgH_2 in pure H_2 have been demonstrated to be significantly enhanced by the synergistic effect of amorphous ZrO_2 as well as Few-layer Ti_3C_2 (FL- Ti_3C_2) in our previous studies [26]. The effects

of the thickness of amorphous Al₂O₃ shells on the hydrogen storage performance of MgH₂–ZrTi were also explored (Fig. 4a, b). The onset dehydrogenation temperatures of MgH₂–ZrTi@5nmAl₂O₃ and MgH₂–ZrTi@10nmAl₂O₃ (Fig. 4a, red and green) were found to be around 185 °C, the same as that of MgH₂–ZrTi (Fig. S3b, orange) which is 105 °C lower than that of MgH₂ (Fig. 4a, blue) [26]. The TPD curves of MgH₂–ZrTi@5nmAl₂O₃ and MgH₂–ZrTi@10nmAl₂O₃ were observed to be almost overlapped between 185 and 275 °C (Fig. 4a).

Fig. 4 a TPD and **b** isothermal dehydrogenation (275 °C) of MgH₂, MgH₂–ZrTi@5nmAl₂O₃, MgH₂–ZrTi@10nmAl₂O₃, and MgH₂–ZrTi@20nmAl₂O₃. The isothermal **c** dehydrogenation and **d** re-hydrogenation (30 bar H₂) of MgH₂–ZrTi@10nmAl₂O₃ at different temperature. **e** Average re-hydrogenation rates and **f** Initial dehydrogenation rates (250 °C and 300 °C) of MgH₂–ZrTi@10nmAl₂O₃ compared with reported excellent air-stable Mg-based composites [18–20]. **g** Isothermal dehydrogenation (275 °C/0.05 bar) and re-hydrogenation (275 °C/30 bar H₂) cycling curves of MgH₂–ZrTi@10nmAl₂O₃. **h** EDS elemental mapping analysis of MgH₂–ZrTi@10nmAl₂O₃ after 50 cycles

However, the maximum dehydrogenation capacity of MgH₂-ZrTi@5nmAl₂O₃ and MgH₂-ZrTi@10 nm Al₂O₃ were observed to be 6.39 and 6.00 wt% before 400 °C (Fig. 4a), respectively, due to no hydrogen storage capacity contribution of Al₂O₃. The onset dehydrogenation temperature of MgH₂-ZrTi@20nmAl₂O₃ was detected to increase to 205 °C (Fig. 4a, yellow). Only 4.45 wt% H₂ was released from MgH₂-ZrTi@20nmAl₂O₃ up to 300 °C, which is about 1 wt% less than that of MgH₂-ZrTi@10nmAl₂O₃. The dehydrogenation kinetics of MgH₂–ZrTi@10nmAl₂O₃ and MgH₂-ZrTi@5nmAl₂O₃ (Fig. 4b, red and green) were found to be similar. About 5.02 wt% of H₂ was released from MgH₂-ZrTi@10nmAl₂O₃ at 275 °C within 500 s (Fig. 4b, red). The isothermal dehydrogenation rate of MgH₂-ZrTi@20nmAl₂O₃ was observed to further slow down significantly (Fig. 4b, yellow), About 4.10 wt% of H₂ was released from MgH₂–ZrTi@20nmAl₂O₃ at 275 °C in 1000 s. The isothermal dehydrogenation of the hydrogen storage materials at 275 °C (Fig. 4b) were normalized based on the theoretical hydrogen storage capacity of MgH₂ (7.6 wt%), resulting in normalized hydrogen release curves (Fig. S23). The normalized dehydrogenation curves of MgH₂-ZrTi@5nmAl₂O₃ and MgH₂-ZrTi@10nmAl₂O₃ within 200 s were found to almost overlap with dehydrogenation completion within 500 s, while about 1000 s was required for MgH₂–ZrTi@20nmAl₂O₃ to complete the dehydrogenation process. MgH₂-ZrTi@10nmAl₂O₃ has been demonstrated to be the best considering kinetics, hydrogen storage density (Fig. 4a, b), and shied effect (Figs. 2 and 3).

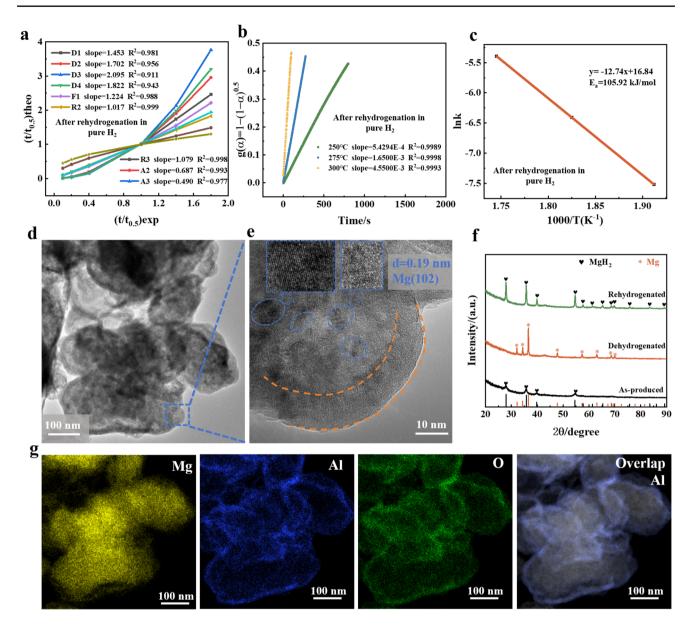
The dehydrogenation rates of MgH₂–ZrTi@10nmAl₂O₃ were observed to be significantly accelerated with increasing temperature from 225 to 300 °C (Fig. 4c). The dehydrogenation of MgH₂–ZrTi@10nmAl₂O₃ at 250 °C was found to be almost complete within 30 min, releasing about 5 wt% of H₂ with an onset dehydrogenation rate (within the first 600 s) of 0.297 wt% min⁻¹. About 5.13 wt% was released at 275 °C for 10 min with an onset dehydrogenation rate (within the first 600 s) as high as 0.683 wt% min⁻¹. The dehydrogenation curve of MgH₂–ZrTi@10nmAl₂O₃ was found to reach its inflection point within 3 min at a further increasing temperature to 300 °C, releasing 4.93 wt% of H₂. Additionally, MgH₂-ZrTi@10nmAl₂O₃ were hydrogenated in 30 bar $10\%CH_4 + 90\%H_2$ and 16 bar $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ for 1 h and then heated to the isothermal test temperature (250, 275, and 300 °C) under 2 bar H₂ atmosphere for isothermal dehydrogenation tests (Figs. S24a and S25a). The dehydrogenation capacity of MgH₂-ZrTi@10nmAl₂O₃ after re-hydrogenation in the $10\%CH_4 + 90\%H_2$ and $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ atmospheres was slightly lower than that after re-hydrogenation in the pure H₂ atmosphere (Fig. S26), which is attributed to the limited hydrogen absorption capacity during the hydrogen absorption process at 100 °C. An excellent hydrogenation performance was also obtained by MgH₂-ZrTi@10nmAl₂O₃ (Fig. 4d). About 2.59 wt% of H₂ was absorbed by MgH₂–ZrTi@10nmAl₂O₃ at 50 °C within 15 min, extending to 3.92 wt% with hydrogenation time prolonged to 2 h. The hydrogenation capacity of MgH₂-ZrTi@10nmAl₂O₃ was observed to be significantly increased at 75 °C with 3.42 wt% H2 absorbed within 15 min, while 4.44 wt% in 1 h and 4.97 wt% in 3 h. The surge in hydrogenation rate is attributable to the rapid enhancement of the reactivity of MgH₂-ZrTi@10nmAl₂O₃ upon increasing temperature, analogous to the hydrogenation behavior of the reported blank MgH₂-ZrTi [26]. The initial hydrogenation rate was deduced to reach 0.228 wt% min⁻¹ at 75 °C based on the first 15 min since the transition point of the curve proportion limit is located at 15 min (Fig. 4d, light green). The hydrogenation curve of MgH₂-ZrTi@10nmAl₂O₃ at 100 °C was found to reach its inflection point within 5 min with 4.51 wt% H₂ absorbed, while absorbing 5.46 wt% of H₂ within 1.5 h. The hydrogenation kinetics of MgH₂-ZrTi@10nmAl₂O₃ at 125 °C (Fig. 4d, red) was found to be similar to that at 100 °C. The MgH₂–ZrTi@10nmAl₂O₃ has been demonstrated to have rapid hydrogenation capabilities between 75 and 100 °C, which is able to be realized by using solar energy effectively in the future. Both the average hydrogenation rate before the transition point and initial dehydrogenation rate within the first 10 min of MgH₂-ZrTi@10nmAl₂O₃ have been demonstrated to be much better than reported air-stabilized Mgbased composites under the same data-intercept conditions (Fig. 4e, f) [18–20].

The cycling performance of MgH $_2$ –ZrTi@10nmAl $_2$ O $_3$ was also conducted (Fig. 4g). The dehydrogenation capacity of MgH $_2$ –ZrTi@10nmAl $_2$ O $_3$ was found to gradually increase from 5.19 to 5.23 wt% during the first 10 cycles due to gradual activation of hydrogen storage material particles during the de/re-hydrogenation cycles. About 5.12 and 5.04 wt% of H $_2$ were detected to release from MgH $_2$ –ZrTi@10nmAl $_2$ O $_3$ even after the 20th and 30th cycles, respectively. The dehydrogenation cycling capacity of MgH $_2$ –ZrTi@10nmAl $_2$ O $_3$ was found to be stable after 40 cycles (4.96 wt%), where

4.97 wt% was detected after 50 cycles. The re-hydrogenation behavior during cycling was observed to be similar to the trend of dehydrogenation one (Fig. 4g). The re-hydrogenation capacity was detected to increase from 5.30 to 5.42 wt% in the first 10 cycles. The re-hydrogenation capacity was detected to be 5.26, 4.9, 4.96, and 4.96 wt% at the 20th, 30th, 40th and 50th cycle, respectively. Amorphous Al₂O₃ shells were observed to be robust on the surface of MgH₂ particles even after 50 cycles by HAADF-STEM and corresponding elemental analyses (Fig. 4h), consistent well with the high cycling performance of MgH₂–ZrTi@10nmAl₂O₃. The MgH₂–ZrTi@10nmAl₂O₃ has been demonstrated to have excellent cycling performance with a capacity retention of 95.0% after 50 cycles.

78

3.5 Analysis of Hydrogen Sorption Processes for MgH₂–ZrTi@10nmAl₂O₃


The isothermal dehydrogenation curve of $MgH_{2}\text{--}ZrTi@10nmAl_{2}O_{3}$ at 275 °C (Figs. 4c, S24a, and S25a) was fitted using a rapid screening method of kinetic models [31, 32] to explore the dehydrogenation kinetic of MgH₂–ZrTi@10nmAl₂O₃. The R2 (two-dimensional phase boundary) model [33] was found to suit the dehydrogenation kinetic of MgH₂–ZrTi@10nmAl₂O₃ after re-hydrogenation under pure H₂ best since its slope (1.017) is closest to 1 and intercept (-0.0048) closest to 0 among nine kinetic models (Fig. 5a). The kinetic model of MgH₂-ZrTi@10nmAl₂O₃ after re-hydrogenation in 30 bar 10%CH₄ + 90%H₂ or 16 bar $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ at 100 °C for 1 h was further fitted based on the isothermal dehydrogenation data at 275 °C (Figs. S24a and S25a). The R2 model was also found to be the most suitable one for describing the dehydrogenation behavior of MgH₂–ZrTi@10nmAl₂O₃ (Figs. S24b and S25b), suggesting no effect was caused by the rehydrogenation in atmospheres containing CH₄, O₂, and N₂ to the kinetics of MgH₂–ZrTi@10nmAl₂O₃. Subsequently, the apparent activation energy (E_a) for dehydrogenation was fitted based on the isothermal dehydrogenation data for MgH₂–ZrTi@10nmAl₂O₃ after re-hydrogenation in 30 bar H_2 (Fig. 4c). The isothermal dehydrogenation ratios α (at the range of 0-0.7) at different time scales under different temperatures from Fig. 4c were then substituted into the R2 model to obtain $g(\alpha)$ -Time curves (Fig. 5b). All three $g(\alpha)$ -Time curves were observed to have excellent linearity,

further confirming the suitability of the R2 model for the dehydrogenation kinetic of MgH_2 – $ZrTi@10nmAl_2O_3$. The slopes of the $g(\alpha)$ -Time curves as well as the corresponding temperatures were substituted into the Arrhenius equation to calculate the E_a of the dehydrogenation of MgH_2 – $ZrTi@10nmAl_2O_3$ (Fig. 5c) [34]. The dehydrogenation activation energy E_a of MgH_2 – $ZrTi@10nmAl_2O_3$ was found to slightly increase to 105.92 kJ mol⁻¹ from that of MgH_2 – $ZrTi(E_a=97.77$ kJ mol⁻¹) [26], consistent well with the slightly slower dehydrogenation rate of MgH_2 – $ZrTi@10nmAl_2O_3$ (Fig. 4a, b) than that of MgH_2 –ZrTi(Fig. S3) due to Al_2O_3 coating.

The kinetic of MgH₂-ZrTi@10nmAl₂O₃ has been demonstrated to follow R2 model where re-hydrogenation under 30 bar H₂, 30 bar 10%CH₄ + 90%H₂, or 16 bar $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$. The conversion reaction between MgH₂ and Mg has been demonstrated to occur rapidly on the surface of MgH₂ particles under the synergistic effect of amorphous ZrO₂ and FL-Ti₃C₂, where effective hydrogen channels were built [26]. The H₂ molecules were first diffused through the amorphous Al₂O₃ shells, with the MgH₂/Mg interfaces formed on the surface of the hydrogen storage particles and moved to the interior of the particles through hydrogen channels at a uniform speed [34]. The movement of the MgH₂/Mg interface was determined by the co-catalytic ability of amorphous ZrO2 and FL-Ti3C2 as well as the penetration rate of H₂ molecules through amorphous Al₂O₃ shells, which is the key factors for the dehydrogenation kinetic of MgH₂-ZrTi@10nmAl₂O₃.

The amorphous Al₂O₃ shells were clearly observed on the surface of MgH₂–ZrTi@10nmAl₂O₃ after re/dehydrogenation by TEM as well as HRTEM images (Figs. 5d, e, and S27), consistent well with its robust features to prevent reaction of MgH₂–ZrTi with impurities. Only the interplanar spacing of 0.19 nm corresponding to the (102) plane of Mg (JCPDS No. 35-0821) was observed from the HRTEM image of dehydrogenated MgH₂-ZrTi@10nmAl₂O₃ (Fig. 5e), while only interplanar spacing of 0.25 nm corresponding to the (101) plane of MgH₂ (JCPDS No. 12-0697) was observed from re-hydrogenated ones (Fig. S27b). The amorphous Al₂O₃ shells (Figs. 5e and S27) were still observed after re/dehydrogenation, further confirming their robust features during re/dehydrogenation. The amorphous feature of Al₂O₃ shells is well consistent with its XRD feature (Fig. 5f). The HRTEM images are consistent well with XRD spectra of MgH₂–ZrTi@10nmAl₂O₃ at different stages, where only

Nano-Micro Lett. (2026) 18:78 Page 13 of 16 78

Fig. 5 a Relationships of $(t/t_{0.5})_{theo}$ vs. $(t/t_{0.5})_{exp}$ of MgH₂–ZrTi@10nmAl₂O₃ at 275 °C according to various kinetic models. **b** Time dependence of R2 modeling equation $g(\alpha)$ for MgH₂–ZrTi@10nmAl₂O₃ at different temperatures. **c** Arrhenius plot for the dehydrogenation kinetics of MgH₂–ZrTi@10nmAl₂O₃. **d** TEM, **e** HRTEM, and **g** corresponding elemental mapping analysis of MgH₂–ZrTi@10nmAl₂O₃ after dehydrogenation. **f** XRD patterns of MgH₂–ZrTi@10nmAl₂O₃ before and after de/re-hydrogenation

XRD pattern of Mg was observed from the dehydrogenated MgH₂–ZrTi@10nmAl₂O₃ (Fig. 5f, red line) and only XRD pattern of MgH₂ was observed from the re-hydrogenated one (Fig. 5f, green line). No XRD patterns of crystalline Al₂O₃ were observed from MgH₂–ZrTi@10nmAl₂O₃ at any stages, further confirming its amorphous nature without any variation during re/dehydrogenation treatments. Only diffraction peaks corresponding to Mg and MgH₂ were detected in the

XRD of the de/re-hydrogenated one, indicating no detectable Mg-Al oxides were generated during heat treatments.

The chemical state variation during de/re-hydrogenation was further characterized by X-ray photoelectron spectroscopy (XPS) for MgH₂–ZrTi@10nmAl₂O₃ in different states (Fig. S28). The signal at 75.9 eV corresponding to amorphous Al₂O₃ [35] was detected from the high-resolution Al 2*p* XPS spectrum of the as-produced

Page 14 of 16 Nano-Micro Lett. (2026) 18:78

MgH₂-ZrTi@10nmAl₂O₃ (Fig. S28a). However, the Al 2p signal of MgH₂-ZrTi@10nmAl₂O₃ was observed to be shifted to lower energy level by 1.23 to 74.7 eV after de/re-hydrogenation, indicating electron doping of Al after de/re-hydrogenation process. The difference in electronegativity of Al (1.61), Ti (1.54), and Zr (1.33) in MgH₂-ZrTi@10nmAl₂O₃ resulted in the tendency of Al to attract electrons while Ti and Zr tended to provide electrons. Therefore, the shift in Al 2p spin-orbit peaks was attributed to Al-O-Ti and Al-O-Zr bonding between sublayers of Al₂O₃, Ti₃C₂ and ZrO₂ atoms, consistent well with reported studies [35, 36]. The high-resolution Mg 1 s signal was only resolved into a single peak at 1303.5 eV (Fig. S28b) [37], where Mg 1 s corresponding to Mg(OH)₂ (1302.7 eV [38]), MgO (1303.9 eV [39]), and MgAl₂O₄ (1304 eV [40]) were found to be negligible. The generation of hydrolysis, oxidation, or Mg-Al-oxides phases has been demonstrated to be negligible during the de/re-hydrogenation process.

The structural stability of MgH_2 – $ZrTi@10nmAl_2O_3$ during the de/re-hydrogenation was further verified by HAADF-STEM and corresponding elemental analyses (Figs. 5g, S29, and S30). The shell-like structure composed of Al and O elements was still clearly observed on the surface of MgH_2 – $ZrTi@10nmAl_2O_3$ particles after both dehydrogenation (Fig. 5g) and re-hydrogenation (Fig. S30), further confirming the robustness of Al_2O_3 shells. No size variation was observed for MgH_2 – $ZrTi@10nmAl_2O_3$ particles, indicating no particle melting or growth occurred from dehydrogenation (Fig. S31) or re-hydrogenation (Fig. S32) treatments. The stable structure is particularly conducive to the stable kinetic of MgH_2 – $ZrTi@10nmAl_2O_3$, consistent well with the excellent cycling performance of MgH_2 – $ZrTi@10nmAl_2O_3$ (Fig. 4g).

4 Conclusion

78

The atomic layer amorphous Al_2O_3 shells have been successfully deposited on the surface of highly active MgH_2 –ZrTi hydrogen storage material particles to obtain MgH_2 – $ZrTi@Al_2O_3$ by ALD. The Al_2O_3 shells have been demonstrated to be inert and effectively shielding against H_2O , CH_4 , O_2 , N_2 , and CO_2 while allowing H_2 to penetrate easily, thereby achieving excellent air stability and selective hydrogen absorption performance. The dehydrogenation curves of MgH_2 – $ZrTi@10nmAl_2O_3$ were found to almost

overlap before and after air exposure for 1 day, whereas almost no H2 was released from MgH2-ZrTi after exposure to air even at 275 °C. The MgH₂–ZrTi@10nmAl₂O₃ was found to have excellent de/re-hydrogenation performance, with an onset dehydrogenation temperature as low as 185 °C and an absorption of 5.00 wt% of H2 at 75 °C within 3 h. About 5.00 wt% of H2 was still released from MgH₂-ZrTi@10nmAl₂O₃ even after 50 cycles, with a capacity retention of up to 95%. The amorphous Al₂O₃ was demonstrated to be robust and maintain its shell-like structure after the de/re-hydrogenation, consistent with its high cycling stability. The MgH₂-ZrTi@10nmAl₂O₃ has also been demonstrated to have high selective hydrogen absorption performance under impure hydrogen. The MgH₂-ZrTi@10nmAl₂O₃ was demonstrated to have selective hydrogen adsorption in 10%CH₄ + 90%H₂ atmosphere (absorb 4.79 wt% H₂ at 75 °C for 3 h), where no kinetic or density decay was observed after 30 cycles at 100 °C (96.9% capacity retention). However, the CH₄ was detected to react with MgH₂-ZrTi without Al₂O₃ shells to produce amorphous C deposition. MgH₂-ZrTi@10nmAl₂O₃ has also been demonstrated to have selective hydrogen adsorption in $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere. About 4.1 wt% of H₂ was absorbed by MgH₂–ZrTi@10nmAl₂O₃ within 1 h at 100 °C, with a capacity retention of up to 89.4% after 20 hydrogen absorption cycles. In contrast, the hydrogen adsorption behavior of MgH₂-ZrTi under $0.1\%O_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere decayed rapidly. The MgH₂-ZrTi@10nmAl₂O₃ have also been demonstrated to have excellent selective hydrogen absorption performance even with extremely high O₂ atmosphere by two-step absorption method. The isothermal re/dehydrogenation curves of MgH₂–ZrTi@10nmAl₂O₃ after hydrogenation in pure H_2 followed by $21\%O_2 + 79\%N_2$ at 75 °C for 1 h were found to overlap with those after hydrogenation in pure H₂. In addition, about 4.0 wt% of H₂ was absorbed by the MgH₂–ZrTi@10nmAl₂O₃ at 100 °C within 0.5 h under $0.1\%CO_2 + 0.4\%N_2 + 99.5\%H_2$ atmosphere, while the hydrogen absorption behavior of the MgH₂-ZrTi was significantly attenuated under the same conditions. The MgH₂-ZrTi@10nmAl₂O₃ have been demonstrated to have excellent selective hydrogen absorption performance in the presence of different amounts of CH₄, O₂ N₂ and CO₂.

Acknowledgements The TEM studies were carried out at the Instrument Analysis Center of the Xi'an Jiaotong University. The

authors thank Mr C. Li for his help in using TEM. The research was supported by the National Natural Science Foundation of China (22175136), the State Key Laboratory of Electrical Insulation and Power Equipment (EIPE23127), and the Fundamental Research Funds for the Central Universities (xtr052024009).

Author Contributions Fanqi Bu: Conceptualization, Investigation, Methodology, Writing-original draft, Writing-review & editing, Data curation, Zhenyu Wang: Software, Visualization, Ali Wajid: Software, Rui Zhai: Visualization, Ting Liu: Visualization, Yaohua Li: Visualization, Xin Ji: Resources, Xin Liu: Resources, Shujiang Ding: Resources, Yonghong Cheng: Resources, Jinying Zhang: Writing-review & editing, Funding acquisition, Project administration, Supervision.

Declarations

Conflict of interest The authors declare no interest conflict. They have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40820-025-01934-7.

References

- Y. Sun, C. Shen, Q. Lai, W. Liu, D.-W. Wang et al., Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art. Energy Storage Mater. 10, 168–198 (2018). https://doi.org/10.1016/j.ensm.2017.01.010
- M. Chen, X. Xiao, X. Wang, Y. Lu, M. Zhang et al., Self-templated carbon enhancing catalytic effect of ZrO₂ nanoparticles on the excellent dehydrogenation kinetics of MgH₂. Carbon 166, 46–55 (2020). https://doi.org/10.1016/j.carbon.2020.05. 025
- C. Gu, H.-G. Gao, P. Tan, Y.-N. Liu, X.-Q. Liu et al., Cheese-like Ti₃C₂ for enhanced hydrogen storage. Chem. Eng. J. 473, 145462 (2023). https://doi.org/10.1016/j.cej.2023.145462
- 4. J. Mao, T. Huang, S. Panda, J. Zou, W. Ding, Direct observations of diffusion controlled microstructure transition in

- Mg–In/Mg–Ag ultrafine particles with enhanced hydrogen storage and hydrolysis properties. Chem. Eng. J. **418**, 129301 (2021). https://doi.org/10.1016/j.cej.2021.129301
- R. Shi, H. Yan, J. Zhang, H. Gao, Y. Zhu et al., Vacancy-mediated hydrogen spillover improving hydrogen storage properties and air stability of metal hydrides. Small 17(31), 2100852 (2021). https://doi.org/10.1002/smll.202100852
- W. Zhu, L. Ren, C. Lu, H. Xu, F. Sun et al., Nanoconfined and in situ catalyzed MgH₂ self-assembled on 3D Ti₃C₂ MXene folded nanosheets with enhanced hydrogen sorption performances. ACS Nano 15(11), 18494–18504 (2021). https://doi.org/10.1021/acsnano.1c08343
- 7. G. Xia, Y. Tan, X. Chen, D. Sun, Z. Guo et al., Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv. Mater. **27**(39), 5981–5988 (2015). https://doi.org/10.1002/adma.201502005
- M. Liu, S. Zhao, X. Xiao, M. Chen, C. Sun et al., Novel 1D carbon nanotubes uniformly wrapped nanoscale MgH₂ for efficient hydrogen storage cycling performances with extreme high gravimetric and volumetric capacities. Nano Energy 61, 540–549 (2019). https://doi.org/10.1016/j.nanoen.2019.04.094
- L. Ren, W. Zhu, Y. Li, X. Lin, H. Xu et al., Oxygen vacancyrich 2D TiO₂ nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH₂. Nano-Micro Lett. 14(1), 144 (2022). https://doi.org/10.1007/ s40820-022-00891-9
- Z. Lan, F. Hong, W. Shi, R. Zhao, R. Li et al., Effect of MOF-derived carbon–nitrogen nanosheets Co-doped with nickel and titanium dioxide nanoparticles on hydrogen storage performance of MgH₂. Chem. Eng. J. 468, 143692 (2023). https://doi.org/10.1016/j.cej.2023.143692
- L. Zhang, Z. Cai, X. Zhu, Z. Yao, Z. Sun et al., Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH₂. J. Alloys Compd. 805, 295–302 (2019). https://doi.org/10.1016/j.jallcom.2019.07.085
- J. Yang, W. Shi, R. Liu, Y. Tan, Y. Fan et al., MXene-supported V₂O₅ nanocatalysts: boosting hydrogen storage efficiency in MgH₂ through synergistic catalysis. J. Energy Storage 130, 117474 (2025). https://doi.org/10.1016/j.est.2025.117474
- Z. Yang, J. Wu, Y. Wang, S. Wang, Y. Zou et al., Improved hydrogen storage performance of magnesium hydride catalyzed by two dimensional Ti₃C₂-coated NbN. J. Alloys Compd. 1029, 180752 (2025). https://doi.org/10.1016/j.jallc om.2025.180752
- K.C. Tome, S. Xi, Y. Fu, C. Lu, N. Lu et al., Remarkable catalytic effect of Ni and ZrO₂ nanoparticles on the hydrogen sorption properties of MgH₂. Int. J. Hydrog. Energy 47(7), 4716–4724 (2022). https://doi.org/10.1016/j.ijhydene.2021. 11.102
- X. Zhang, Y. Sun, S. Ju, J. Ye, X. Hu et al., Solar-driven reversible hydrogen storage. Adv. Mater. 35(2), e2206946 (2023). https://doi.org/10.1002/adma.202206946
- X. Hu, X. Chen, X. Zhang, Y. Meng, G. Xia et al., In situ construction of interface with photothermal and mutual catalytic effect for efficient solar-driven reversible hydrogen storage of

- MgH₂. Adv. Sci. **11**(22), 2400274 (2024). https://doi.org/10.1002/advs.202400274
- Y. Jiang, Y. Sun, Y. Liu, M. Yue, Y. Cao et al., Solar-driven reversible hydrogen storage in metal oxides-catalyzed MgH₂. Int. J. Hydrogen Energy 149, 150101 (2025). https://doi.org/ 10.1016/j.ijhydene.2025.150101

78

- M. Chen, X. Xie, P. Liu, T. Liu, Facile fabrication of ultrathin carbon layer encapsulated air-stable Mg nanoparticles with enhanced hydrogen storage properties. Chem. Eng. J. 337, 161–168 (2018). https://doi.org/10.1016/j.cej.2017.12.087
- K.-J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski et al., Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10(4), 286–290 (2011). https://doi.org/10.1038/nmat2978
- W. Ali, Y. Qin, N.A. Khan, H. Zhao, Y. Su et al., Highly air-stable magnesium hydrides encapsulated by nitrogen-doped graphene nanospheres with favorable hydrogen storage kinetics. Chem. Eng. J. 480, 148163 (2024). https://doi.org/10.1016/j.cej.2023.148163
- Z. Ma, Q. Tang, J. Ni, Y. Zhu, Y. Zhang et al., Synergistic effect of TiH₂ and air exposure on enhancing hydrogen storage performance of Mg₂NiH₄. Chem. Eng. J. 433, 134489 (2022). https://doi.org/10.1016/j.cej.2021.134489
- J. Zhang, W. Wang, X. Chen, J. Jin, X. Yan et al., Single-atom Ni supported on TiO₂ for catalyzing hydrogen storage in MgH₂. J. Am. Chem. Soc. 146(15), 10432–10442 (2024). https://doi.org/10.1021/jacs.3c13970
- J. Xu, W. Lin, Integrated hydrogen liquefaction processes with LNG production by two-stage helium reverse Brayton cycles taking industrial by-products as feedstock gas. Energy 227, 120443 (2021). https://doi.org/10.1016/j.energy.2021.120443
- Y. Zhang, Q. Li, P. Shen, Y. Liu, Z. Yang et al., Hydrogen amplification of coke oven gas by reforming of methane in a ceramic membrane reactor. Int. J. Hydrog. Energy 33(13), 3311–3319 (2008). https://doi.org/10.1016/j.ijhydene.2008.04.
- Y.J. Kwak, M.Y. Song, K.-T. Lee, Conversion of CH₄ and hydrogen storage *via* reactions with MgH₂–12Ni. Micromachines 14(9), 1777 (2023). https://doi.org/10.3390/mi140 91777
- F. Bu, A. Wajid, M. Gu, T. Liu, S. Liu et al., Synergistic effect of multivalent Ti, Zr, and oxygen vacancies to significantly enhance the hydrogen sorption properties of MgH₂. J. Mater. Chem. A 13(21), 16102–16111 (2025). https://doi.org/10. 1039/d5ta01302j
- D. Ma, Z. Wang, J.-W. Shi, Y. Zou, Y. Lv et al., An ultrathin Al₂O₃ bridging layer between CdS and ZnO boosts photocatalytic hydrogen production. J. Mater. Chem. A 8(21), 11031–11042 (2020). https://doi.org/10.1039/D0TA03933K
- 28. F. Bu, A. Wajid, N. Yang, M. Gu, X. Zhao et al., Fabrication of amorphous TiO₂ hydrogen channels and graphene wrappers to enhance the hydrogen storage properties of MgH₂ with extremely high cycle stability. J. Mater. Chem. A 12(20), 12190–12197 (2024). https://doi.org/10.1039/D4TA00722K

- N. Grønbech-Jensen, O. Farago, A simple and effective Verlettype algorithm for simulating Langevin dynamics. Mol. Phys. 111(8), 983–991 (2013). https://doi.org/10.1080/00268976. 2012.760055
- L. Tian, H. Duan, J. Luo, Y. Cheng, L. Shi, Density functional theory and molecular dynamics simulations of nanoporous graphene membranes for hydrogen separation. ACS Appl. Nano Mater. 4(9), 9440–9448 (2021). https://doi.org/10.1021/ acsanm.1c01919
- 31. J.H. Sharp, G.W. Brindley, B.N. Narahari Achar, Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc. **49**(7), 379–382 (1966). https://doi.org/10.1111/j.1151-2916.1966.tb13289.x
- 32. A. Khawam, D.R. Flanagan, Solid-state kinetic models: basics and mathematical fundamentals. ChemInform **37**(47), 200647223 (2006). https://doi.org/10.1002/chin.200647223
- 33. L.F. Jones, D. Dollimore, T. Nicklin, Comparison of experimental kinetic decomposition data with master data using a linear plot method. Thermochim. Acta **13**(2), 240–245 (1975). https://doi.org/10.1016/0040-6031(75)80085-2
- H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957). https://doi.org/10.1021/ac60131a045
- 35. J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, A. Kahn, The origin of low water vapor transmission rates through Al₂O₃/ZrO₂ nanolaminate gas-diffusion barriers grown by atomic layer deposition. Appl. Phys. Lett. 96(24), 243308 (2010). https://doi.org/10.1063/1.3455324
- 36. L.H. Kim, K. Kim, S. Park, Y.J. Jeong, H. Kim et al., Al₂O₃/TiO₂ nanolaminate thin film encapsulation for organic thin film transistors *via* plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 6(9), 6731–6738 (2014). https://doi.org/10.1021/am500458d
- J.C. Fuggle, L.M. Watson, D.J. Fabian, S. Affrossman, X-ray excited Auger and photoelectron spectra of magnesium, some alloys of magnesium and its oxide. J. Phys. F Met. Phys. 5(2), 375 (1975). https://doi.org/10.1088/0305-4608/5/2/020
- D.E. Haycock, M. Kasrai, C.J. Nicholls, D.S. Urch, The electronic structure of magnesium hydroxide (brucite) using X-ray emission, X-ray photoelectron, and auger spectroscopy. J. Chem. Soc. Dalton Trans. 12, 1791–1796 (1978). https://doi.org/10.1039/DT9780001791
- H. Seyama, M. Soma, X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations.
 J. Chem. Soc., Faraday Trans. 1 80(1), 237 (1984). https://doi. org/10.1039/f19848000237
- D.E. Haycock, C.J. Nicholls, D.S. Urch, M.J. Webber, G. Wiech, The electronic structure of magnesium dialuminium tetraoxide (spinel) using X-ray emission and X-ray photoelectron spectroscopies. J. Chem. Soc. Dalton Trans. 12, 1785–1790 (1978). https://doi.org/10.1039/DT9780001785

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.